
CHAPTER IV
T H E O R I E S  A N D  D I S C U S S I O N

4 .1  L u m le y ’s V is c o u s  T h e o r y  (L i im le y ,  1 9 7 3 )
Lumley kept the viscosity in the viscous sublayer at its Newtonian 

value, but he assumed an increased viscosity in the turbulent regions (buffer 
layer and inertia sublayer). This implies that, at any distance y  from the wall, 
the Kolmogorov limit 4 is shifted upwards. The net result is a shrinkage of 
the turbulent domain outside the viscous sublayer or in the buffer layer, whose 
size increases with polymer concentration. It is then natural to expect that the 
turbulent wall friction will be reduced.

4 .1 .1  R a n g e  o f  E d d y  S iz e s

eddies lying between two limits; the first is the largest size which is given by 
the distance y  itself and the rest is the smallest size which is given by the 
Kolmogorov microscale, 4-

The main difference is that the rate of energy dissipation per unit mass, ร is a 
function of the distance to the wall:

(a) Inertia sublayer. At any distance from the wall, there are

(4.1)

(4.2)

Thus (4.3)
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where /eis the von Karmen’ร constant.

(b) Peak of Dissipation Spectrum. At the peak of the 
dissipation spectrum for Newtonian turbulence, the shortest scales in the flow
occur. The energy dissipation rate is ร = น.

4 v
-, so the Kolmogorov

( sol .ร./")
microscale, 4 can be written as:

V2v ( sol .ร ,y° )
น.

(4.3)

Here V  01 used to define 4 is the apparent solution kinematic shear
viscosity at an arbitrary shear strain rate f  (1/sec).

In Lumley’s theory, elongational viscosity is the key parameter; 
therefore, we replace V(s015 equation 4.1 with V(s01 ee0 , the corresponding
solution kinematic elongational viscosity at an arbitrary elongational strain 
rate e°. The Kolmogorov microscale, in terms of elongational viscosity, can 
be written as:

z* s  ■ ^ -  (4-4)

In the buffer layer, V(solee„) is expected to increase and can
become substantially greater than V(sol ' ) , due to the expansion of polymer
chain size by the strong fluctuating strain rate field, whereas the apparent 
solution viscosity in the viscous sublayer remains unchanged.
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4 .1 .2  L u m le y - E in s t e in  m o d e l
In the scaling relation V  , V 0 depends on

expanded hydrodynamic radius, Rh through the Einstein equation 
ฦ = 7]s( l  + j n V h )  where ท is number of chains per unit volume and Vh is
nonequillibrium polymer hydrodynamic volume. In the buffer layer,  ๆ
increases substantially due to the increase in Vh which in turn affects 4- The 
scaling dependence of 4 on Rh in the buffer layer can be written as:

In the limit 1 »  ท Vh (dilute regime)
/1 OCÉ-%3MS £- ' V Y 40 + พ ) ,  (4.5)

c  Nwhere ท = p A- , Rh ce N 3/5 (Flory law), M a is molecular weight of monomer,N M  0
N  is the degree of polymerization, p  is the solution density and N A is the 
Avogadro number.

Then, 1 c c j n x R "  ccCpR[4\  (4.6)
ko

In the limit 1 «  ท Vh (non-dilute regime)
4 ^ ^ V 3/4/73/4 (n V ’ÿ5/4, (4.7)
h * c ^ R ' h . (4.8)

Thus the scaling exponents for Lumley’s theory can be summarized and 
shown in Table 4.1.

T a b le  4 .1  The scaling exponents of Lumley’s theory.
Scaling exponent Cp Rh nVk=<p

In the limit \> » n V h ,  //4o-l 1 1.33 1
In the limit 1 « < ทVh, 4 0.75 1 0.75
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The predicted correlation between the drag reducing parameters 
4 and lk/ho-1 versus polymer hydrodynamic radius and concentration are 
4 oc ร ~1/4C /̂4 R ' h  and lk / l k0 -  I  oc ร ~ , / 4 c p ( R ' h ) ' 3 3  for the non-dilute and dilute
regimes, respectively. In most case, the predicted relationships differ from 
those obtained from our experimental data (Table 3.7). A similar discrepancy 
arises when one compares prediction against experiment for the correlation of 
4 and lk/lko-1 versus polymer volume fraction, (ft. One problem is that, in the 
scaling analysis of the experimental data, equilibrium hydrodynamic radius, R h 
was used instead of expanded hydrodynamic radius, R h ' which assumes affine 
deformation and no change in coil hydrodynamics, i.e. non-draining behavior. 
However, it is interesting that the experimental scaling exponents for R h and (j) 

on changing molecular weight for the uncharged PAM are relatively close to 
the Lumley's theory whereas those for the charged HP AM on changing ionic 
strength differ widely. In the latter, the ratio between Rh and R hr may not be 
uniform and vary strongly with ionic strength (e. g. at very low ionic strength, 
the unstretched chain may be very similar to the stretched chain). The theory 
of Lumley is clearly inadequate to produce a correlation between the drag- 
reducing efficiency and polymer concentration and hydrodynamic radius for 
both the uncharged and charged polymers.

4.1.3 Lumley-FENE-P model
FENE-P model is a bead-spring model with a finitely 

extensible nonlinear elastic spring (Larson, 1999). This model is appropriate 
in high strain rate field where the relation between the spring force and 
molecular extension can become highly nonlinear. The solution kinematic 
elongational viscosity, in the limit of high elongational strain rate, can be 
shown to be:

v f  so l,e .* ) =  V (s.e .°o) +  V (p,e,«>) -  V fs.e,ooJ +  / 2 p n L * Ç  , (4.9)
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where y ,00 J iร the solvent kinematic elongational viscosity at high
elongational strain rate, which is a constant since we restrict our discussion to 
Newtonain solvent. V  00 J  is the contribution of polymer to the kinematic
elongational viscosity at high elongational strain rate. L=Nbk and bk is the 
effective length of each link. Ç is the bead drag coefficient. Thus the 
Kolmogorov microscale of Lumley-FENE-P model is:

พ ' ' , , , , ,  + ^ / .  (4.10)

In the dilute concentration regime where v (s800 »  v (pea>) ะ

1 az c P N  . (4.11)

In the non-dilute concentration regime where vr1800J «  y (pex) ■

I, k s - ' c’/ n ’" .  (4.12)

In deriving equation 4.11, Lumley’s elongational viscous theory predicts that 
the Kolmogorov microscale scales linearly with concentration and degree of 
polymerization in dilute concentration regime. In the non-dilute regime, the 
scaling exponents are 3A  for both polymer concentration and degree of 
polymerization. We see that concentration scaling exponent departs
substantially from the experimental values, whereas the molecular weight 
scaling exponent differs widely from the experimental values (Table3.7).
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4.2 de Gennes’s Elastic Theory
The main idea of this theory is that flexible coils, even in the dilute 

regime, behave elastically at high Reynolds number. A Kolmogorov cascade 
remains unaltered by polymer additives only down to a certain limit which is 
an elastic limit, 4 where stress due to partially stretched coils (the first 
scenario) is equal to the Reynolds stress. This limit at which a truncation in 
the cascade occurs is observable only if 4>4- The result is (de Gennes, 1990):

4  oc a A 7- 2 V  5~jช ุ (4.12)

But we focus on linear, flexible polymers in good solvents, where the Flory 
law is expected to hold (Flory, 1971; de Gennes, 1984):

R/i = N 3/5 a, (4.13)

where a is a monomer size.
Then 16 °c (Æ ')45~47V 5“*c* , (4.14)

where exponent X varies from 0.32 to 0.18 for 2 and 3 dimensional system 
respectively (de Gennes, 1990).
The scaling exponents for de Gennes’s theory are summarized in Table 4.2. 

Table 4.2 The scaling exponents of de Gennes’s theory.

Scaling exponent Cp N Rh
2-D 0.32 1.82 3.00
3-D 0.18 2.20 3.66
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Considering the scaling exponent of Cp  obtained from experimental 
values (Table 3.7), it is approximately the same as that of de Gennes’s theory. 
But the theoretical scaling exponent of Rh and N  differs widely from that 
obtained from the experimental values. These are opposite with Lumley’ร 
model; an approximate agreement is obtained for the concentration 
dependence, but the predicted molecular weight scaling exponent differs 
widely from experimental values.

Thus we may say that the polymer hydrodynamic radius may not be 
used as the universal parameter to explain drag reduction mechanism and both 
theories are inadequate in predicting the dependence of the smallest eddy size 
on polymer concentration and molecular weight.

4.3 Our Proposed Model: Viscoelastic Fluid
We may postulate a universal equilibrium theory for viscoelastic 

fluids in which the small scales depend on dissipation rate, ร the free energy 
per unit mass, y and the kinematic viscosity, V.

de Gennes (de Gennes,1990) proposed anharmonic energy
Fe =-^-k BTA512 = GA5' 2 where G has the dimensions of one elastic modulus,

which is linear in concentration. A is polymer coil elongation ratio which is 
defined as A = Rh/Rh and c /N  is number of chains per unit volume. Let p  be a 
density of a mixture of solvent and polymer which remains nearly equal to the 
solvent density, p s. Therefore y is equal to:

(4.15)

Then (4.16)

?



64

Thus in the viscoelastic theories, we propose lve =J{ ร, V, y ) .  Using re­
group analysis, lve can be shown to be (Appendix B):

l ve= s “- , 4V a+3 4y - 2a, (4.17)
the viscoelastic velocity scale, บve and the viscoelastic time scale, rve can also 
be determined similarly as:

บve= S a+,/4v ° +,/4y - 2a, (4.18)
Tve= £ a- '/2v a+l/2y - 2a, (4.19)

where ‘a ’ is an unknown coefficient. There are three fundamental forces in 
our problem. The inertial force, with magnitude proportional to and
represented by ร ,  tends to deform and breakup eddies thus constituting the 
process of energy cascade from large to small scales. The viscous force 
dissipates the eddy kinetic energy by converting it to heat thus providing the 
viscous truncation. We conjecture that the elastic force can act upon eddies 
with two opposing roles. The stretched coil springs provides an elastic recoil 
effect which retards or resists the eddy breakup, generating the so called 
elastic truncation. On the other hand, partially stretched springs can store 
kinetic energy, thus resisting energy dissipation and we may expect to find a 
reduction in size of the smallest eddy. The two opposing elastic effects are 
consistent with the scaling relation of equations 4.17 to 4.19: there are three 
possible ranges for ‘๙ . When la < 0 \  the elastic effect is to resist eddy 
breakup, and we obtain the elastic truncation. When ia > 0 \  the elastic effect 
can store eddy kinetic energy and smaller eddies are able to survive and exist 
under the same energy dissipation rate. When ‘a = 0 \  we recover the viscous 
limit; the three scales become the Kolmogorov microscales; lve = \?/4 ร ,'4 =4, 
Vve= \}'4ร1,4=vk and rve= ร ' ,/2= rk. On the other hand, it is apparent from
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equation 4.17 to 4.19 that viscosity must always appear in the above relations; 
energy must still be dissipated in viscoelastic fluids as well as in viscous 
fluids.

For viscosity V, we shall replace the usual solution kinematic shear 
viscosity with solution kinematic elongational viscosity of equation 4.9: 
FENE-P model and We obtain the scaling relation for the viscoelastic length 
scale lve as:

L = (v < s .„> + ' A p n L ^ r 3' 4 ( ( c / p N ) k BT K  2) - 2° . (4.20)

The viscoelastic theory to be proposed is valid only in the limits of 
non-dilute concentration and infinitely high Reynolds number. Thus in the 
non-dilute concentration regime where v (sea>) «  v (pe<0) ะ

L  K  £ a - 1 / 4  3 / 4 - a N 3 .  4 + 3 a (4.21)

The scaling exponent ‘fl’ is dynamic and depends considerably on 
Reynolds number through energy dissipation rate, ร and degree of 
polymerization, N . Presumably, it is not unique.

Considering the scaling exponents obtained from the experimental 
data, a value of ‘๙  was determined as shown in Table 4.3.

On comparing with the present theory’s prediction in the non-dilute 
concentration regime, approximate agreements with experimental data are 
probably obtained at higher Reynolds number and higher molecular weight if 
we take ‘๙  to lie between 0.2-0.3, depending whether we want to match 
concentration or molecular weight dependence more closely. Positive value of 
‘a ’ implies that elasticity promotes small eddies to store kinetic energy. Small 
discrepancies between our theory and experimental data observed (Table 4.3) 
arise from polydispersity of the samples and the fact that experiments were
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carried out at finite Reynolds number. However, the decrease in the 
concentration scaling exponent and the increase in the degree of 
polymerization exponent as Reynolds number increases are consistent with the 
scaling relation of equation 4.21 when ‘๙  increases.

T a b le  4.3 Values o f ‘a ’ determined from the experimental data.
Parameters Re

5460 1050
N 0.08 0.04
CP 0.44 0.33
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