CHAPTER II ' )

S

GENERAL CHARACTERISTICS OF CONGRUENCE-FREE

COMMUTATIVE SEMIRINGS WITH 1.

SECTION 1 BASIC THEOREMS

The purpose of this chapter is to investigate properties
which are common to all types of congruence-free commutative semirings
with 1. As will become apparent later, Theorem 2.1.1 1is a key

element in many of the proofs in this thesis.

2.1,1 Theorem. Let S be a congruence-free commutative semiring with

1. Then S is MC.

Proof : Choose an x ¢ S which is not a multiplicative zero. Define
a relation ~v cn S as follows:

For y, z € S, y~z iff xy = xz. ~s is trivially an equivalence
relation, Suppose y ~ z. Then xy = xz, so for all ae S,

Xy + xa = xz + xa. Thus x(y + a) = x(z + a). Therefore

(y + a)v(z + a Also, alxy) = a(xz), so x(ay) = x(az). Thus

ay ~ az. Tlerefore ~v is an congruence relation. Thus v = 35X S
or v = A, Suppose v = S5X 8. Then xa = ;b for all a, b ¢ S.
Therefore x.1 = xb, for all b ¢ S. Thus x = xb for all be S, and
so x is a multiplicative zero which contradicts our initial

assumption. Therefore ~v = 4 i,e. S is HC. #



2.1.2 Corollary. livery congruence-free commutative semiring with 1

which has a multiplicative zero can be embedded in a quotient semifield.
Lvery congruence-free commutative semiring with 1 which has no multi-

plicative zero can be embedded in a quotient division semiring.

Proof : Follows from Theorem 2.1.1. and Chapter I. #

2,1.3 ‘heorem. Let S be a congruence-free commutative semiring w.l
and let (5 le its quotient semifield or quotient division semiring.

Then (S is congruence-free.

< ; [ SO — .
Proof : Suppose that isanontrivial congruence relation on L..
Since we can consider S$ to beg/a/subsemiring ofQS we can define

g L P ) .
on & by # vy iff x + y in QF. /7 igfelearly a congruence relation on

. [ oo
Merefore + = A or SRS, —Since ~v is not trivial, thers
s / /

: . ’ % % X
, € (S such that — and 5 - o Therefore

: X
exist ;,

I

o
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Xy ~u yx , and thus xy -v yx’, . But since 2 =, Ry # yx .
v

Thepefore ~v = & X S |singe/$ ig congruence=free, ybut taere exist

d T ol - ' a Lkl i J’f 3
- € QS such that =~ .0 - . lherefore ab 7 a b, and
b i

r I . P " - - - 4
so ab L a b. Thus v # § X 8 which is a contradiction. Thus

d
B ]

uS 1g congruence-free.
-
. ) . ; p =7
I'he converse of the theorem above .is in general falge. /.
is not congruence-free but ({ is congruence-free. liowever, with the

help of the fcllowing concept ye can obtain a partial converss 1o

Theorem _ .1.3.

9.1.1 Definition. Let € be a commutative semiring and W a coupruence
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on S. ~ is said to be MC iff for all nonzero x and for all a,be S,
xarvxb implies arvb. S is said to be MC congruence-free iff the
only possible MC congruences on S are S X S and b .

Thus in a division semiring or a semifield S, S is congruence-
free iff S is MC congruence-free, In a commutative semiring with 1,

congruence-free implies MC congruence-free, If S is a commutative

i

semiring and rv an MC congruence on S claim that is MC. Suppose
that x,y € S and [x][ﬂ = [x)[zj inr%’. Then [xx]=[xz]. Thus xy~ xz so if

S
% is nonzero then ywmz since s is MC. Thus = is MC., The following

theorem is a partial converse to Theorem 2.1.3.

2.1.4 Theorem. Let S be an MC commutative semiring wiht 1 and 0OS

its quotient semifield or quotient division gemiring. Then S is MC

congruence-free if QS is congruence-free.

Proof: If ||$l] =1 then S={f} = QS so the result is trivial.

So suppose that [[Sl| 1. Lets be a nontrivial MC congruence on
i
S. Define a relation /' on QS by saying that for E and gré Qs,
j iff X;fhy3£ Claim thatfk'is well defined. Suppose that
and 2: = f:and that §’J§i . Thus xf(byxi ay=bx and

u

i

<X

TR X
-l -4

i )
ay = b ¥, Since xfﬂ/yf, ax;rbayg. Thus axyfV(nxjf. Thus
/ i i/ /, j /
.f(axf)fua(bxx) SO (ax)(ay)rv(bx)(gﬁ) Thus (aﬁ)(xx)ﬂ‘(hg)(xx).
, .
Case 1: Both x and x are not multiplicative zeros. Then since
. I / J!;
~rvis MC abcvba so a/bial/b.
’
Case 2: Both x and x are multiplicative zeros. Then both a and af

- ; ! /o ‘. /
are multiplicative zeros so ab = ba i.e. abwv ba'
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/
Case 3: x is a multiplicative zero but x is not. But then

/ L.
fyﬂ*i& = x. Thus l(f§)nfx(xy). Thus since Xy is nonzero
andwis MC,l1wx. Thusw= S x S which is a contradiction,
/
Case 4: x is a multiplicative zero but x is not. Just reverse

’ -
the roles of x and x in Case 3.

i
%

‘ X
In sum, v is well defined. Clearly , for all 3 eQS.

<

2
y
Also ;“j% implies g“j§.

Suppose that ;iJ;iand §§J§g. Then Xy~ 1%, and

Xy¥ 3™ YoXyg: Therefore X,Y,¥3VV1%X9¥3 and X,yqy)VYoXgY¥y. Thus

X1Y9Y 5 YoXqY Sincew is MC and Yo is nonzero we get

X, X /
X yqvXqyy. Thus §IJ§3. Therefore~ is transitive and

173
1
thus ~' is an equivalence relation on QS. Claim that

is a congruence on QS. Suppose that ;11J %2 , Choose gleQS.
1 2 1

We want to show that El Rt gl + 52 This is true
1 X 1 72
iff (aly1+ blxl)yzblrv (x2b1+ alyz)blyl. Since
XY™ Y Xowe have xlysz'Vylxzbl. By multiplying
again by b, and by commutivity we get that b x;y,b; xzblbly1 (1)
Now alylyzb2 = alyzbzylso alylyzh1 = alyzbly1 (2). Thus by
adding both sides of equation (2) to equation (1) we get that
byxyyoby + ayyypb v xybbyyy + a;yobyvy. Thus by the distribu-
tive law we get that (b;x; + alyl)yzhlf‘v'.(xzb1 + ayy))byyy.
‘ a

a X X
or in other words -1 + =1 ~° =2 + =]Since the selection of these
by "y oy, Py

elements was arbitrary we have proven that the equivalence relation
preserves addition.
v

Thus to show that ~ is a congruence on QS we must now show

' & . .
that ~ preserves multiplication.



1.2

X
To show that ~/ preserves multiplication suppose §:w’§1 and
1
a
choose E € QS. Thus Xy, v Yy¥4s SO abxy1 v abyxl. Thus
ax sa1
By ™ By,

A or QS X QS.

L i /
Thus v is a congruence relation on QS, so ~v

/

Suppose that v = A.
: - X 1y
Thus ~ = A since if x vy and x # y then x £+ y but 7 5
I T P
X
which is a contradiction. Suppose that A = QS X QS. Then I i %

forall x,y ¢ S« Thus 1.x~ 1.,y for allx y € S. Thus x vy for all
Xy & S. Trerefore . = S X 8§,
Thus as v was an arbitrary MC congruence relation on S we have the
desired result, #

v g =&

Thus in particular / /is MC congruence-free since & is
congruence-free, The converse of Theorem 2.1.3 is in general false.
S = C;r i) {»} with the trivial structure is MC congruence-free
because S is an » -semifield but $ = QS is not congruence free. As
an example of a nontrivial MC congruence consider S = Z+7( 2" with
the wusual addition and multiplication. Then define a relation yv on
S by saying that (x,y) v (a b) iff x = a. rv is obviously a

congruence cn S, and supposing that (a’b)(x’y) n:(a’b)(xq,yl) then

(ax,by):m,(axl,byl). Thus ax = ax SO X = X, Therzfore

19
(x,y) rv (xi,yl). Thus . is MC.
In an arbitrary commutative semiring with 1, a multiplicative
zero may neither be an additive zero nor an additive identity. For
+

_ g i o i . —_— R .
example let ©5 = ZO X Z_ with the usual addition and multiplication.

Then (0, «) is a multiplicative zero but not an additive zero or an
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additive identity. In fact many interesting pathologies may occur.
For example let S = {open intervals (a, @) | a eﬁﬂj Let multipli-
cation be set intersection and addition be set union. Then S 1is

a commutative semiring. The open interval (0, =) is both the multi-

plicative identity and the additive zero. but in a congruence -

free semiring with 1 we get the following :

2.1.5 Theorem, Let S be a congruence-free commutative semiring with
1 which has a multiplicative zero a. Then a is either an additive

identity or an additive zero.

Proof : Define a relation oh Slas follews, l'or y,xeS, say
that ® vy 1ff x +a =y 4 d. Clearly x v x and

X vy o= Y X. Suppose X /¥ agd 'y .z, Thenx t+ta = y+a4
and y + & = 2z t 4. Thys &+ 'a /= &+ a S0 X . Z. Thus v is

an equivalence relation.i.tuppose X, 3, Y¢S and x+. y . Then

x+a = y +a, sofl(x+h) +ta = (y + b) + a. Therefore

x+ Ly + b. Algo, b(x +.a) = bly + a), _Thus bx + ba =

py + ba., Lut ba= &, So bx+ta = by + a. Thus bx v Ly,

so v is a congruence relation on S. Thus =8 x 8§ or A
Suppose = § x &, Thenfor ally eSS, ata = y+ a

(1 +1 Y a = y + a. Therefore a = y t a. Thus a is an additive
zero . Suppose that - = A and x € B a+a=(¢1+1na==
and x +a+a = x+a+a, Thus we get x t(1 +1)a x+ a+ 3,
sox+a = x+ata, Thusx+a = x Tuus a is an additivs
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Notation : Let S be a semiring. An element in & whichi is a multi-
plicative zero and an additive identity is called a zero element of
$ and we shall always denote it by O. An element in £ which is both
a multiplicetive zero and an additive zero is called an infinity
element of ¢ and we shall always denote it by .,

Tnis property that the multiplicative zero acts as an additive
jidentity or an additive zero is also truefor semifielas which is
anotiier indication of the similarity of congruence-iree semirings vitu
multiplicative zero and semifields. , The next theorem concerning

additive cancellativity is anothéy exact analogue of the semifiela

case.

2.1.6 Theorem: Let § be a’congruence-free commutative semiring with

1, such thet || & || > 2. 7Them if € lLas one AC element, 5 is AC.
1 ’ v . A ! !

Froof : Let & = { %7 & | i~ not AC }.—~f&F¥ine v = AULL +© 8 ).

/
~» is clearly an equivalence velation om 8. Suppose x&S . Then

there exist a+ b ¢ §,// Such(that x + a = ¥ b.|Therefore for all

S :5,8+x+a=s+x+b., Thuss + xS Thus for ail x,y,s¢ S,
Xrvy 1mplies x + 3 vy + 8. Liow Suppose that x.vy and s is 4
multiplicative zero. Thus 3x = sy = £ so sx /v Sy.Suppose s is not a
mult. zero.lf x .y and x = y then sx = sy so sx -vsy. Suppose X#E Y
] / mi - ~

Tuen %,y € ¢ . Thus tnere exist a # b € 5 such that x + a = x + L.

Thererore =(x + a) = s(x + b), so sx + sa = sx + sb, but sa # sb

since 5 iz BC. Thus sx < 5 . imilarly sv ¢ & 4 30 8X .- 8y, LME
. e / " )
~» 1z a congruence on £. Thus & =¢ , o = { x. } for sore = e &,

1 1

or §'= 8, ¢ = & ic imposcsible since Ly assumption L has one AU
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/ /
element. If S = ¢ we are done, S0 suppose S = {Xl} for some
X € S. We distinguish two cases
Case 1 : S has no multiplicative zero

Case 2 : S has a multiplicative zero

/

In Case 1 suppose S = {xl} . Then there exist arb €
such that x,ta = Lo+ Xy Without loss of generality assume that
af xl. Then axl # xi . But ax1+ a2 = ab + axl. Also a2 # ab sinc
S is MC. Thus s’ s {xl, axl} s S0 axy = Xy Therefore a = 1, so
x,t 1 = b+ x) where b # 1. But b(x; t b) = b(x,+ 1). Thus
bx + b = b+ bx . but bx€ s’ /ince b #a =1 and thus b° # b.
Also bx, Fox since b # 1. Thus 1]81|| > 1 which is a contradic-
tion, Thus in Case 1JSJ = /¢ 'and we are done.

In Case 2 let - be the multiplicative zero in S. Suppo
s’ = {xl} and suppose x, = * . Then « #0 since 0 is AC so

/ 5 ;
« = ® . MNow consider the-set S\S = 83\{=}. Define a relation
r -
ponS by xpy iff x =y or &,y € SN\S. Clearly p is an equiva-

/
lence velation on S. Suppose xpy and x # y. Then X,y € S\S .

Choose z ¢ S, 2z # ®. Then zx # »  Since S is MC. Thus zxX,zy #°
/

ZX, 2y € S\ 5 , S0 ZXpZYy. Clearly w«xp®y . How X + ® = @ and

y + @ = s0xt®py+«®. OSuppose x t 2z = where z is chosen

!
as above. Then x + z =« + z , But z €.S\§ ., Thus x = which
is a contradiction, so x + z # @ Similarly y +z # =. Thus X + Z,
f -
y ¥+ 2z & 8\8 , and so. xt 2 p¥ + Ze ThLus p is a congruence on S,
3 . . /
sop=4AorSXS., but (|S§°S >2 since || || =1 and

l]S]‘ > 2., Thus p # A, Clearly p # SAS a contradiction, Thus

009037

S

e

se
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Now suppose x, 4 « , Then there exist a # b € S such that

2 2
x.+ a = x,+ L. Thus xl(x1+ a); = xl(x1+ b) and so x, t g? = %t xp.

1 1

[ b d S i # b Th . S/ S 2 = x, The
Now a # b an is MC, so x,a # x,b . us x, € o X, T X ere-
fore x = 1, so we get that 1 +a =1+ b. Without any loss of genera-
lity, we can assume that a 4 w, Then a(1 +a) = al(l+ b), so

a + 32 = a + ab.

Since a # = a’ # ab, so a « s’ and thus a = 1. Thus

)
1+1=1+1L. butb is AC since b # 1 and {1} = § . But

n

2 2 .
b(1 + 1) = b(1 + b). Therefore b + b = b + b, so b"= b. Thus since

b#1,b = «. Choose y # ==b €& S\S'. Then y(1 + 1) = y(1 + b),

soy+y=y+yb. Since y is AC 'y = yb = &% contradiction. Thus
X # « is impossible and we have already proved that x, = « is
impossible. Thus for Case 2 as in Case 1 g’ = $ S0 S is AC. #

The following example shows that the assumption that

||s|| » 2 is necessary.

2.1.1 Example : Let S = {0,1} Define + by 1 + 1 = 1,

0+41=140=1and0+ 0 =0, Define multiplication by 1.0 = 0.1 =
0.0 = 0 and 1.1 = 1. It is easy to verify that S is a congruence-
free commutative semiring with 1. 0 is AC but 1 is not AC in S, since
1+0=1+1 but1l#0. This algebraic structure is called the
Boolean O-semifield.

In Theorem ¢ .7.5 we have showﬁ that if S is a congruence-
free commutative semiring with 1 then either S has no multiplicative
zero or if S has a multiplicative zero a then a = = or a = 0. It
turns out that congruence-free commutative semiring;with 1 have
radically different structures depending on whether or not they have

a multiplicative zereo and the type of multiplicative zero. We will
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study each case separately in chapters II1,IV and V . To simplify

things we introduce %he following notation.. If S is a congruence -

. free gommutative semiring with 1 then we say that S is
"Type I" if S has a multiplicative zero which is an
additive identity
"Type II" if S has a multiplicative zero which is an
additive 2zero

"Type III" If S has no multiplicative zero.

From now on we shall call a congruence-free commutative semiring with

1 which is Type I a "Type 1 semiring' etc.

Section 2.2 Double Ideals

5.9.1 Definition : Let S'be a semiring. Then ¢ #D €S is a

double ideal iff x + d, d +/x, dx “and xd € D, for all d € D,
x € S,

Thus S is always a double ideal im’S. {»} 1is a double
ideal in a semiring with = . {x Z 3|x e E?-} is a double ideal

-
in Z .

PeFinition. Let S be a semiring with an infinity element,
- . .
Then S is :id to be double ideal free iff the the only double ideals

of S are ¢ and { = }.

2.2.3 Definition Let S be a

0]

emiring without . infinity element.

Then S is said to be double idezl free ifZ S 1is the only double ideal

double

e
i

or S. Thus every ring, division semiring and semirield
.1'-
ideal free. 2: i

L17)

not double ideal free.



18

2,2.3 Proposition. Let S be a congruence-free commutative semiring

with 1., Then S is double ideal free

Proof : Fiprst suppose S is type 1II and let NS S be a proper double

ideal. Then ~~ = (M X M)UL A is a congruence on S. Thus M = ¢,

I

M=S%orM={x1 tor some X, © S. M= ¢ is excluded by definition

=

2.2.,1. 1 = S5 is excluded by assumption. Thus M = {xl} for some

X, € 5. DBut =

1 1 @€ M for all a ¢ S, Therefore x4 is a multiplica-

tive zero which contradicts the fact that S is type I11. Therefore
S is double ideal free.

Now suppose S is type I or type II. Then define Il and /v
as before. As above M = {xl} for some x, € S

We showed that x is/a/maltiplicative zero. Xy = 0 is
impossible since then M = S¢ /Thus by efinition 2.2.2, S is double
ideal free. #

The couverse to the theorem above is in general false,
@ J; is double ideal: free—but—if we-define (x,y) v (a,b) iff

x = a then »~. is a nontrivial conpgruence on Q>

2.2.2 Proposition : If § is a congruence-free commutative semiring

with 1 then if S has no infinity element then S + § = 8. If S has

an infinity element then either S+ 8 = Sor S + § = {«]).

Proof : S + S is a double ideal., Therefore if S is type III or
type I, S + S = S. Suppose that S is type II. Then since S is
doucle ideal free S + S =S or S+ 8= (=}, H

T

Y.2.3 Proposition @ Let

€

. be a commutative semiring witn 1 or with

an additive identity .a. Then $ has a maximum proper double ideal or
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S has no proper double ideal.

Proof : Suppose S has a proper double:ideal. Let M =lJf$!|SELS such that §
is a proper couble idealf . I is obviously a double ideal. Now

suppose S has 1. Then 1 ¢ s’ for all proper double ideals Sf.

Thus 1 ¢ M, so M ¢ S, Similarly ifa € S thena é.sf, for all proper

double ideals SI. Thus a ¢ . Thus M € S. Clearly M2 S, for any

proper double ideal S/. ",

2.2.4 Corollary: If S is a commutative semiring with (]]sl1>1)
which has an additive identity or a multiplicative identity then S hLas

a maximum proper double ideal.

Proof : {»} is a proper double ideal. Now apply Proposition 2.2.3. #

2.2.4 Definition : Let S be a semiring and J a double ideal in M.
Then J is said to be prime iff xy ¢ U =7 x €J or yeJ ‘for all X,y&S
2,2,5 Theorem : Let S be a commutative semiring with 1 which has a

proper double ideal. Then the maximum proper double ideal M is prime.

Proof : Suppose for X,y ¢ S, Xy € M. Suppose also that x,y & s
Then y_lf S since if it were then x = (xy)y-':L ¢ M. Then ky # 1, for
all k € S. Suppose that ky + d = 1 for some k,d € S, Then

x = #(yk + d) = xyk + xd ¢ M since xy é‘ﬂl and M is a double ideal.
Thus x ¢ Al which is a contradiction. Thus for all d,k € S, ky +d # 1.
Thus the set g =MU{ky| kcSHU{ky + d |k,d € 8}  is a double ideal
1

A o

. : : B . .. - i
whieh does not contain 1. i.e. S 1is a proper double ideal of S. Eut S
properly contains A\ since v ¢ gt and y ¢ 4l . This contradicts

the maximality of /M . Thus xory ¢ I i.. Il is prime. #
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The converse of this . theorem is false. 1In £+ with
xy defined as ﬁax(x,y) . and x+y defined as max(x,y)
sz 3 |x ¢Z+E is prime but not maximal.
) Now let S be semiring and J a double ideal in S. Then we
can define a natural congrﬁence v on S by saying for x,yeS, x vy
iff x = y or x,y ¢ J. To verify that ~ is indeed a congruence note
that v = AU (J x J). Thus nv is an equivalence relation. But
suppose x € J. Then for all b é S; xb, bx, x + b and b + x ¢ J.
Thus N/ preserves addition and multiplication and is thus a

congruerce, Give %] the natural algebraic structure

(1.0, [x + y] = [x+y] and [x][y} = [xy} for all x,y € S)
It is asy to verify that the'se operations are well defined. - 7 is
a semiring with an additive zero '™ = [x] forany x € J which

is also a multiplicative zero, since for all x ¢ J, y € S,
[x] + [y] = [x " yJ = [x} since X + ye J. Similarly [y] + [x] .
[x][y] and [y}{k} are equal to [x} « toreover ir S has 1 then

5 has a multiplicative/identity [1] Y

2.2.5 Proposition : Let S be an @ MC commutative semiring with 1 and

with a maximom proper ideal M. ‘then S/M is MC.

Proof : Since S is MC it is sufficient toc show that for all

o

X,y €S, xy &M implies x ¢ Mor y ¢ M i.e. that M is prime.
This follows from T heorem 2.2.5. i

It is possible for S to be AC but for no element in §/Mto be

AC. For example let 3 = 2 xUy with the usual addition and multi-

1l

plication, Then M {(,v)es | x> 1} Thus a+p = « for all

a” B& S/M, Thus no element in §/M is 2AQ.
y



21

Let S be a commutative semiring with 1 and J a double ideal
It is possible that J is not prime. For example let S = Z+ with
the usual addition and multiplication. Then J = {(x zu| x ¢ Z+} is
a double ideal but 2.2 € J. Thus J is not prime. ' Moreover in 8/J
[2] . [2] = [2) . [4) sos/J is not MC even though S is MC., Thus
the maximality of M is critical in the arguments above.

As is shown in the following exampleS/M might not be an «© -

semifield. In factg/M might not be congruence-free.

2,1,2 Example : Let S = {Tn, m e 77} {J {»} with the usual addition

and multiplication. Let D be a proper double ideal in S and suppose

+
x# © and x € D, Then 3= Tn for some m,n & Z . Thus we can
_. ut wa n -t
choose L€ ZTsuch that/ m¥l=292"1 for some nl & Z . Thus
n1+n ;
2 Tl
T-T-1+L=-—- =21.But:l-'eS,so1 .21ED.
o oh e ) Ry
=) 2
Thus 1« D so D =S . Therefore M above = {=} and s/M > 8.

Thus §/M is not a semifield since 3 has no multiplicative inverse in S.
Also (SN\{=} x5\ {m})tj%(“,mj} is a nontrivial congruence on S so 5
is not congruence-free. If R is a ring and I amaximal ideal then,
of course,R/M is a field. The analogue to this does not hold for
commutative semirings modulo the maximum proper double ideal. However
by kroposition 2.2.6, if S is a commutative semiring with 1  which has
a maximal proper double ideal M " thené/bi is embeddable in an <« -
semifield. Using the results developed in Chapter IV on type II
semirings it is possible to prove additional interesting results

concerning S{M.
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