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CHAPTER I

PRELIMINARIES

we use the following notations
set of all integers
set of all rational numbers

set of all preal numbers

For p z ,» p>0 Z:. ie the integers modulo p

-+

Lf A =Z , @ OI'[R then A/ /25 fe Al "% > 0} and A = Au {al

t +
Gimilarly Aa = A

[J {al

If A and b are sets then AG B means that A is a proper

subset of 5. AS b

sipnifies set inclusion.

Semirings, Semifields and Division Semivings. A semiring is

an ordered triple (S, +, .) suech that (S, +) and (S, .) are semi-

groups and where for

(y + z)x = yx + zx,
iff for all x,y € &,

and for some a € ©

ax = Xda =

all x,7,2 € S x(y + z) = xy + xz and
A semiring (S, +, .) is said to Le commutative

x +y=y+xand xy = yx. It S is a semiriny

W

for all x € S, then a is said to Le

o

a multiplicative identity for S end is denoted Ly 1. If a€ & and

ax = a = xa for all x g S then a is said to be a multiplicative

Let § hLe a commutative gemiring and a € S. Then <ﬁ> = f{sals g

Let S ve & :L--';Iii,l'.['ih-ri and A e Thernn & + A = 3t a 5 _-_, a o A

Similarly A + C = {a : s |lae A s e S}, If A= { =i ZIOr sOTe X &

Then we may write A



be {as [2e A,S €& $% and similarly SaA = [sa Is ¢S and a ¢ A} -
Let S be a commutative semiring with 1. Thea S is said to be a

semifield iff S has a multiplicative zero a, and “\{a} 1is a group

with respect tO multiplication.

1.1.1 Theorem : Let S be

Then either a + X = X for all x & Sor a t

semifield with a multiplicative z2r0 &,

x = a for all x € S

These two possibilities are calle ds and »-semifields

d 0-semifielc

respectively. (page 326 ref. 1)

For example any field is a semifield. G and [Rewwich the

usual addition and multiplication are semifields.

Let (S, ,.) be a commutative semiring with 1 such that (S;+)

is a group. Then S is said to be a division semiring . For example

@ with the usual addition and multiplication is a division semiring.

1 0 = g Lot I 2 o
1.1.2 Theorem. If S is & division samiring then the order or 3

" 1 A
n c 3 T T =
(denoted 5y |[|S{|) i 1 or is infinite = (page 31 rersrence 1)
¥ s e ok el 41,
I (S,.) is 31 semigrous/a2d Wiy an/ Rquivdisnce re zatrion 2n 3
then ~v is said 1o 3e & zsngrusnce on S ifT Jor 3 e = S
c2 = AIZ 200 3o X3Hs £ 9
Xxnvv = xavya and ax vay. Let (S.4,.) be 3 semiring 3nafV an
gguivalsnce relzTlon 2n S han
1 reizzion on S. Then is 3 congruenczs 2 g irs
@ s gouerzs on (E,%,.) 1
~/ is 3 congrusnce on (S.+) ard (S,.).
1

- . e
Z . +,.) wich the usual addiriex iIs a2 commutative

- L

semiring with 1. Define ar 2quivalence relation oz S Dy Saying that
X~y IfZ either 2 divides x and 2 divides y or icesn't diwviae x
and 2 doesn'zt divide y. Then rv 1s 3 congrisncz In L“T Hoga 3
3 = & -3 3
Let S be anv set. Then A = {(Gi,x)|x 2 S is alyays an



a congruence relation on S. Similarly, S x S, the universal
congruence, is always a conjruence on S.

If S is a semiring then S is said to be congruence— free iff

thie only congruences on g ape A and the universal congruence. Thus

-+
i

i
ot 1 : r 1
%' by the example above 18 not congrunce free and . are

congruence free. (page 127 and 128 ref. 2) A semigroup S is said

to be congruence-free iff the only congruences on S are A and S x S,

Quotient Semifields and Quotient Division Semifields. Let S
be a semiring and a € S. Then a is ¢4id’ to be multiplicatively
cancellative (or KC) iff either ax = ay or xa = ya implies x = ¥

for all x,v € S. Similarly a j5/ gaid to be additively cancellative
sy \

(AC) iff either a + x = a ¥y/ pr ¥ Ha =y a implies x = y for all
\,~ ¢ S is said to be MC iff every a £ S 1is HC except for the
multiplicative zero (if it exists)e S dis said to be AC iff all
elements in € are AC.

Let S Le a MC commutative semiring of order > 1 wnich has a

multiplicative zero a. Then we define the quotient semifield of S

(denoted by @S) as follows, Define a relation on (SxS\fai) by
wying that (x,y) (z,b) iff xb = zy. Since S is IC this relation
. an equivalence re lation. Let {(x,y)} denote the equivalence
lass of (x,y) (sometimes we use tle notation E for {(x,yﬂ ).

jor =, B¢ § xS {al/v choose (x,y) € « and (z,b) € B and

define « + = ;yxb + yz, yb] . To show that this is well defined
suppose in,yl) € « and (zl’bl) ¢ 8. Then 1x1b1+ ViZqs ylbij =

l xb + yz ybi! since X,y = % a o TRl s S0
J ¥Z» Y, € X3 Yq nd 21L Djé S0

(x.b.+ vy

iP5 1zl)yu = (xb + yz}ylLl (because (xlbi+y1z1)yb =

-

x,boyb + y z,yb = (x y)b)b + (zgb) ;7 = GO (byb) + (by ) vy =

ylbl (b + yz)).Define «3 = I{%yﬂ . I(zabl} - E(Zx’ybﬂ



Apain ;(zxgyb}} - é(zlxl’yibl)é since 2xy1b1 = (ylx){zbl) =
XY zlb:(xlzl){yb), so multiplication is well defined.
s x §\{a} >~ has a multiplicative identity {ﬁx,xﬁ-.
If « is not a multiplicative zero in S X s {a} /v o (iee.
w :l(x,y)] wiiere x # a). Then aE g E(y,xi . Thus S x S\{al /-
which we denote by QS is a semifield. In fact QS is the smallest
semifield (up to isomorphism) which contains S. (page 337 ref., 1)
If § is an MC semiring without a multiplicative zero we define
QS = S x S/ where ~. , addition and multiplication are defined
as above. Then QS is a division semirdag and is called tihe quotieut

division semiring of S. Again Q8 is the smallest division semiring

(up to isomorphism) which cofitains S, (page 338, ref.l)
Let S be an AC commutative semiring. Then the differeuce
ring of S, denoted by DS, 1s/ S/ XS/ where we say that

(%,y) -~ (a,b) iff x + b = v + a., (Sometimes we denote (x . y)

as x - vl Since S is BC w18 transitive and -thus 1is an
equivalence relation on 5 x S. For « = (x,v) and

i | = N > ) f ! “
B o= f(a,bh € DS  we define «g = [(xa + Ly, av + bxr); and

« + p is [(x + a, b + y)l . Ly an arjument similar to the one
used for QS, addition and multiplication are well defined in DS,
Since for any x « S, (%,%) iz an additive identity irn DS and

) s s = | \ oso T 1 .
the additive inverse of L(x,‘-')JI is |(y,x)j- Thus DS is
a ring. In fact DS is the smallest ring (up to isomorphism) wlicl
contains S. (page 338 rer.l)

- . \ . . . 3 .
Tius uzing the asrfinitions above Uy = L an.d

[
L
die
!
T
.

bartial orders on kkin: s

A partial order on a riny R is said to Le compatible iff :



1) x # vy implies a + x * a +y for all a,x,y ¢ R.
2) x ¥ 0and v 2 0 imply xy '~ 0 for all x,y ¢ R,
Let » be a compatible partial order an a ring R . Then for

X,y # R x is said to be incomparably smaller than y (written

X << }r) iff n.x - y for all n: Z\g{)}. (ote : if n . Z+

n.x = x added to itself n times. Ifn.7Z , n < 0 then n.x =
-((-n).x).) R is said to be Archimedean with respect to Z 1iff no
ro element in R is incomparabl: smaller than any other element in
R . Thus Z is Archimedean. Let R.and S be rings with 2 and Z
compatible partial orders on R-and S respectively. Let ¢ : E

be a ring homomorphism. Then ¢ is said te lLe isotonic iff x Z
in R implies ,(?{x) 2 ¢(v) An S.

i

1,1.3 Theorem : Let R be a ving which is Archimedean with respect

to a compatible total order 2 . ~Then there exists on isotonic

monomorphism 1R -,-ﬂ{ (wiere rﬂ\ has /the usual order).

Proof : See Theorem 3. page 298 in reference III.

Two Lasy Theorems.

A group with zero is a semigroup (G,.) suclhi thatG has a

multiplicative zero a (i.e. a.x = a = x.a for all x . G) and

such that (&N {a}, + ) 1is a group.

1.1.4 Treorem. Let (S,.) be a commutative congruence-free semi, roip
with a multiplicarive identity 1 wit! order yreater tian 1, Tlen

1’
is a group and S ng’ for some prime pE€ Z or £ ig a group wit:

zero and ||<|| = 2.

nonze-—



Proof : S » {1} since ||S]|| > 1 so we can choose x # 1 ¢ S.
For a,be S say that a«+ b iff a, L ¢ (xr ora=>»
(x, ={ax |a ¢S} ) . Clearly ~v is an equivalence relation

£

on S. Suppose a «vb and a # b. Then there exist 515 Sy ¢ S sucli

that s;x = a and s,x = b . For all s ; S, s(s;x) =% and
3(52x)= ¢{x, . Thus sa, sb ¢ (%, so sa «+“sb. Therefore is a
congruence on S. Since S is congruence-free ey :ﬁki or .x = S.
If (x;, =5 thenl¢ (%) s0 £ B, Suppose that «¢x; = {x} .

Then ax = x for all a ¢ S. Thus x is/a zero ©f S. Clearly tiis
can happen for at most one x ¢ Si Tiaus S is-a group or a group with
zero,

To finish the proof supposé/that'$ is a group. Since S is
congruence free S can have mO proper subgroups other than {1} siuce
each swyroup of S determines a comgruence on S. (i.e. if H is a

o

subgroup of S then «. defined by x .\ 1iff xylt H is a

-y

congrueiice on 5). Thus 5 R for some prime p. If S is a group

with zero then let a be the multiplicative zero in S.  Then

(s \ {a} xS \ {a}) Y+ {(a,a)} is a comgruence. Thus since S is

congrurence free ||s \ {a}|] = 1.

A similar result applies to rings.

1.1.5 Toecrem. Let R be a congruence-free commutative ring witn 1.

Then R is a field.

Proof : Choose x # 0 ¢ R. 8Sar that for a,L « R a Eiff a - L ~%)

~s is clearlv a congruence relation on R. Thus = kK x R or =

(x + X) - x € % so ~v # A, Thussv= R x k and thus for all

L

a,be R,a-be r/ . In particular 1 = 1 - 0 <xy . Thus x ¢ ¥.



Thus R is

a field. (liote : The converse to this theorem is true

and is proved in Chapter IV

Let

zero iff a

X+y =a

Koy © S;

have the
Let

to denote

Additional Notation and Terminology

(S,+,.) Le a semiring. Then a = S is sald to be an additive
+x=x+a=a forall xS, If for all x, y S,

then S is said to have the trivial structure., If for all

»
_',.
«
1"

a if x # vy and x + y = x if x = y theuS is said to
almost trivial structure.
use make one more conventjomn. —@ccassionally we use

Yoo 8

!Il"or. all!l .
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