CHAPTER I

PRELIMINARIES

In this thesis we use the following notations

 \mathbb{Z} = the set of all integers

Q = the set of all rational numbers

R = the set of all real numbers

For P \mathbb{Z} , p>0 \mathbb{Z}_p is the integers modulo p

If $A = \mathbb{Z}$, \mathbb{Q} or \mathbb{R} then $A^+ = \{x \in A \mid x > 0\}$ and $A_+ = A \cup \{a\}$ Similarly $A_a^+ = A^+ \cup \{a\}$.

If A and B are sets then AC B means that A is a proper subset of B. A \subseteq B signifies set inclusion.

Semirings, Semifields and Division Semirings. A semiring is an ordered triple (S, +, .) such that (S, +) and (S, .) are semigroups and where for all $x,y,z \in S$ x(y+z) = xy + xz and (y+z)x = yx + zx. A semiring (S, +, .) is said to be commutative iff for all $x,y \in S$, x+y=y+x and xy=yx. If S is a semiring and for some $a \in S$ ax = xa = x for all $x \in S$, then a is said to be a multiplicative identity for S and is denoted by 1. If $a \in S$ and ax = a = xa for all $x \in S$ then a is said to be a multiplicative zero for S.

Let S be a commutative semiring and a $\boldsymbol{\epsilon}$ S. Then $\langle a \rangle$ = $\{sa \mid s \boldsymbol{\epsilon} \leq s\}$ Let S be a semiring and A S. Then S + A = s + a $\{s = s, a = A\}$. Similarly A + S = $\{a : s \mid a \boldsymbol{\epsilon} A = s \boldsymbol{\epsilon} \}$. If A = $\{x\}$ for some $x \boldsymbol{\epsilon} = s$ Then we may write A + S = $x \boldsymbol{\tau} = s$ and S + A = S + x. AS is defined to be {as [a ∈ A , s ∈ S] and similarly SA = {sa | s ∈ S and a ∈ A} Let S be a commutative semiring with 1. Then S is said to be a semifield iff S has a multiplicative zero a, and S\{a} is a group with respect to multiplication.

1.1.1 Theorem: Let S be semifield with a multiplicative zero a, Then either a + x = x for all $x \in S$ or a + x = a for all $x \in S$. These two possibilities are called 0-semifields and ∞ -semifields respectively. (page 326 ref. 1)

For example any field is a semifield. Quand Ruwith the usual addition and multiplication are semifields.

Let (S, \cdot, \cdot) be a commutative semiring with 1 such that (S, \cdot) is a group. Then S is said to be a <u>division semiring</u>. For example \mathbb{Q}^{\uparrow} with the usual addition and multiplication is a division semiring.

1.1.2 Theorem. If S is a division semiring then the order of S (denoted by ||S||) is 1 or is infinite (page 332 reference 1).

If (S,.) is a semigroup and ∞ is an equivalence relation on S then ∞ is said to be a <u>congruence</u> on S iff for all $x,y,a\in S$, $x \wedge y \Rightarrow x a \wedge y a$ and $ax \wedge ay$. Let (S,+,.) be a semiring and N an equivalence relation on S. Then ∞ is a congruence on (S,+,.) iff N is a congruence on (S,+,.) and (S,-).

Example. (\mathbb{Z}^{7} , +,.) with the usual addition is a commutative semiring with 1. Define an equivalence relation on S by saying that $x \sim y$ iff either 2 divides x and 2 divides y or 2 doesn't divide x and 2 doesn't divide y. Then $x \sim y$ is a congruence on $(2^{+}, +, ...)$

Let S be any set. Then $\Delta = \{(x,x) | x \in S\}$ is always an equivalence relation. In fact, if (S,+,.) is a semiring then Δ is

a congruence relation on S. Similarly, $S \times S$, the universal congruence, is always a congruence on S.

If S is a semiring then S is said to be congruence—free iff the only congruences on S are Δ and the universal congruence. Thus Z^+ by the example above is not congruence free Ω^+ and Ω^+ are congruence free. (page 127 and 128 ref. 2) A semigroup S is said to be congruence—free iff the only congruences on S are Δ and S \times S.

Quotient Semifields and Quotient Division Semifields. Let S be a semiring and $a \in S$. Then a is said to be multiplicatively cancellative (or MC) iff either ax = ay or xa = ya implies x = y for all $x,y \in S$. Similarly a is said to be additively cancellative (AC) iff either a + x = a + y or x + a = y + a implies x = y for all $x,y \in S$ is said to be MC iff every $a \in S$ is MC except for the multiplicative zero (if it exists). S is said to be AC iff all elements in S are AC.

Let S be a MC commutative semiring of order > 1 which has a Bultiplicative zero a. Then we define the <u>quotient semifield</u> of S (denoted by QS) as follows. Define a relation on (SxS\{\beta\}) by aying that $(x,y)\sim(z,b)$ iff xb=zy. Since S is MC this relation an equivalence relation. Let [(x,y)] denote the equivalence lass of (x,y) (sometimes we use the notation $\frac{x}{y}$ for [(x,y)]). For α , $\beta \in S \times S \setminus \{a\}/\sim$ choose $(x,y) \in \alpha$ and $(z,b) \in \beta$ and define $\alpha + \beta = [(xb+yz,yb]]$. To show that this is well defined suppose $(x_1,y_1) \in \alpha$ and $(z_1,b_1) \in \beta$. Then $[(x_1b_1+y_1z_1,y_1b_1)] = [(xb+yz,yb)]$ since $x_1y=y_1x$ and $z_1b=b_1z$ so $(x_1b_1+y_1z_1)yb=(xb+yz)y_1b_1$ (because $(x_1b_1+y_1z_1)yb=(x_1b_1yb+y_1z_1)yb=(x_1y_1b_1b+(x_1y_2))$. Define $\alpha\beta = [(xy)] \cdot [(z,b)] = [(zx,yb)]$

Again $[(zx,yb)] = [(z_1x_1,y_1b_1)]$ since $zxy_1b_1 = (y_1x)(zb_1) = x_1y_1z_1b_1(x_1z_1)(yb)$, so multiplication is well defined. $S \times S \setminus \{a\} / \gamma$ has a multiplicative identity [(x,x)].

If α is not a multiplicative zero in S × S \{a} /\lambda. (i.e. $\alpha = \lfloor (x,y) \rfloor$ where x \neq a). Then $\alpha^{-1} = \lfloor (y,x) \rfloor$. Thus S × S \{a} / which we denote by QS is a semifield. In fact QS is the smallest semifield (up to isomorphism) which contains S. (page 337 ref. 1)

If S is an MC semiring without a multiplicative zero we define QS = S × S/. where \sim , addition and multiplication are defined as above. Then QS is a division semiring and is called the quotient division semiring of S. Again QS is the smallest division semiring (up to isomorphism) which contains S. (page 338, ref.1)

Let S be an AC commutative semiring. Then the difference ring of S, denoted by DS, is $S \times S/N$ where we say that $(x,y) \times (a,b)$ iff x + b = y + a. (Sometimes we denote [(x , y)] as x - y). Since S is AC, \sim is transitive and thus is an equivalence relation on $S \times S$. For $\alpha = [(x,y)]$ and $\beta = [(a,b)] \in DS$ we define $\alpha\beta = [(xa + by, ay + bx)]$ and $\alpha + \beta$ is [(x + a, b + y)]. by an argument similar to the one used for QS, addition and multiplication are well defined in DS. Since for any $x \in S$, [(x,x)] is an additive identity in DS and the additive inverse of [(x,y)] is [(y,x)]. Thus DS is a ring. In fact DS is the smallest ring (up to isomorphism) which contains S. (page 338 ref.1)

Thus using the definitions above $Q D^{\dagger} = Q^{\dagger}$ and $D D^{\dagger} = Z^{\dagger}$.

Partial orders on Rings

A partial order on a ring R is said to be compatible iff :

- 1) x ? y implies a + x ? a + y for all $a, x, y \in R$.
- 2) $x \ge 0$ and $y \ge 0$ imply $xy \ge 0$ for all $x,y \in \mathbb{R}$.

Let ? be a compatible partial order an a ring R . Then for $x,y\in R$, x is said to be incomparably smaller than y (written x<< y) iff $n.x\le y$ for all $n\in \mathbb{Z}\setminus\{0\}$. (Note: if $n\in \mathbb{Z}^+$ n.x=x added to itself n times. If $n\in \mathbb{Z}$, n<0 then n.x=-((-n).x).) R is said to be Archimedean with respect to \ge iff no nonzero element in R is incomparably smaller than any other element in R . Thus \mathbb{Z} is Archimedean. Let R and S be rings with \ge and \ge compatible partial orders on R and S respectively. Let $\varphi: \mathbb{R} \to \mathbb{R}$ be a ring homomorphism. Then φ is said to be isotonic iff $x\ge y$ in R implies $\varphi(x) \ge \varphi(y)$ in S.

1.1.3 Theorem: Let R be a ring which is Archimedean with respect to a compatible total order $\mathbf Z$. Then there exists on isotonic monomorphism $\phi: R \to \mathbb R$ (where $\mathbb R$ has the usual order).

Proof: See Theorem 3. page 398 in reference III.

Two Easy Theorems.

A group with zero is a semigroup (G,.) such that G has a multiplicative zero a (i.e. a.x = a = x.a for all $x \in G$) and such that ($G \setminus \{a\}$, ·) is a group.

1.1.4 Theorem. Let (S,.) be a commutative congruence-free semigroup with a multiplicative identity 1 with order greater than 1. Then S is a group and $S \cong \mathbb{Z}_p$ for some prime $p \in \mathbb{Z}^+$ or S is a group with zero and ||S|| = 2.

Proof: $S > \{1\}$ since ||S|| > 1 so we can choose $x \ne 1 \in S$.

For $a,b \in S$ say that $a \cap b$ iff $a,b \in \langle x \rangle$ or a = b. $(\langle x \rangle = \{ ax | a \in S \})$. Clearly \cap is an equivalence relation on S. Suppose $a \cap b$ and $a \ne b$. Then there exist $s_1, s_2 \in S$ such that $s_1x = a$ and $s_2x = b$. For all $s \in S$, $s(s_1x) = \langle x \rangle$ and $s(s_2x) \in \langle x \rangle$. Thus sa, $sb \in \langle x \rangle$ so $sa \cap sb$. Therefore \cap is a congruence on S. Since S is congruence-free $\langle x \rangle = \langle x \rangle$ or $\langle x \rangle = S$.

If $\langle x \rangle = S$ then $1 \in \langle x \rangle$ so $x^{-1} \in S$. Suppose that $\langle x \rangle = \{ x \}$. Then ax = x for all $a \in S$. Thus x is a zero of S. Clearly this can happen for at most one $x \in S$. Thus S is a group or a group with zero.

To finish the proof suppose that S is a group. Since S is congruence free S can have no proper subgroups other than $\{1\}$ since each subgroup of S determines a congruence on S. (i.e. if H is a subgroup of S then \sim defined by $x \sim y$ iff $xy \in H$ is a congruence on S). Thus $S = \mathbb{Z}_p$ for some prime p. If S is a group with zero then let a be the multiplicative zero in S. Then $(S \setminus \{a\} \times S \setminus \{a\}) \cup \{(a,a)\}$ is a congruence. Thus since S is congruence free $||S \setminus \{a\}|| = 1$.

A similar result applies to rings.

1.1.5 Theorem. Let R be a congruence-free commutative ring with 1.

Then R is a field.

Proof: Choose $x \neq 0 \in R$. Say that for a,b : R a wh iff a - b = (x) wis clearly a congruence relation on R. Thus $x = R \times R$ or x = L. $(x + x) - x \in (x)$ so $x \neq L$. Thus $x = R \times R$ and thus for all a,b $\in R$, a - b $\in (x)$. In particular $1 = 1 - 0 \in (x)$. Thus $x^{-1} \in R$.

Thus R is a field. (Note: The converse to this theorem is true and is proved in Chapter ${\sf IV}$

Additional Notation and Terminology

Let (S,+,.) be a semiring. Then a $\in S$ is said to be an additive zero iff a+x=x+a=a for all $x\in S$. If for all $x,y\in S$, x+y=a then S is said to have the trivial structure. If for all $x,y\in S$, x+y=a if $x\neq y$ and x+y=x if x=y then S is said to have the almost trivial structure.

Let use make one more convention. Occassionally we use "," to denote "for all".