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APPENDIX A
Experimental Data

Table A.l  Methane conversion, carbon dioxide conversion and product selectivities at different voltage (C02 CH
ratio of 1:1,80% helium concentration and space time of 4 minutes )

Voltage MEthane Product Selectivities (%) Carbon dioxide
V) Conversion (%) acetylene ethylene ethane CO methanol H2 Conversion (%)

5,500 16.00 0.23 0.20 23.11 76.41 0.05 1.72 9.04

6,600 24.34 0.11 0.14 12.69 87.00 0.06 1.07 14.00

7,700 30.21 0.24 0.09 17.16 82.43 0.09 7.34 17.75



Table A.2  Methane conversion, carbon dioxide conversion and product selectivities at different voltage (C0. CHa
ratio of 1:1,80% helium concentration and space time of 6 minutes )

Voltage ~ Methane Yselectivity Carbon Dioxide
(V) Conversion (%) Acetylene Ethylene  Ethane CO  Methanol Hydrogen  Conversion (%)
5,500 24.24 0.46 3.75 17.51 78.21 0.07 2.35 14.55
6,600 33.66 0.20 0.09 17.94 81.70 0.07 7.35 18.49
7,700 39.14 0.18 0.07 15.04 84.65 0.06 11.01 22.50

Table A3 Methane conversion, carbon dioxide conversion and product selectivities at different voltage (C02 CH4
ratio of 1:2,80% helium concentration and space time of 4 minutes )

Voltage ~ Methane Y%selectivity Carbon Dioxide
(V) Conversion (%) Acetylene Ethylene  Ethane CO  Methanol Hydrogen  Conversion (%)
5,500 21.86 0.62 0.44 65.06 33.86 0.02 9.16 15.58
6,600 25.22 1.11 0.38 66.89 31.59 0.03 9.62 16.00

7,700 29.49 0.63 0.29 65.11 33.93 0.04 12.04 20.57



Table A4 Methane conversion, carbon dioxide conversion and product selectivities at different voltage (C02 CHa
ratio of 1:2,80% helium concentration and space time of 6 minutes )

Voltage ~ Methane Y%selectivity Carbon Dioxide

(V) Conversion (%) Acetylene Ethylene  Ethane CO  Methanol Hydrogen  Conversion (%)
5,500 29.40 0.79 0.34 65.94 32.90 0.03 12.20 22.88
6,600 37.68 0.41 0.26 65.75 33.55 0.03 14.73 25.77
7,700 41.17 0.33 0.29 63.08 36.27 0.03 16.46 29.19

Table A5  Methane conversion, carbon dioxide conversion and product selectivities at different voltage (C02: CH4
ratio 0f 2:1,80% helium concentration and space time of 4 minutes )

Voltage ~ Methane Yselectivity Carbon Dioxide
(V) Conversion (%) Acetylene Ethylene  Ethane CO  Methanol Hydrogen  Conversion (%)

7,700 39.64 0.22 0.21 31.41 68.11 0.049 19.67 18.18



Table As  Methane conversion and product selectivities at different voltage (C 02 CHaratio 0f0:1,80% helium
concentration and space time of 4 minutes )

Voltage ~ Methane Y%selectivity
(V) Conversion (%) Acetylene Ethylene Ethane  CO  Methanol Hydrogen

7,700 14.87 0.58 0.72 98.70 0.00 0.00 3.83



Table A7 Methane conversion and product selectivities at different voltage (C02 CHaratio of 1:1,50% helium
concentration and space time of 4 minutes )

Voltage Methane Yselectivity

(V) Conversion (%) Acetylene Ethylene Ethane CO  Methanol Hydrogen
5,500 6.07 0.69 0.65 68.92 29.65 0.08 2.33
6,600 14.79 0.48 0.41 67.96 31.08 0.07 4.85
7,700 17.94 0.52 0.47 68.16 30.78 0.07 6.55

Table A8  Methane conversion and product selectivities at different voltage (C02 CH4ratio of 1:1,50% helium
concentration and space time of 6 minutes )

Voltage Methane Y%selectivity
(V) Conversion (%) Acetylene Ethylene Ethane  CO  Methanol Hydrogen

7,700 25.21 0.11 0.14 63.21 36.47 0.07 9.70



Table A9  Methane conversion and product selectivities at different voltage (C02 CHaratio of 1:1,50% helium
concentration and space time of s minutes )

Voltage Methane Yselectivity
(V) Conversion (%) Acetylene Ethylene Ethane  CO  Methanol Hydrogen

7,700 26.49 0.17 0.17 61.41 38.18 0.07 19.96



Table A.10 Methane conversion and product selectivities at different voltage (C02. CHaratio 0f 1:1,20% helium
concentration and space time of 4 minutes )

Voltage Methane Y%selectivity

(V) Conversion (%) Acetylene Ethylene Ethane  CO  Methanol Hydrogen
5,500 0.25 5.94 4.46 89.58 0.00 0.03 0.02
6,600 3.20 1.07 1.28 69.50 28.06 0.09 1.15
7,700 9.87 1.15 1.03 64.39 33.35 0.09 3.37

Table A Il Methane conversion and product selectivities at different voltage (C02 CH4ratio of 1:1,20% helium
concentration and space time of 6 minutes )

Voltage Methane Y%selectivity
(V) Conversion (%) Acetylene Ethylene Ethane  CO  Methanol Hydrogen

7,700 16.86 0.46 0.46 59.43 39.58 0.08 5.24



Table A.12 Methane conversion and product selectivities at different voltage (C02 CHaratio of 1:1, free helium in
feed and space time of ¢ minutes)

Voltage Methane Yselectivity
(V) Conversion (%) Acetylene Ethylene Ethane  CO  Methanol Hydrogen

7,700 6.61 0.30 0.27 64.21 35.12 0.10 2.28
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APPENDIX B

Calculation Procedures

To facilitate the calculations, some valid assumptions were made as
follows:
1
2
3
4

S—

All the gaseous behaviors obey the ideal gas law.

Pressure drop across the system is very small and can be negligible.
The pressure in the system equals atmospheric pressure (1 atm.)

The temperature change due to the reactions is very small and can
be negligible. All experiments are assumed to be carried out at the
ambient temperature.

5) The flow rate change across the reactor due to the variation in the
gaseous compositions during the reaction time is very small and is
assumed to be negligible.

The total molar flow rate of the gaseous stream can be calculated from

the following equation:

S— S N

N—(i)x
“\rRT 2

Where

p = Total pressure of the system (i.e., Latm)

g = Total volumetric flow rate (determined by using soap
bubble meter)

R = (as constant

T = Absolute ambient temperature (K)
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With this, the molar flow rate of each component can also be
determined by multiplying its percent volume derived from the GC analysis
with the total molar flow rate.

The conversion is defined generally as:

Mole reactant In- Mole reactant Qut
% Conversion = Mole reactant In K100

Since there are two reactant, consisted of carbon atom in each molecule,
s0 the percent selectivity of each hydrocarbon product is defined on the basis
of the amount of carbon produced in each product relative with total carbon
produced . The hydrocarbon product selectivity was defined as follows,

f  Cproduced A

% C2 Selectivity X Total Carbon Occured, ¥ 100
. f  COproduced  *

% CO Selectivity ‘Total Carbon Occured, * 10

9% CHAOH Selectivity wOfa*l'a?bO;"g%‘éi‘ﬂed“& 100

Whereas ;

% H2 Selectivity rg@fgg:&gﬂ N, 100
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