Chapter 111

esign of the Run-time Organization

This chapter describes the run-time organization for the
translator-generated programs. The topics of concern include the
representation and the storage-allocation strategies of data objects,
the run-time structure of AWK subroutines, and the run-time tables,

3.0 Storage Classes for AWK Expressions

In order to accommodate various forms of run-time data
storage, the run-time organization for the generated program provides
five d|Heren storage classes for AWK expressions. Table 3.1
summarizes the storage classes. Each class is internally identified
by a unique, small integer defined as a c preprocessor symbolic name,
and Is implemented by a ¢ data type,

Table 3.1 storage Classes for AWK Expressions

Storage Class c Preprocessor Corrgsponding
Symbolic Name c Data Type
NUMmeric A NUM AWKFLOAT
nonfreeable-string A STR char *
freeable-string A STRF char *
variable A VAR VarType *
function A FUNC FnType *

§oclass has a strict
type AWKFLOAT Which s
to be either double or

Numeric Class. The expression of thi
numeric value. It Is implemented in c by the
A c DIEprocess ymbol defined in awclib.h t
float dependi g the precision required,

Nonfreeable-string Class, The expression of this class has a
strict string value, implemented in c as a character pointer. The

string value of this class cannot be deallocated (freed) after use,
because it may be currently in use elsewhere, or does not come from
the dynamic allocation using the standard C|| brary. Also, operators
or functions that use & string of this class normally treat it as a
read-only value,

Freeable-string Class. This class is similar to its
nonfreeable counterpart described above, except that the string could
be, and should be, deallocated after use so as to keep the run-time
dynamic space from exhaustion,

Variable Class. This class is associated with AWK variable
both built-in and user-defined, and is implemented in Cas a pointer
to a structure VarType described in section 3.2.1,

Function Class. This class is associated with the returned
value from a user-defined function and is implemented in Cas 3
pointer to a structure FnType described in section 3.3.1. The
expression value of this class is temporary by nature, so its data
structure, the FnType node, will normally be deallocated immediately
after use,

Note that either numeric or string value could be obtained
from an expression of variable or function class by calling some
special ||bawc accessing routings. In fact, these two multi-typed
storage classes are designed to implement an important AWK
characteris t|c tha an AWK variable and the returned value from a
function call could be treated as either a number or a string
depending on the context,

3.0 Implementation of AWK Variables
3.2.1 Data structure

AWK variables are multifaceted. It has a scalar value that
ls either a string or a number, or both. Since there is no explicit
declaration in AWK, the type of a variable must be inferred from the

13

context. The fact that both numeric and string value can be obtained
from any AWK variable implies automatic type conversion between
string and numeric value. Moreover, an AWK variable can be either 3
scalar variable or an array, also depending on context. Consequently,
the data structure for AWK variables must be designed to accommodate
all h e flexibilities,

The data structure for AWK variables is a Cstructure called
VarType. Each AWK variable, both built-in and user-defined, has
ssociated with it a VarType node. There are four fields in the
structure as summarized in Table 3.2

Table 3.2 Fields in the VarType structure

Field Name CData Type Description
type int variable type
Nl AWKFLOAT pumeric value of the variable
sval char * string value of the variable
aval ArrElgm ** pointer to a structure for an

ssociative array

Table 3.3 Variable Type

Symbolic name nval value sval valug
VIINDEF undefined indefined
V_NUM defined undefined
V STR undefined defined
V_BOTH NUM defined defined
V BOTH STR defined defined

Table 3.0 shows that the structure VarType have three value
fields nval, sval, and aval, to store three different types of
values. The field nval stores the variable's numeric value while sval
stores its string one. If the variable 1s used as an associative
array, the field aval will store a pointer to the data structure for
that array; otherwise this field will be NULL. The fields nval and
sval are interrelated in the sense that numeric-to-string conversion
of nval' value would yield the same string as the one stored in

14

sval, and vice versa. The field aval, however, is totally independent
of the other two value fields,

The field type is used to indicate the current internal

status of the variable concern|ng its scalar values in the figlds
nval and sval. Table 3.3 shows the five different possible type
values for this field. Each type reflects whether the fields nval and
sval currently contain a defined or undefined (garbage) value. The
type VIINDEF indicates that the variable's scalar values are
undefined. A variable of type VNUM currently tores a numeric value
only, while that of type V.STR stores a string value only. The types
V BOTH NUM or V BOTH STR indicates that both nval and sval fields
currently have values but the variable's primary type is numeric or
string, respectively. Whether a variable's primary type is numeric or
string depends on whether the assignment of its value is, by nature,
a numeric or a string one. The primary type of a V NUM or V BOTH NUM
variable is numeric, while that of a V.STR or V BOTH STR is string. A
VNUM variable is automatically promoted to a V BOTH NUM one when its
string value is called for, forcing & numeric-to-string conversion of
its nval's value and storing the conversion result in the sval field,
Similarly, a V STR variable is automatically promoted to a V BOTH STR
one in the anologous manner

Note that the field type relates only to the scalar value of
a variable and has nothing to do with the aval field.

300 Classification of AWK Variahles
3.2.0.1 Global and Local Variables

Within a user-defined function, all the parameters named in
the function's parameter list are local variables, lasting only as
long as the function is executing, and unrelated to variables of the
same name elsewhere in the program. But all other variables arg
global; that is, it is visible and accessible throughout the program,

15

3.2.2.0 Scalar and Array Variables

An AWK variable is a scalar one if it stores a numeric value
0r & string, or both at the same time. As described previously, the
fields nval and sval of its associated VarType node will hold its
numeric and string value respectively,

An AWK variable is an array if it s used in the program as
such; for example, it appears with a subscript or is used as an
argument to a function that uses the argument as an array. The
VarType node associated with an array variable will have its aval
field contain a pointer to a structure for an associative array,

should be noted that the run-time organization uses the

same VarType structure for both scalar and array variable. The effect
of this is that each AWK variable could have dual roles of being both
scalar and array at the same time if it has values both in one of its
scalar fields and in its aval field simultaneously. Nevertheless, the
two roles are totally independent of each other in the sense that its
scalar value does not relate to and have no effect whatsoever on its
array properties, and vice versa,

As a consequence, when used as global variables, a scalar
variable and an array variable with the same name will behave 4 if
they were two separate, unrelated variables even though they shar
the same VarType structure; but when the variable name i
s
h

Used as an
argument to & function, both its scalar and array aspects are passed
together to the function because what is passed is the shared VarType

node,

3.2.3 Implementing Global Scalar Variables
3.2.3.1 Space Allocation

Each AWK global scalar variable, either built-in or user-
defined, is translated into an external VarType variable in the
generated program. Being a Cexternal object ensures automatic space

allocation at run time. Each of these VarType variables is declared
with the name derived from its corresponding AWK variable by
appending the suffix AWK to its name. For example, the built-in
variable NRis implemented in the generated program as a VarType
variable named NR AWK,

The field variables are translated a little differently,
however. They are declared as an external array, named field, of
VarType structures:

Vartype field[MAXFIELD+1]

Wwhere MAXFIELD is a symbolic constant defined in awclib.h to be the
maximum number of fields allowed. The variable field[0] corresponds
to AWK's §0, field[l] to §1, and so on.

3.0.3.0 Initialization

Each VarType node that corresponds to a global user-defined
or field variable is initialized to have the following values in its
fields:

field initial value
type VIINDEF
nval (undefined)
sval (undefined)
aval NULL

The AWK lanquage requires that a number of built-in
variables be initialized to default values., Thus, its corresponding
VarType structure is initialized accordingly. Table 3.4 shows the

16

initial values of the fields in the VarType structures for all built-

in variables,

Table 3.4 Initial Values of the VarType nodes for

Variable type
ARGC VIINDEF
ARGV VIINDEF
ENVIRON VIINDEF
FILENAME VI3TR
FAR V_NUM
FS VISTR
NF V_NUM
R V_NUM
OFMT V STR
OFS V STR
ORS V STR
RLENGTH VIINDEF
RS VISTR
RSTART VIINDEF
SUBSEP V STR

3.0.3.3 Accessing Variable's Values

Built-in Variables
nval
undefined
undefined
undefined
undefined
0.0
undefined
0.0
0.0
undefined
undefined
undefined
undefined
undefined
undefined
undefined

sval
undefined
undefined
undefined

fl_If

undefined
undefingd
undefined
6g"
ft b
"I
undefined
o
undefined
"1034"

aval
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

17

In AWK programmers' view, a variable always have both string
and numeric values at the same time, Internally, however, its

associated VarType node may or may not have a defined value in its
nval or sval field at any given instant. In order to bridge the gap
between the logical and the internal view, the values in the VarType
node are normally obtained not by accessing the fields directly but
by calling a set of libawe routines, namely varNvalO, varlval (),

varLvalO, and varSvalO, to get the variable's values of type
AWKFLOAT, integer, long, and string, respectively, [f necessary,

these routines will automatically perform type conversion, store the

conversion result in the appropriate field, and then update the
VarType node's scalar status in the type field,

18

3.2.3.4 Reinitializing Variables

When & variable needs to clear its values, the associated
VarType node will be reset to the undefined status. The libawe
routing renewVarO will be called to do the job. It will free the
string in the sval field 1f it exists and set the type field to
VIINDEF, Note that renewVarQ concerns only the scalar aspect of the
variable, so the aval field s [eft untouched

3.2.4 Implementing Global Array Variables

The characteristic that set AWK arrays apart from those in
most other lanquages is that subscripts are strings. This gives AWK 3
capability like the associative memory of SNOBOLY tables, and for
this reason, arrays in AWK are called associative arrays. Thus, the
implementation of AWK array variables in the run-time organization i
designed to serve this capability,

3.2.4.1 Space Allocation and Initialization

Since an AWK variable that is used as an array shares the
same VarType node with a scalar-valued variable that has the same
name, the issues of Cdeclarations and run-time space allocation for
its associated VarType node are just exactly the same as those for
scalar variables. In other words, a single Cdeclaration in the
generated program:.

VarType x__ AWK;

Will serve the uses of an AWK variable x not only as a scalar
variable, such as in the statement x=5, but also as an array
variable, such as in the statement x[napple”1=10.

Initially, all the VarType nodes have its aval field
initialized to NULL and the data structure for an associative array
to be pointed to by the aval field will not be allocated until the
variable is first referenced as an array at run time by calling the

19

libawe routing arrayO. If the routine finds that the aval field of
the VarType node passed to it is NULL, it will automatically
allocate an associative array data structure and set the aval field
to point to it

3.2.4.0 Data structure for AWK Arrays

An AWK array element, which appears in program with a
subscript, and a scalar variable are semantically of the same storage
class; thereby they could be used in the same context. The only
ditference 1 that an array element needs & unique subscript to
reference itself while a scalar variable need not. Thus, the
subscript has to be incorporated into the array element's data
structure,

The data structure for an AWK array element is a Cstructure
named ArrElem. There are three fields in the structure: sub, var, and
next, as summarized in Table 3.5

Table 3.5 Fields in the ArrElem structure

Field Coata Type Description

sub char * The Tdentifying subscript string

Var VarType The node for all its scalar-variable
properties

next ArrElem * points to the next ArrElem node in the

same linked list

sub var next

/ type: VNIM \
] nval: 10.0
"asia” g NLL 0V
aval: NULL to next node
v J

Figure 3.1 Example of an ArrElem node

20

Figure 3.0 illustrates the ArrElem node for an array element
X["asia"] after being assigned a numeric value L0, The sub field
stores the subscript and the var field stores the assigned value in
exactly the same way as does a VarType node for a scalar variable,

The whole array itself is implemented as a search table of
all its elements, using the hashing scheme that resolves hash
collisions by separate chaining, This hash table is actually the
structure that the aval field points to. Internally, it is
implemented in Cas an array of HASHSIZE pointers to ArrElem nodes,
where HASHSIZE is & programmer-adjustable symbolic constant, defined
inawclib.h, for table size. The i-th entry in the hash table is a
pointer to the linked [ist of ArrElem nodes that share the same hash
function value 1. The value of the field sub in each ArrElem node,
Which s the subscript string identifying the array element, is used
as the key to compute the hash function value,

Figure 3.2 illustrates the data structure for an AWK array
variable x. It shows the ArrElem nodes for three array elements
X["pig"], x["ox"], and x["cat"]. The subcript strings "pig" and “ox"
are supposedly computed to the same hash value 1, thus being in the
same chain, The subscript "cat", however, is computed to another hash

value | and is supposedly the only member of its chain,

21

VaiType node for an array variable X

type:
nval:
pope Hash Table
|. . ArrElem node for x{"pig"]
aval; _|
91 ArrElem node for x{"ox"]
Gl D=1,
j — %["cat" 7 L
HASHSIZE-1 *ArrElem node for x{"cat"]

Figure 3.2 Data structure for AWK associative arrays

3083 Accessing the Values of an Array Element

Each reference to an array element in the AWK source program

1§ translated into a call to the fibawe routine array0. For example,

X["thai"]
Is translated into

array(&x AWK A STR, "fox"),
where x AWK is the VarType node for x. The second argument to
array0 specifies the storage class of the third argument, the
subscript string,

The routine array0 will search the hash table associated
With x for the ArrElem node that has the sub field containing "fox",
[t such node does not exist, it will be allocated at once. Then,
array0 will return a pointer to the var field of that node to the
caller. This means the returned value of array0 has the storage
class A VAR so accessing its stored values could be done in exactly

the same way as normal scalar variables,

22

3.0.5 Implementing Local Variables

AWK Tocal variables have the same run-time storage class as
global ones, thereby each having a unique VarType node allocated for
it. However, they are different from their global counterparts in
that their associated VarType nodes are defined in the generated
program as automatic variables rather than external ones and are
declared inside the generated Cfunctions corresponding to AWK user-
defined functions. Being of automatic storage class ensures automatic
space allocation and deallocation upon function entry and exit. Also
at the beginning of each generated function, the transiator has to
generate codes to assign the values passed from the caller's actual
arquments to their corresponding local VarType nodes in order. Except
these two different attributes - Cstorage class and the way their
values are initialized - there are no differences in use between the
VarType nodes for local variables and those for global ones,

3.3 Implementation of AWK User-defined Functions
3.3.1 Function Class and The FnType structure

As mentioned in section 3.1, a user-defined function call,

or equivalently, the returned value from a user-defined function, has

the storage class function, which is implemented in Cas a pointer to

the structure FnType. The FaType structure has two fields type and
The field is a Cunion with four members, namely nval, sval,

vval, nd fval, to store the value of the class numeric, freeable-

stzing or nonfreeable-string, variable, and function, respectively,
The field type indicates which class of value Is currently stored in
the field,

3.3, Function Invocation

Fach AWK user-defined function is translated into a unique C
function returning a pointer to a FnType node. Each run-time
invocation of the generated Clunction explicitly allocates a new
FnType node to store the invocation's logical returned value,
Internally, the generated Cfunction actually returns a pointer to

23

the FnType node associated with the current invocation and the caller
must extract for itself the invocation's value from the FnType node,
Also, the caller is responsible for deallocating the FnType node
immediately after its value has been obtained.

3.3.3 Parameter Passing Mechanism

As mentioned previously, each formal parameter of an AWK
user-defined function is a local variable. Implementation of local
variables in the generated program is described in section 3.2.5
above, Since in AWK language the number of actual parameters passed
to the function may be varied with each call, each run-time
invocation of the function passes the number of passed parameters as
the first parameter, followed by a sequence of actual parameter
values. Each parameter value is actually passed in the form of an
ordered pair of its storage class and its value; for example, the
numeric value 4.5 15 passed with the ordered pair (A NUM, 4.5) and
the variable x Is passed with the ordered pair (A VAR, & AWK),
where Sx__ AWK is the address of the VarType node associated with x

At the receiving end, the invoked function beging its
execution by explicitly assigning the value in each passed ordered
pair to the respective local variable, in order. [f the number of
passed ordered pairs is less than the number of local variables, then
some of the local variables will remain unassigned, thereby having
the status of V_UNDEF at the function beginning. Having done with the
process of passing parameter values, the invoked function will then
start executing its function body

34 Pup-tine Tables

The run-time organization of the generated programs
maintains two important tables, one for global variables and the
other for the inputfoutput files and pipes opened during program
execution,

24

3.4.0 Table of Global Variables

This table serves as a mapping between each global variable
name in the AWK source program and the address of its associated
VarType node in the generated program. The mapping is necessary for
implementing the ability to assign values to global variables at
command-ling. For example, an executable file foo that is produced
from the generated program could be run by issuing the shell command

foo datal aho=5 datal

to specify that the numeric value 5 75 to be assigned to the global
variable aho just before reading the first record of the input file
data2. The command-ling assignment statement [ike this implies that
the run-time organization has to know the address of the VarType node
associated with the AWK variable with that name, hence the necessity
of this mapping table.

Each entry in the table is & Cstructure VarlnfoNode, which
has three fields as summarized in Table 3.6, AIl the entries are
allocated and installed into the table at run time.

Table 3.6 Fields in the VarinfoNode structure

Field Coata Type Description

name char * Name of a global variable as defined
in the AWK source program

DV VarType * Address of the associated VarType
node

next VarlnfoNode * Pointer to the next node in the
linked list

$.4.0 Table of Input/Output Files and Pipes

This table maintains the information and the status of each
inputfoutput file or pipe opened during program execution, The data
structure for each entry in the table is a Cstructure named

25

FileInfoNode, which has five fields as summarized in Table 3.7, The
possible status values for the field mode are 'r' " ', "a' and "¢’
to indicate hat the file or pipe is opened for reading, writing,
appending, or it has been closed, respectively,
Table 3.7 Fields in the FilelnfoNode structure
Field Coata type Description
name char * Filename or pipe command as
appeared in the AWK source program
mode int Current status of the filelpipe
IsPipe int L if the entry s for a pipe, or 0
it for a filg
fp FILE * File pointer associated with the
filelpipe
next FilelnfoNode * Pointer to the next node in the

linked [ist

	Chapter III Design of the Run-time Organization
	3.1 Storage Classes for AWK Expressions
	3.2 Implementation of AWK Variables
	3.3 Implementation of AWK User-defined Functions
	3.4 Pup-time Tables

