Chapter IV

Development of the Translator

£.1 Components of the Translator

The Translator is composed of four major components:

L. The Main Routing. This routine is where the translator
beging its execution. It performs all necessary program
initializations, calls the parser routine to perform the translation
process, and then does necessary wrap-up works before exiting.

2. The ParseriCode-generator. This is the translator's part
that actually performs the translation proce cSince the translator
employs the so-called syntax-directed translation scheme in which the
code is generated strictly on the basis of the language syntax, the
code generator part of the transtator is embedded within the parser
to form a single parserfcode-generator module. The parser calls the
scanner routing everytime it requires the next token,

3. The Scanner. The scanner, more formally called the
lexical analyzer, reads the input stream of characters from the AWK
source program and translate it into a stream of basic language
elements called tokens. Each call to the scanner by the parser
returns the next token in the input stream.d

4, The Symbol-Table Managers. To support the translation
process, the translator records information about various kinds of
identifiers in the source program into the symbol tables. These
symbol tables are accessed and maintained by the symbol-table
managers,

Figure 4.1
translator's components. The continuous
calling relationship while the dotte

5 O f A main I;"
symbol-table ~ parser/
managers code-generator
symbol tables Y SCavEr

AK

source program

Figure 4.1 Components of the AWK-to-C
relationships

§.2 The Symbol Tables

translation convenignce, the

into three categories: Keywords,
parameter names. Table 4.1 defined the types
comprising each category, Accordmgly the t
separate symbol table for each category of

For
identifiers

summarizes the relations
lined arrows designate
d ones indicate the

21

hips among the
the
data flow,

- the skeleton file

generated
C program

translator and their

translator divides AWK
global names, and
of Tdentifiers
translator maintains
identifiers.

28

Table 4.1 Translation-time Categories of AN Identifiers
Category Definition

keywords all of the AXK keywords including the built-
in function names but excluding the built-in
variable names

global names global variable names, both built-in and
user-defined, and user-defined function names
parameter names local variable names

4.2.1 The Keyword Table

The keyword table is a fixed-sized, sorted table of AK
keywords. The data structure for each table entry is a Cstructure
Kword, described in Table 4.2. The table itself is implemented in C
as a static array of Kword structures.

Table 4.2 Fields in the Kword structure for
Keyword-Table Entries

Field Cpata Type Description
name char * The keyword string
token int Its corresponding token number

The keyword table is used solely by the scanner. Whenever
the scanner encounters an identifier in the source program, it looks
up the keyword table to see whether the identifier is a keyword. If
it is, the scanner returns the token number stored in the token field
of the corresponding table entry.

4.2.2 The Global-name Table

The global-name table stores information of each global name
in the source program. This table grows dynamically; new entry will
be added as a new global name is encountered. The data structure for
each table entry is a Cstructure NameTabNode, which is described in
Table 4.3. The table itself is implemented by using a hashing scheme.

29

Table 4.3 Fields in the NameTabNode structure for the Global-Name
Table Entries

Field C Data Type Description
name char * The identifier's lexeme
type int The identifier's category, which can be

one of the following:

IDB VAR for built-in variable

IDUVAR for user-defined
variable

ID_ U FUNC for user-defined
function

next NameTabNode * A pointer to the next node in the
linked list

During program initialization, the main routine initializes
the global-name table by preloading it with all of the AK built-in
variable names. As the translator is parsing the source program, new
entry will be added into the table for each new global name
encountered. The parser mainly uses this table to make sure that
identifiers used for variables are not to be used later as function
names, and vice versa. The code generator also looks up this table to
generate proper C declaration code for each global name.

4.2.3 The Parameter-name Table

As the translator begins parsing a user-defined function, it
records the function local variable names in the parameter-name
table in the order as they appears in the function's parameter list.
The code generator uses this table to generate codes concerning the
allocation/deallocation of the function's local variables and the
parameter passing mechanism. This table will be emptied immediately
after the parsing/code-gerating process for the current user-defined
function has finished.

30

The data structure for parameter-name table is simply a list
of names, implemented in Cas an array of character pointers. An

integer variable nParam is used to record the current number of names
in the table.

4.3 The Main Routine

The main routine is the starting point of execution for the
translator. It has a simple algorithm shown in figure 4.2.

=)

process command-ine arguments

open input/output files

initiakize symbol tables

cal the parser

close input/output files

(=)

Figure 4.2 Algorithm for the translator's main routine

4.4 The Scanner
4.4.1 Development of the Scanner

The Unix scanner generator lex was used to produce the
scanner module of the translator. A lex specification file named
scanner.l, written in a special specification language recognized by
lex, contains a set of rules for matching tokens and corresponding

31

groups of Caction statements that are executed when a token is
matched. Lex reads the file scanner.l as its input and generates the
C code for the scanner in a file named scanner.c. The C function
yylex contained in scanner.c is the lexical analyzer (or scanner)
routine that the parser calls to get the next token. Figure 4.3
summarizes the scanner development process.

scanner.| lex >' scanher.c

lex specification file scanner module

analyzer routineyylex)
Figure 4.3 The scanner development process

Figure 4.4 illustrates the algorithm of the scanner routine.
The scanner tries to match the input characters against each
specified pattern in order. If a pattern is matched, it executes the
corresponding action and then returns the token number corresponding
to the matched pattern to the parser. If there is no pattern matched,
the special token ERROR is returned.

32

Execute action
for pattern-1

Execute action
for pattern-2

V

.........

pattern-n ¥®S | Execute action| .
matched for pattern-n
ne
Execute ‘
default action

return the token
return number associated
token ERROR with the matched
pattern

Figure 4.4 Algorithm of the scanner routine

4.4.2 Token Definitions

The scanner partitions the stream of input characters from
the ANK source program into basic syntactic elements called tokens.
The tokens for a language is inherently defined by the grammar of the
language itself. The yacc grammar for the AN language listed in

Appendix B, upon which the parser is based, defines the total of
fifty-seven tokens described in Table 4.4, The first column of the
table lists each token's symbolic name for its token number that the
scanner actually returns to the parser to identify the token.

Table 4.4 Tokens Recognized by the Scanner

Symbolic Name Description

ERROR the error token to be returned when the scanner
has found an error in the input stream

TNUVBERR numeric constant

TSTRING string constant between a pair of double quotes

REGEXP reqular expression constant between a pair of /'s

FUNC CALL non-ke%/wor,d identifier that is followed by a left
parenthesis

NAVE non-keyword identifier that is not followed by a
left parenthesis

APPEND OP the redirection operator >

ASSIGNOP the assignment operators

DECREVENT the increment operator +
INCREMENT the decrement operator —

MATCHCP the matching operators ~and !"
RELOP all of the relational operators except > and <
TOK A\D the operator &

TOK BEGIN the keyword BEGIN

TOK BREAK the keyword break

TOK BUILTIN the built-in functions
TOK CLOSE the keyword close

TOK CONTINUE ~ the keyword continue
TOK DELETE the keyword delete

TOK DO the keyword do

TOK ELSE the keyword else
TOK END the keyword END
TOK EXIT the keyword exit

TOK FOR the keyword for

Tahle 4.4
Symbolic Name

TOKIFUNCTION
TOK_GETLINE
TOK_IF
TOK_ IN

TOK LENGTH
TOKINEXT
TOK OR
TOK_PRINT
TOK PRINTF
TOK RETURN
TOK WHILE
NEWLINE

1 / t

1

Tokens Recognized by the Scanner (continued)

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

Description
keyword function
keyword getline
keyword if
keyword in
keyword length
keyword next
operator .
keyword print
keyword printf
keyword return
keyword while
end of the line
literal
literal
literal $
literal \
literal |
literal
literal -
literal +
literal -
literal /
literal
literal ;
literal -
literal .
literal ?
literal |
literal |
literal A
literal |
literal |
literal 1

3

3

45 The Parser/Code-Generator

4.5.1 Development of the Pacser/Code-genecator

The Unix parser generator yacc was used to produce the
parser/code-generator module of the translator. Avyacc specification
file named parser.y, written in a special specification language
recognized by yacc, contains a yacc grammar for the AAK language with
embedded C action statements that generate appropriate code for each
grammatical construct. Yacc reads the file parser.y as its input and
generates the Ccode for the parser/code-generator in a file named
parser.c, and also the header file parser.h containing token
definitions needed by the scanner module. The C function yyparse
contained in parser.c is the actual parser/code-generator routine
that the main routine calls to parse the ANK source program and
generate the C-code output. Figure 4.5 summarizes the parser
development process.

header file
for the scanner module

parser.y

yacc specification file parser.c

parser/code-generator module
(contains the parser routine yyparse)

Figure 4.5 The parser development process

4.5.2 The Grammar for AW Used by the Parser

The yacc specification file parser.y was designed and
written around a yacc grammar for the AAK language. The grammar,
listed in Appendix B, is derived and adapted from the grammar used by
the Free Software Foundation's G\J gawk, which is a freely available
A language processor.

mllipS'U-00'0

36

4.6 Interface Between the Scanner and the Parser

Lex and yacc were designed to generate the scanner and the
parser routines that works cooperatively together. Figure 4.6
illustrates the flow of control in the scanner and the parser
routines.

call to parse
the input
mam()
| request next token
i — yypose()|
if input is valid
or 1ifnot actions T 7Veturtr)1 token
rocess number
AWK
Poke_n : ex()
attribute or 0ifEOF | ¥ read | program
; input
characters

yyfvd _
pass token attribute

Figure 4.6 How the scanner and the parser routines work together

The main routine of the translator invokes the parser
routine yyparse to parse the input source program to check whether or
not the input is syntactically valid, and to generate C-code output.
Yyparse invokes the scanner routine yylex each time it needs a token.
This scanner routine reads the input stream, and for each token that
It matches, it returns the token number to the parser. The scanner
routine can also pass an attribute value of the token via the
external variable yylval. The parser's action codes can make use of
this attribute value in the process of generating the output.

When the scanner routine has exhausted the input, it returns
0 to the parser. If the parser has recognized the start rule, the
top-level in the grammar's hierarchical structure, then the parser
returns 0, meaning that the input was syntactically valid. If at any
time it receives a token number or a sequence of tokens that it does

37

not recognize or if the scanner returns 0 before the start symbol has
been recognized, then the parser returns 1, reporting a syntax error.

Not every token has a token attribute associated with it. Of
all the fifty-seven tokens listed in Table 4.4, only nine, namely
FUNCJCALL, NAME ASSIGNOP, RELOP, MATCHOP, TNUVBER TSTRING, REGEXP,
and TOK BUILTIN, are required by the parser to have a token attribute
passed on the variable yylval. The attribute for each of these tokens
is defined to be its lexeme. For the other forty-eight tokens, the
parser does not need to know its lexeme hecause there is only one
possible lexeme for each of them; thereby the token itself already
implies what its lexeme is.

	Chapter IV Development of the Translator
	4.1 Components of the Translator
	4.2 The Symbol Tables
	4.3 The Main Routine
	4.4 The Scanner
	4.5 The Parser/Code-Generator
	4.6 Interface Between the Scanner and the Parser

