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ABSTRACT

4271014063: PETROCHEMICAL TECHNOLOGY PROGRAM
Orawee Silpsrikul: Modelling ofthe Thinning ofthe CANDU
Reactor Feeder Pipes.
Thesis Advisors: Prof. Frank R. Steward, Asst. Prof. Thirasak
Rirksomboon, 136 pp ISBN 974-130-710-1
Keywords: CANDU/Corrosion/Outlet Feeder Pipes/FAC

A model of the thinning of the CANDU reactor outlet feeder pipes has
been developed by University of New Brunswick. This model describes the
mechanisms of corrosion of outlet feeder pipes which are carbon steel in
CANDU reactors. To understand the mechanisms better, an experimental loop
simulating the primary coolant foop in a CANDU was constructed at the
University of New Brunswick. This work focused on the corrosion rate of
outlet feeders at the Point Lepreau Station and the test section in the
experimental loop at various pH, 90.8-1155 at 310°C. 1t was found in an
analysis of the model that the dissolution rate and the free energy of activation
of the corrosion reaction changed with pH. The relation between the
dissolution rate constant and pH was represented by a sixth order polynomial.
The free energy of activation was found to be a linear function of pH. Further
study on the relation between this free energy of activation and pH should be
undertaken to clarify the effect of the reaction rate on the flow assisted
corrosion. The present model was based on electrochemical effects that are
quite complicated. A simpler model based on chemical reaction and mass

transfer was proposed and could be studied further.
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