Chapter VI

Conclusions

6.1 Summary of Results

The results of the entire project can be summarized as
follows :

1. Acomplete AWK-to-C translation system was successfully
developed on the Unix System V Release 4 environment. The translator
recognizes the new version of the ANK language as defined in Aho,
Kernighan, and Weinberger (1988).

2. Atest suite containing more than 240 ANK programs was
constructed to test the translation system extensively. All the bugs
found during the test have been fixed.

3. A performance measurement suite containing ten
representative AK programs selected from the test suite was
constructed to measure the execution times of the translator-
generated programs. This execution times were then compared with
those of the respective AN programs running by the Unix AK
interpreter nawk. The results show that in most cases, the
translator-generated program runs faster than its nawk-processed
counterpart. The speed improvements vary widely but the average over
the ten representative programs is 32%4

4, In order to facilitate the development process, nearly
all stages of software development cycle have been largely automated
using the Unix file updating program make. This includes generating
and compiling the source programs, building the translator and the
library, testing the system, measuring the performance, packaging the



42

source code for distribution, and intailing the whole software
package into the system.

6.2 Suggestions for Further Development

There are two major areas in which the AWK-to-C translation
system could be further developed and improved to make it more
useful: the performance of the generated program, and portability.

6.2.1 Performance of the Generated Program

Although the performance measurement suite has shown that
most of the translator-generated programs run faster than their
interpreted counterparts, the average speed improvement of 3% is
hardly satisfactory. Moreover, Table 5.1 also shows that the speed
improvements vary widely among the ten representative programs,
ranging from -13% to 135%. This could make any AAK programmer
reluctant to use the translator as a replacement for the existing AK
interpreter.

Therefore, further development should be done to improve the
generated program's performance, or at least to make the speed
improvement more consistent and more uniform. Time profiling of the
generated program should be performed to analyse the execution
behavior of program to see where the performance bottlenecks are and
how they could be dealed with to make the program run faster.

The fact that the speed improvements among the ten
representative programs vary greatly could serve as a good clue for
pinpointing the performance bottlenecks as well. For example, Table
5.1 shows that the test program walk has the speed improvement value
of -13% while the program hist has the value of 135%. Hence, the AK
code of both programs could be examined to find out which AK
language constructs are translated into the ¢ code that performs well
and which constructs are not.



43

Some design adjustments could probably improve the
performance as well. One possible target area is in field splitting.
The current design of field splitting mechanism used in the generated
program is such that every input line is always splitted into fields
regardless of whether the program actually accesses any field or not.
Since field splitting has to be done on every line read, this could
take a good deal of execution time especially if the input lines are
very long and composed of a large number of fields. For example, if
each input line is splitted into 100 fields but the program make use
of only the second field in its action code, then the time spent on
splitting the line from the third field upto the hundredth field will
be totally wasted, and if the program has to read 10,000 input lines,
the wasted time could be tremendous. Therefore, the implementation of
field splitting mechanism could be redesigned so that whether the
field should be splitted and how far in the line the splitting should
go is decided dynamically, depending on demand.

Another area that a different design could improve the
performance is the storage allocation/deallocation mechanism. The
current design is such that an allocated object will be deallocated
immediately after its logical lifetime has ended. Thus, some
execution time could be saved if the object to be deallocated is
marked as such and then the actual deallocation action is postponed
until the run-time organization has exhausted its allocatable space,
thereby triggering the so-called garbage collection process.

6.2.2 Portability

Currently, the translator, the run-time library, and the
translator-generated programs are portable only among the Unix
Systems that have an ANSI ¢ compiler and the ANSI ¢ standard library
available. Further development should be done to improve portability
s0 that the software could be ported to the Unix system that has only
the so-called traditional K&R ¢ implementation available, and also to
other widely used operating systems such as msDos or wMs as well.



	Chapter VI Conclusions
	6.1 Summary of Results
	6.2 Suggestions for Further Development


