CHAPTER III ERW
TYPE I SEMIRINGS

It is easy to show that every field is congruence free. Suppose
F is a field and ~v 1is a congruence on F which is not A . Then
there exist x # y € F such that xny y., Therefore x + (-x)vy+(-x),
so Ofvy - % # 0. Thus (y - x)-l. 0V (y - x)-l. (y - x). Therefore
0~v 1, Thus we have that for all a e F, a.Orva.l. Thus Orva, so
~ns = F x I, Thus I' is congruence free. Thus every field is a type 1
semiring. The purpose of this chapter is to prove the converse of

this statement if the order of the type I semiring is greater than 2.

3.1.1 Proposition : Evéry type I semiring S'is Ac if || s|| > 2.

Proof : Since S is type I, S lias an additive inverse 0. Clearly O

is AC. Ulow apply Theorem 2.1.6. #

3.1.2 Proposition : Let S be a type I semiring such that ||S |l > 24

Then S has at least two elements with additive inverses.

Proof : Since S is type I, S has an additive identity O whicli is its
own inverse . Suppose that S has no non-zero element with an additive

inverse. Claim that S\ {0 } is closed with respect to addition and

multiplication. S\{0} is closed with respect to multiplication
since S is congruence free and thus NC, i.e. if x,y #0 and xy = 0
then xy = x.0. Therefore y = 0 which is a contradiction. S \ {0}

is closed with respect to addition by assumption. Thus the claim is
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true, But then (s \ {0} X s\ {0})(}(0,0) is a nontrivial
congruence on S. (since [|s\{o} || > 1). Tuis contradicts the

fact that S is congruence-free. Thus S has at least one NONZero
element with an additive inverse. #

Usine the two results avove we are able to prove the following

interesting result.

3.1.3 Theorem : Let S be a type I semiring such that [|S|l 2 2y

Then S is a field.

proof : Let I = {x € S}~ % has [an additive inverse 1 N S R
by Proposition 3.1.2. Suppose/X,y c I. Then there exist -X,-y & S
Thus (-x) + (-y) ¢ S. Thiis &x/# y&/L; sol is an additive subsemi-
group of §. Suppose x & 1 dnd SiE S. Then =-x & S. But

(-x)s + xs = ((-x) +x) s # @8 =0 —Phepefore xs ¢ I. Thus I is a
multiplicative ideal in.S. Tote also that x ¢ I implies that -x ¢ I.
Define a relation . - on Sias_follows. Forfxyy € S say that xrv y 1ff
there exists i ¢ I such that x =y + i , Now x<uX since x = x + 0
and 0 ¢« I. Suppose xiu'ys (Then there exists i¢ I such that

x =y +i. rut i¢ I, so -i¢ I. Thus x+ (i) =g+ L+ 1) By
and thepefore y v x. Suppose xnsy and y . Z. Then there exist

2 + L. Thus x = (z + b) ta =

a,bcI such that x = y + a and y

2 + (b + a). bLut by the argument above a + b zl, so x"/zZ. Therefore

~s 1s an equivalence relation on S. liow suppose that xs y. Tien

tlere exists i ¢ T suck that x = y + i. Thus for all a ¢ 8
x+a=(+a)+i. Thus x + ayu y * & alscax = aly * i} =

ay + ai. cut by the arpument above, &i« +I. Thererore ax/. ay.

So we pet that. v 1is a congruence on S. Choose & nonzero X £ L. Tren

X+ (-x) = 0, so x«v 0, Thus M # L so W = S % 8, Thus 0-~-1
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Therefore there exists k € I such that 0 = 1 + k 1i.e. -1 ¢ 5. How
let a€ S. a+ (-1)a=1.a+ (-1)a=(1 + (-1)a = Oa = 0. Therefore
-a € S¢ Thus S is a ring. But by a previous result, every congrucice
free ring is a field. This is the desired result.

As showm by txample 2,1.1 if ||S|| = 2 tlen S may be type I
but not a ring. If ||| = 2 and S is type I then S has two elements
1 and 0 and two possible algebraic structures. ke know that 0.1 = 0.0

1,00= 0, Also 1.1 = 1. Also0+1=1+0=1, and 0+ 0 =0 since

0 is an additive identity. but tlere are two possible choices for 1 + 1
i.e. 141 =10r1+1=0. The case where 1 + 1 = 1 is the booclean
semifield. Tle case wlhere 1 + 1 = 0 1is just the integers modulo 2,
which is of course a field. Thus we have completely described type I
semirings i.e. except for tiose type I semirings isomorphic to the
poolean O-semifield, all type I semirings are fields. In fact, every
type I semiring is a O-semiticld 86 every nonzero element has a multi-
plicative inverse,

The following two results are an application of the arguments

above,

3.1.4 Proposition : Let S be a commutative semiring with 1 and a

multiplicative zero *. Then if {|§)|21, S has maximal proper congruences.

Proof : Let GE be the set of proper congruences on S, CQ = # since

Le @ . Now let {&LﬁIbe a nonempty chain in QA . rLeta = L) Ai.
[Tt gl

v g = - - - ! ‘:‘ 1;

For all 1 : I (1, «) ¢ A, since if 1t were then

(a.l, avr ) =4y ) A, forall ac 5. Thersiore Ay would

congruence tnen A is a proper

1]

not e proper (1,04) ¢ A so if A is
congruence. Lut for all I« I and for all x o B)(x,x) € A,s Tuus
. i

Ln,x) & A, Suppoese (x,y) ¢ A. Then for come i « I (x,y)
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Thus (y,x) & Ai and so (y,x) e Ai' Now sﬁppose (x,y), (y,z) & A,

We can choose an i € 1  such that (x,y) € Ai and (y,z) € Ai. Thus
(x52) € Ai so (x,z)eA. Thuse~is an equivalence relation on S.
Suppose (x,y)& A and s¢ S. Choose i &1 such that (x,y)g_ﬂi. Then
(x + 5, y + 8) € Ay and (sx,sy)e As. Therefore (x + s,y + =)

and (sx, sy)e A. Thus A is a congruence on S. Thus each nonempty
chain in (¢ has an upper bound. Thus by Zorn's Lemma A has maxi-
mal elements. # Note : Proposition 3.1.4 is also true if S

has an additive identity and an additive zero.

3.1.5 Theorem. Let S be a commutative semiring with 1 and @ multi-

: ; \ i S
plicative zero a. Letsu be a/maximal proper congruence on S. Lhentg

is congruence-free

W

Proof : la) is clearly a multiplicative zero in - . Similarly.

fe
]

'fl:

{ a multiplicative identity in § . Claim that 2 is con-
. N iy

i

gruence free. Well suppose p # 4 1is anentrivial congruence on

. Then there exist x,y - 5 -such that [x} !y} . Now define a
5 Y Y

o
congruence pl on S as follouws. for a,b € 5 say that a p1 b 1iff
fal p Eb} . p1 is clearly an equivalence relation on S. Dbut

suppose & p! band s € 5. Then Ja} p [b] . Therefore

[s] +la]p Tsj + (b} and fsjgaj p {s}lbf . Thus

[s+a]) p [s + b] and [sal p isb} . Thus s + a p1 s+ b and

1 0 mhoe ol . . & b :
sa p sb. Thus p~ is a congruence relation on o. but[le- y.. Thus
|

1 . ? . ; L. -
p is a proper congruence relation on s, Clearly p =~/ . . Bbut

since © # A, there exists a, b : £ such that [a! # b i.e.

ks
%
(8]
s
L]
O
I

arvb but [a] p [h} . Therefore a p° b so p
)

tradicts the maximality of ~v . Thus = 1is congruence-frac. #
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Thus given any commutative semiring S with 1 and a multipli-

cative zero « , we are able to construct a congruence-free semiring

o
o - »
2 where ~v is a maximal proper congruence. The next theorem uses

v

(Rep}

the results of this chapter to prove a interesting fact about .

Fi

<

3.1.6 Theorem. Let S be a commutative semiring with 1 and O,and.. a

maximal proper congruence on S. Assume also that S 1. Then § is

a field or the Boolean O-semifield.

Proof : [0] is clearly the additive identity and multiplicative
S S
zero in = By Theorem 3.1.5 s, s congruence free. Now apply

Theorem 3.1.3 and the remarks following that theorem. #

This is an intepesting vesult since the algebraic structure
on § might be pathological (e.g.not MC or with zero divisors etc.)
but nevertheless S {s/a field or the Booleon O-semifield. As

s

an example consider Z the integers modulo 6. By inspection

6 2
~n = ({0,2,4} x {0,2,4)U({1,3,5} x {1,3,5}) 1is a maximal proper
Z

6

congruence on S. In this case - = the integers modulo 2.
n
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