CHAPTER III

TYPE I SEMIRINGS

It is easy to show that every field is congruence free. Suppose F is a field and \sim is a congruence on F which is not Δ . Then there exist $x \neq y \in F$ such that $x \sim y$. Therefore $x + (-x) \sim y + (-x)$, so $0 \sim y - x \neq 0$. Thus $(y - x)^{-1}$. $0 \sim (y - x)^{-1}$. (y - x). Therefore $0 \sim 1$. Thus we have that for all $a \in F$, $a.0 \sim a.1$. Thus $0 \sim a$, so $colored = F \times F$. Thus F is congruence free. Thus every field is a type I semiring. The purpose of this chapter is to prove the converse of this statement if the order of the type I semiring is greater than 2.

3.1.1 Proposition: Every type I semiring S is AC if | S | > 2.

Proof: Since S is type I, S has an additive inverse 0. Clearly 0 is AC. Now apply Theorem 2.1.6. #

3.1.2 Proposition: Let S be a type I semiring such that ||S|| > 2. Then S has at least two elements with additive inverses.

Proof: Since S is type I, S has an additive identity 0 which is its own inverse. Suppose that S has no non-zero element with an additive inverse. Claim that $S \setminus \{0\}$ is closed with respect to addition and multiplication. $S \setminus \{0\}$ is closed with respect to multiplication since S is congruence free and thus MC, i.e. if $x,y \neq 0$ and xy = 0 then xy = x.0. Therefore y = 0 which is a contradiction. $S \setminus \{0\}$ is closed with respect to addition by assumption. Thus the claim is

true. But then $(S \setminus \{0\} \times S \setminus \{0\}) \cup (0,0)$ is a nontrivial congruence on S. (since $||S \setminus \{0\}|| > 1$). This contradicts the fact that S is congruence-free. Thus S has at least one nonzero element with an additive inverse. #

Using the two results above we are able to prove the following interesting result.

3.1.3 Theorem : Let S be a type I semiring such that ||S|| > 2. Then S is a field.

Proof: Let $I = \{x \in S | x \text{ has an additive inverse }\}$ $||I|| \ge 2$ by Proposition 3.1.2. Suppose $x,y \in I$. Then there exist $-x,-y \in S$. Thus $(-x) + (-y) \in S$. Thus $x + y \in I$ so I is an additive subsemigroup of S. Suppose x & I and s & S. Then -x & S. But (-x)s + xs = ((-x) + x) s = 0s = 0 Therefore $xs \in I$. Thus I is a multiplicative ideal in S. Note also that $x \in I$ implies that $-x \in I$. Define a relation \cdots on S as follows. For $x,y \in S$ say that $x \sim y$ iff there exists $i \in I$ such that x = y + i. Now $x \cap x$ since x = x + 0and 0 \in I. Suppose x \wedge \vee y. Then there exists i \notin I such that x = y + i. rut $i \in I$, so $-i \in I$. Thus x + (-i) = y + i + (-i) = yand therefore y \sim x. Suppose x \sim y and y \sim z. Then there exist $a,b \in I$ such that x = y + a and y = z + b. Thus x = (z + b) + a =z + (b + a). But by the argument above a + b \in I, so $x \sim z$. Therefore \sim is an equivalence relation on S. Now suppose that x α y. Then there exists $i \in I$ such that x = y + i. Thus for all $a \in S$ x + a = (y + a) + i. Thus $x + a \wedge y + a$. Also ax = a(y + i) =ay + ai. But by the argument above, ai . I. Therefore ax . ay. So we get that \sim is a congruence on S. Choose a nonzero $x \in I$. Then x + (-x) = 0, so x < 0. Thus $\checkmark \neq x$ so $\checkmark = S \times S$. Thus 0 < 1

Therefore there exists $k \in I$ such that 0 = 1 + k i.e. $-1 \in S$. Now let $a \in S$. $a + (-1)a = 1 \cdot a + (-1)a = (1 + (-1)a = 0a = 0$. Therefore $-a \in S$. Thus S is a ring. But by a previous result, every congruence free ring is a field. This is the desired result.

As shown by Example 2.1.1 if ||S|| = 2 then S may be type I but not a ring. If ||S|| = 2 and S is type I then S has two elements 1 and 0 and two possible algebraic structures. We know that 0.1 = 0.0 = 1.0 = 0. Also 1.1 = 1. Also 0 + 1 = 1 + 0 = 1, and 0 + 0 = 0 since 0 is an additive identity. But there are two possible choices for 1 + 1 i.e. 1 + 1 = 1 or 1 + 1 = 0. The case where 1 + 1 = 1 is the Boolean semifield. The case where 1 + 1 = 0 is just the integers modulo 2. which is of course a field. Thus we have completely described type I semirings i.e. except for those type I semirings isomorphic to the Boolean 0-semifield, all type I semirings are fields. In fact, every type I semiring is a 0-semifield so every nonzero element has a multiplicative inverse.

The following two results are an application of the arguments above.

3.1.4 Proposition: Let S be a commutative semiring with 1 and a multiplicative zero . Then if (|S||>1, S has maximal proper congruences.

Proof: Let \mathbb{Q} be the set of proper congruences on S. $\mathbb{Q} = \emptyset$ since $A \in \mathbb{Q}$. Now let $\{A_i\}_{i \in I}$ be a nonempty chain in \mathbb{Q} . Let $A = \bigcup_{i \in I} A_i$. For all $i \in I$ $(1, \alpha) \notin A_i$ since if it were then $(a.1, a...) = (a, \alpha) \in A_i$ for all $a \in S$. Therefore A_i would not be proper $(1, \infty) \notin A$ so if A is a congruence then A is a proper congruence. Lut for all $i \in I$ and for all $x \in S_i(x, x) \in A_i$. Thus $(x, x) \in A_i$. Suppose $(x, y) \in A_i$. Then for some $i \in I$ $(x, y) \in A_i$

Thus $(y,x) \in A_1$ and so $(y,x) \in A_1$. Now suppose (x,y), $(y,z) \in A$. We can choose an $i \in I$ such that $(x,y) \in A_1$ and $(y,z) \in A_1$. Thus $(x,z) \in A_1$ so $(x,z) \in A$. Thus \sim is an equivalence relation on S. Suppose $(x,y) \in A$ and $s \in S$. Choose $i \in I$ such that $(x,y) \in A_1$. Then $(x+s,y+s) \in A_1$ and $(sx,sy) \in A_1$. Therefore (x+s,y+s) and $(sx,sy) \in A$. Thus A is a congruence on S. Thus each nonempty chain in $(x+s) \in A_1$ has an upper bound. Thus by Zorn's Lemma A has maximal elements. # Note: Proposition 3.1.4 is also true if S has an additive identity and an additive zero.

3.1.5 Theorem. Let S be a commutative semiring with 1 and a multiplicative zero a. Let \sim be a maximal proper congruence on S. Then $\frac{S}{\sim}$ is congruence-free

Proof: [a] is clearly a multiplicative zero in $\frac{S}{a}$. Similarly. [1] is a multiplicative identity in $\frac{S}{a}$. Claim that $\frac{S}{a}$ is congruence free. Well suppose $p \neq \Delta$ is a nontrivial congruence on $\frac{S}{a}$. Then there exist x,y $\in S$ such that $[x] \neq [y]$. Now define a congruence p^1 on S as follows. For a,b $\in S$ say that a p^1 b iff [a] p[b]. p^1 is clearly an equivalence relation on S. But suppose $a p^1$ b and $s \in S$. Then [a] p[b]. Therefore [s] + [a] p[s] + [b] and [s] [a] p[s] [b]. Thus [s+a] p[s+b] and [sa] p[sb]. Thus $s+a p^1 s+b$ and $sa p^1$ sb. Thus p^1 is a congruence relation on S. But [x] p[y]. Thus p^1 is a proper congruence relation on S. Clearly $p^1 \geq a$. But since $p \neq \Delta$, there exists $a, b \in S$ such that $[a] \neq [b]$ i.e. $a \sim b$ but [a] p[b]. Therefore $a p^1$ b so $p^1 > \Delta$ which contradicts the maximality of α . Thus $\frac{S}{a}$ is congruence-free. #

Thus given any commutative semiring S with 1 and a multiplicative zero α , we are able to construct a congruence-free semiring $\frac{S}{\sim}$ where \sim is a maximal proper congruence. The next theorem uses the results of this chapter to prove a interesting fact about $\frac{S}{\sim}$.

3.1.6 Theorem. Let S be a commutative semiring with 1 and 0, and α a maximal proper congruence on S. Assume also that α is a field or the Boolean 0-semifield.

Proof: [0] is clearly the additive identity and multiplicative zero in $\frac{S}{\sim}$. By Theorem 3.1.5 $\frac{S}{\sim}$ is congruence free. Now apply Theorem 3.1.3 and the remarks following that theorem. #

This is an interesting result—since the algebraic structure on S might be pathological (e.g. not MC or with zero divisors etc.) but nevertheless $\stackrel{S}{\sim}$ is a field or the Booleon 0-semifield. As an example consider Z_6 , the integers modulo 6. By inspection $\mathcal{N}=(\{0,2,4\}\times\{0,2,4\})\cup(\{1,3,5\}\times\{1,3,5\})$ is a maximal proper congruence on S. In this case $\stackrel{Z_6}{\sim} Z_2$, the integers modulo 2.