CHAPTER 4

TYPE II SEMIRINGS

4.1.1 Proposition : Let S be a type II semiring of order greater

than 2. Then no element in S is AC.

Proof : « is not AC since 1 + ® = ®» + @ , bur 1 # =, Now apply
Theorem 2.1.6. ¥

If ||s|| =2 -them S = {1, «} and by setting 1 +1 =1
we see that 1 is AC. Thus the restriction on the order of S is

necessary.

4,1,2 Proposition : Let € be a type II semiring and x € S. Then

. — ; - »
&K+ S =S or (x +.8 =%

Proof : %% + § is'a doupble ideal in S. Since 3 1s congruence

free S has two possible double ideals {mFand 3, H#

€3]

be a semiring with «. 'le say taat § has

4,1,1 Definition : Let

) a \ , o
the trivial structure iff x +y = ® ¥V x,y ¢ 3. Ifrx+y = oYx # YED

and x + x = x v x £ S then we say that S has the almost trivial

N

.

structure.
4,1.3 Proposition : Let 5 ke an @ -semifield wihich has the trivizal

structure, Then S is congruence-free irr S = {1, =}

Tirge

{

.

Proof : First we prove sufficiency. Suppose £ is congruencs
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Let v = (8 \ {=} xS \ {=}) (J (=, ®»), ~v is an equivalence relation
on S. But since S is a semifield S\{«} is closed with respect to
multiplication. Now suppose x~/y and x # ®. Then y Fo. ®X =
and ®y =% . Thus ®x /Vey, For se S\ {=»} sx#= and sy # «.
Thus sx v sy. Thus for all s € S, and for allX,y € S, xsvy implies

sxsv sy. Suppose X,y ¢ S and x/v y. Then for all s €S. x + 8 == =

y + s. Therefore x + s/Vy +s so/V is a congruence on S. But

since S is congruence-free <V = A. Thus [[S\ {=} || =1 and so
s\ {«} = {1}. Thus S = {1, »}. Next we prove necessity. Suppose
S = {1, =»}. Well there are only two possible equivélence relations
on S i.e. S xS and A, Thus S is congruence-free. #

The next proposition concerns « =-semiflelds with the almost

trivial structure.

%,1;&_23999§igigp . Let S be an » =-semifield which has the almost

trivial structure. Then S is congruence free.

Proof : Let S be an ® -semifield with the almost trivial structure.
Let ~ be a congruence on S such that ~v # 4 . Then there exists x #wand
gy # xeS such that x~vy ~Thus x + xV x +y, so x ~ =, Therefore
X x.ﬂzx—lm so 1/v «, Now choose y ¢ S, v.1ny.= Thus y ~v =,
Thus nv = S x 3, #
At this stage it might seem that the two trivial results above
are not very interesting. .owever, as ;ill become apparent later,
there is a close relationship between = -semirields with the trivial

and almost trivial structures and type II semirings. The following

proposition is an indication of this.
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— 4,1.5 Proposition : Let S be a type II semiring with the trivial or

almost trivial structures. Then S is an « -semifield.

Proof : We distinguish two cases :

Case A : S has the trivial structure. Choose x # « € S, Define
o= ()X (;)’)[} A, nv is clearly an equivalence relation on S.

Now suppose a+rVb and a # b. Then there exist kllk2 € S such that

klx = a and k.x = b. Thus for all m ¢ S} ma N/ mb since

ma = mk, x € (XD and mb = mk,x € (x> . Clearly ma n/ma for all

a € S. Therefore for all ma,b €S anb =2 marvmb. Suppose

a,b e Sand arvb., Then y m ¢ S, wmta= @ =m+ b

m+ arvum+ b. Thus "/ is a congruence relation on S. Thus W= 4

or S x S. Butn = A is impossiblesince 1.x = x and ®,x = @ Y ox

Thus v = S x 3, so 1 € //x7 . Therefore there exists a ke S such
: =1 . n

that kx = 1 i.e. x g S. 'Thus since X was an arpltrary nNonzero

element in S S is an = -semifield.

Case B : S has the almost trivial structure. Again claim taat
for x # 2 e S, ~ = (Qx?x A b is alcongruence on S, By the

argument in Case A. v is an equivalence relation and 'V preserves

multiplication. Suppose av b and a # b. Choose y ¢ S. If y # a
and y # btheny +a == =yt 5> soy+avyt+th: Ify=a then
y+a=a &¢Q> and y + 3 = = € QQ . Thus y + a~v y + b.

Similarly if v = b we get that : + an/y +,b. Thus /v preserves
4 5‘ = - 4 .
addition. Thus by the argument in Case A, S is an = -semifield. #

To simplify the following proofs we introduce the following

m1

notation. Let S be z commutative semiring with «. Then for X €

(¥5]

(]

s

the core of x denoted Dy cor(x) = f{aes la + x = »} If there 1
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no confusion about thg universal set we will sométimes shorten cors(x)
to cor(x). The anticore of x, denoted by acors(x) =S\ cors(x).
Clearly {=}e¢ cor(x), Y x €S. It can be shown that it s is
an «» -semifield then for each x,y € S\ {=}, there exists b € S
such that cor(x) = b cor(y). Suppose x + a = « . Then 1 ¢+ 2 ==,
cor(x) i

Thus 3 € cor(1l), so cor(1l) 2 e . Similarly cor(x) 2 x cor(1)

since if a € cor(1), x(a + 1) =« and so xa + x = ©» ., Therefore

cor(x) = x cor(i). By the same argument cor(y) = y cor(1) Thus

ngéfl - cor;y) so = cor(y) = cor(x) As the next few results
y

show, the concept of the "cor " of an element is critical in the study

of congruences on = -semifields.

4,1.6 Theorem : Let S be an = —semifield. Then say xnVy if
cor(x) = cor(y). nv is a congruence on S.  Horeover if S doesn't have

the trivial structure then /V is a maximum proper congruence on S.

Proof : Clearly ~s is an equivalence relation on S. Suppose XNV y and
z € S. Let wé S, and suppose a ¢ cor(x +W). Thena + X+ w==*, S0

x +(a+w) = » Thus a +w ¢cor(x) soa+w ¢ cor(y). Therefore

I

y+a+ w== soweget (y+w)t+tas=e= Thsa cor(y + w) so

cor(y + w) 2 cor(x + w). By the same argument cor(y + w) € cor(x + w).

Thus cor(y + w) = cor(x + w). Thus ynwx =y + w/Uux +w for allw :S,

Again suppose that x vy and w &€ S . Suppose w = ®.  Then wx = Wy
SO WX "V wy. Suppose w # «., and suppose that a + wx = ©,. Then
a a

< a
24+x= o« , so 2 ¢gcor(x)=cor(y). Therefore - +y = =, Thus
W W W

a + wy = ®, Therefore a ¢ cor(wy), so cor(wx) =2 cor(wy). Bv reversing

the roles of x and y above we get that cor(wx) = cor{wy) and thus that

“wx v wy. Thus nv is indeed 3 congruence on S. Now suppose S doesn't
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have the trivial structure. Since cor(®) = S. v # S xS . Now let
p be a proper congruence on S. We must show that p&/V/ . Let xpy.
We must show that x~s y. Suppose that xqUy. Then cor(x) # cor(y).

=

Without loss of generality assume there exists z & S such that x + 2
but y + 2 # ® . Then(x + z)p(y + 2), S0 ®p y t+ 2. Thus

Therefore = p 1. Thus for all s €S

1
» i 53 p (y + 2)
s .®ps.l Thus » ps for all s eS. Thus p is § x S wnich contra-
dicts the fact that p is proper. Thus p ¢ rv and since p was arbi-

trary, n/ is a maximum proper congruence on S.

4.1.2 Definition : We call ~s in the theorem above the fundamental

L -

congruence on an «-semifield, /Tie following corgllary is then imme-

diate.

4,1., Corallary : Let S be an = -semifield which does not have the

trivial structure. Then S is conspuence-free iff the fundamental

congruence on S is 4.

4,1.8 Lemma. Let S be an = —zsemifield wiich does not have the

trivial structure. Then acar(l) is a division semiring.

Proof : Since S doesn't have the trivial structure scor(l) # ¢
Clhioose xl € acor(l), Then 1 + % F =, S0 z (1 + x1) £ = ., Thus
X 1
1
1 :
- +1#= Thus - € acor(1). Suppose x,y € acor(l). Then

1+x 2 and i +y #» s0 (1 +x)(1 +y) 7 =
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By the lemma above if S is aa @ -semifield without the trivial
structure then ||acor(1)|| = 1 (and thus acor(1) = {1}) or
|| acor(1)|| =« since the only finite division semiring is'l: . If

S has the tprivial structure, then acor(l) = ¢ .

4.1,.49. Theorem.

Let S be a finite @ -semifield. Then $ has the trivial or

almost trivial structure.

Proof : First suppose that 1 + 1 = =_ 'Choose x € S. Claim that
X +1 = », Suppose not. Then clearily car(x + 1) 2 cor(1). But
cor(x + 1) = (x + 1) cor(1). Thus ||cor(x + || = ||eor(1)]].

Thus cor{(x + 1) = cor(1). Jow x €& cor(x) since x + x = x(1 + 1) =

x .© =o ., Thus x & con(x + 1). Therefore x € cor(l) i.e.
Xx+1=e, Contradiction. Therefore for all x € S. x + 1 ==,
Suppose y # <., Then ; + 1= forallx € S. Thus x + y = =
for all x € S and for all,y € S \{»}. Eut surely x + y = @ if
y =®. Thus » +y == for all X, y £5. Therefore S has the
trivial structure,

llow suppose that 1 + 1 # @ . Suppose that | lzcor(1)|]| =1
Claim that 1 + 1 = 1, To prove This suppose not. Let
1+1= «7#1, If &+ = = = then = = «(1 + L) = = g0 « = =
witlchh 1s a contradiction. Thusr « + « ﬁ’w "
Thus (1 + 1) + (1 +1) #= so1+ (1 +1)#= i.e= zacor(l).
witich contradicts the fact that ||acor(i)|| =1 (since -1, == =
acor(i) ). Thus 1 + 2 = 1 and we 23ve The claim.
Therefore x + x = x ' x -3S. And bv assumption acove |[acq?(1}l[ =1

so ||leor(1)|| = || g]] -1 . Thus for ail x e 3\ { o}
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||cor(x)|] = ||S]| -1 . Thus S has the almost trivial structure.
But since ||S|| is finite ||acor(1)|| 2 2 is impossible
by the remark following the previous lemma. This completes the

pnmf.#

We must assume in the general case that ||S|| is finite in the
theorem above. For example let S = di; with the usual multiplica-
tion, but for x," €S define x + y = max {x,v}. Then S is an
@ -semifield wiéﬁout the trivial or almost trivial structure.

If S is a finite » -semifield then by the theorem above S has

the almost trivial or the trivial structure, S is congruence-

free 4if S has the almost trivial structure. Thus the following result.

4.1.10Corollary : If S is a finite = -semifield, then S is

congruence-free if S does not have the trivial structure.

4.1.11 Corollary : The only finite ¥C commutative semirings with
1 and = are trivial znd almost triviel finite semifields.
Proof : Let S belapfinite)ill commutatiyersemirin: with 1 zna = .
Taen 2 is an -semifield. Thus S has the trivial or alwost trivial

structure. if

The next carollary is also an immediate result of previous

a.0.12 coruvllary : Every finite type 11 semiring s is an

w— semifield with the trivial or almost trivial structure.

Proof: By an earlier result S is MC. Now by the result above



S has the trivial or almost trivial structure and S-isiég

w_semifield. #

The previous results depend on the finiteness of S. The next

two theorems remove this condition.

4.1,13 Theorem : Let S be a type II semiring. Then 1 + 1 =1 or

Proof : Suppose not. Then 1 + 1 = « where « # 1 and « # <, Let

K be the quotient semifield of S. Let * be the fundamental congruence on K.

Since 1+ 1 # = by Thm. 4.1.6. ~ # SxS (i.e. s 1is proper).

Thus since K is congruence~free, rnv = A. Thus cor(«=) # cor(1l) .
But clearly cor(«) 2 cor(1). Thus cor(«) 2 cor(1l). Therefore
acor(«) ¢ acor(1). Now suppose X € acor(l) i.e. 1 + x # », Since
1+ 1 .# o, «+ « # o, Thus =gacor(x) so «¢€acor(l). Thus
1+« Fo g0 (1 + «)(1l +x)#Fw, Thus = + X + ax + 1 # =, so0

«+x # o i.,e. x €acor(=)., Thus acor(=) 2 acor(l) which is

a contradiction. Thus'1l + 1 = '=or 1+ 1 =1, 4

The next result is perhaps the most interesting result of this

thesis.
4,1.14 Theorem : Let S be a type II semiring. Then S is an
w-semirield. In particular, every noninfinity element has a multi-

plicative inverse. Furthermore, either S has the almost trivial

oo

structure or S has the trivial structure and is of order 2.

I

Proof : By the preceeding theorem 1 + 1 lorl+ 1="% JWe

consider these cases separately.
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Case A ; 1 + 1=

Suppose that K = 0S doesn't have the trivial structure, Then
acorK(l) # ¢. Thus acorK(l) is a division semiring. Therefore
1e acorK(l), so 1 + 1 # » which is a contradiction. By Theorem

4.1.5 S 1is an «-semifield, since S must also have the trivial

Structure.

Case B ; 1 +1=1

Let K be the quotient semifield of S. Suppose that
acorK(l) 2 {1} . Choose X #1 € acorK(l). Then (1 + x) # =.
Suppose that 1 + y # @ . Then/1l + x + y + xy = (1 + x)(1 + y) # =.
Thus x + y # . Therefore 3corK(X) 2 acorK(l). s0 corK(x] c corK{1}
Since K does not have the trivial structure the fundamental congruence
on K is A . Thus coPK(x) & CQPK(I).

Claim that x + 1 = 1, To prove this suppose x + 1 # 1. Suppose
that aeaccrh(x + 1). Then (il +x)+a == 80 x + (1 + a) =**. Thus
1+ a e corh(x) so 1ll#a+ 1= Tlowd +a== since 1 +1=1,

cop .(T)Y Since K is congruence

In

i

Thus a g cor, (1). Thus cor.(%+4)

free corb[x + 1) :.corK(l), wnich is obviously untrue so we have tThe
ciaim. Thus x + 1 = 1 for all x ¢ acor,(1). But acor (1) is a
N fad

division seriring, by a previous result. For all x # y = acor, (1)
I

v e v . o
(x + y) = x(1 + <) = %x.1 =¥ since % - acor.(1). Similarly x +y = ¥
X X K

Thus acor..(1) 2 {1} 1is impossible. Tlus aCDPKﬂl) = 1 so S has the

s
almostT rivial structure wiich can be shown as rfollows. ESince
14+41=1, =4 e«= « Fforall = g K. Suppose that « # /-5 and /- #:
Then in K E £ 4. This g + =%, Thus =+ B =, j.e § has
the almost trivial structurs. Therefore £ is an w-semifield. ToI
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4.1.15 Coraqllary : Let S be an =-semifield such that 1 + 1 = =.

Then S has the trivial structure.

Proof : As in Case A of the theorem above if a cor(1) # ¢ then

2 cor(1) is a division semiring so 1 g a cor(1). Thus 1 +1 £

which is a contradiction, so acor(l) = ¢ i.e. S has the trivial

structure. #

There exist »-semifields such that 1 + 1 =1 but which do
+
not have the almost trivial structure. For example let X = R
for x,y € S define x + y = max (x,y) and give multiplication the

usual definition. Then 1 +1.= 1 Dut ¥ does not have the almost

trivial structure.
From the corollary above W€ see that every MC com. semiring § with

© and 1 such that 1 + 1/=/9 has the trivial structure (just

embed it in its quotient semifield and apply the corcllary ), If S

is not MC then S may hor have the trivial structure. For example
let & ='%U,190-with addition defined as .0+H0=0,1+0=0+1=1, 1+1="7 and
at=0Va €S, Define multiplication by 1.a=a.1=a ¥ ae S.ooa=a.00=02

Y a¢S and 1.0=0.1=0. 8 doésn"t have the trivial structure but I+1=902,

Using the results above we are able TO obtain a sharp characteri-

following

1

zation of type II semirings in terms of double ideals. Th

ra

theorem which is a parrtiazl comveose 1O | roposition 2.2.1 is useful in

-

the study of semirings or the form § where M is 3 ma

"

imum proper

iouble idezl.

4.1.15 Thecrem. Let S be an #¥C commutative semiring with.l and
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quotient w-semifield of S is congruence-free (and hence S s ita

quotient w-semifield).

Proof : Necaessity. Let S be an MC commutative semiring with 1 and
with = such that S is double ideal free and the quotient semifield
QS of S is congruence~free. By Theorem 4.1.13 QS = {1,=} with
the trivial structure or QS has the almost trivial structure. Now if
QS = {1, » } above then S = {1,°} with the trivial structure so
S is congruence-free. So suppose that QS has the almost trivial
structure, Then S has the almost trivial structure. Now choose
x # € S, Claim that (%) 1is a double ideal in S. Clearly
ks € &) for all s ¢ ¢9 -since if se(x) s =k;x for some k, €S.
Thus ks = kk, x € &) . Choose s e ¥y and 1 eS.

J w if 1 # S
Then s +1 = - o/ Thus s + 1 € {x). Therefore

( s if 1 =5
{x) is a double ideal in S.. But x # = € &) .« so (x) # (=} .
Thus {x) = S since S is double ideal free. Therefore 1 g(x) so
xnl € S. Since x # ® was arbitrary in S, every non « element in S
has a multiplicative inverse. Thus S is a semifield with the almost

trivial structure. By Proposition 4.1.4 S is congruence-free. This

finishes the proof for necessity.

Now to prove sufficiency suppose that S is a type II semiring. Then
by Proposition 1.2.1 S is douule ideal free. Also by Theorem 1.1.3

QS is congrusnce-—free. #

How let 3 be a commutative MC semiring with 1 which admits a
proper doublas ideal. In Gection 1.2 we proved that S has a maximum

proper double ideal M and we showed that $/Mis MC. In fact:i/ W is
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an MC commutative semiring with 1 and with . As shown before S is
not ingeneral an w-semifield. But the results of this chapter enable

us to give the following characterization }

4.1.,17 Theorem. Let S be as described above

Then : 1) If S/Mis finite then S/M is an w-semifield with the trivial

or almost trivial structure.

2) I the quotient w-semifield of S7Mis congruence-free then
S/Mis congruence free and thus$/M is a =-semifield with the trivial
or almost trivial structure.

3) 1f $/Mhas the almost trivial structure then$S Mis an
w_gemifield. and §/M 1is congruence-free.

4) IfS$/Mhas the trivial structure then$S/M is a »-semifield.

5) If 1+ 1 = /in8/Mthen$/M is an »-semifield,

Proof : 1) Suppose S/Mis finite By Corollary 4.1108/Mis an
w_semifield with the triwvial or almost trivial structure.

2) 3Suppose -the quotient  »-semifield Q of 8/Mis congruencs-
free. Obviously S/M& doubles idesl free. | Therefore by "heorem 4.2.15
S;!M is congrusnce free. Thus by Theorem 4.1.12 S{fM = {1, =} with the
trivial structure or $/M is an w-semifield with the almost trivial

STtructure.

3) Suppose that $/M has the almost trivial structure., Choose
x # @ €&/M. by the proof of “heorem 4.1.16 (xy is a double ideal
in §/Mwnich is double idezl free, () F
{x) S/M so % € S/M As x was an arbitrary non-infinity elemern

in 8 S§/M is an w-zamifield., T.us by Pr::;:iticn w,1,4 SM s
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congruence free.

4) Suppose that§/M has the trivial structure. Again for all
X #® Es)m, {x) is a double ideal so 1 & (xy . Thus xﬂl €S/M.
ThusS/M is a semifield.

5) Suppose that 1 + 1 =« in £/M. Then the quotient - semifield
0 of S/M has the property that l+1="+ Thus Q and hence Sfﬂ has the
trivial structure. Thus S/Mis an «-semifield by 4) above. #

Thus it can be seen that the theory of type II semirings and
the theory of double ideals are closely related. It should be no -
ted that Theorem 4.1.17 gives some fascinating clues into the
structure of commutative MC semirinmgs with 1, S, which admit proper
double ideal:. For example.Suppose that NERN M|| is finite. Then
by part 1) a ¢ i iff u"lg S, und for altl x,yES such that x¥ Y,

x+ v e M. Thus does not exist.

X+ y

As a final application we prove the analogue of Theorem 3.1.5,

4.1.18 Theorem : Let S be a commutative Semiring with L and =, and
A/ a maximal proper congruence on S. Then E; is 3an «-semifield
with the trivial or almost trivial structure.

c
Proof : By Theorem 3.1.5 ;a is congruence-rree low apply

Theorem 4.1.!3, #
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