CHAPTER V
TYPE III SEMIRINGS
SECTION 5.1 BASIC THEOREMS

There are many examples of nontrivial finite
type I and type II semirings. This is not the case

for type III semirings.

5.1.1 Proposition. Let § be a type III semiring. Then
the order of S is 1 or the order of S is infinite. Also,
the subsemiring generated by 1 is {1} or is isomorphic
to Z+.
Proof: Suppose that the order of § is not 1. Since S
is congruence-free, S has a quotient division semiring
Q@S. If the order of S is finite then the order of QS is
also finite. As mentioned in Chapter I this implies that
QS = 1) . Thus S = 15 . This contradiction shows that
the order of S must be infinite.

Now suppose that R # {Jf . If R # Z+ then the
order of R is finite. R is MC so R can be embedded in its
division semiring QR. But then again if R is finite then

QR is finite which is a contradiction. Therefore R = 1 . #
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For type I ﬁnd type II semirings we have proved that
‘every element uh}ch is not a multiplicative zero, has a
muLtipticatiQé jnverse. As the next theorem shows this
fails dramatically for type III semirings

~

5.1.2 Theorem. There exist type IILI semirings other

than {ﬂ in which no element other than 1 has a multipli-

cative inverse.

. = X + ) ) .

Proof: Let 3 gi% n,mel-} L)g% . For x,y €S define
2 - _

x+y = min (x,y) Let S have the usual multiplication.

S is clearly a cuamutative semiring with 1 and no multi-

plicative zera. Choose x # 1 e€S. Then x;Iﬁs since

+ \ o i
x = Im, for some PP eZ « Sa if yx = 1 then writing
=1
21 4
y = 3m we get that S“mm1 = 1 which is imoossible.
2" >ATa,

_‘T Y
thus x & S
It remains ta show that S is' 'congruenca—-iree. Lex

~N #2 be a congruence on 'S. 'Then there exist x7v 2§ sucn

that x~~y. Without losz of generality assume tThat x<&y
By multiplying by a large enough k €S 17 necassary we cian
assume that x>1. Now choase any a in the open inter-

val (x,y). xtanvyta. Thus xws, for all se(x,y). We write this
) +

as x v(x,y). Now S is dense in/R . Thus we can choose k>1 &S such

that kx g (x,y). Thus x~kx. But kxaky. Thus x vky so

by applying the arguement ibove one more time we get that
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x v (x,ky). Thus by induction for all n - Z+ we obtain
xrv(x,kny). Thus for all s& S such that s > x,s n/ X.
We write this as x~ (x,<). Now choose any L &S such that
L #x. We can choose an n ¢ lf so large that 3 xcl.

>N

Ey the argument above showing that x~(x,y) we

3 3 %
see that SN ox v (2n X, o).

In particular 3 X (v Xy and 3 x~ L. Thus L.vux. Therefore,
2" 21

v = SxS, so S is congruence=free = #
The next series of results describes the additive

structure of type I1II semirings.

5.1.3 Lemma. Let S be a type III semiring. Then either

S is AC or for all x,y «S there exists an a:)(a dependent

on x and y) such that x+a = yt+a.

Proof: Define a relation on S as follows. For x,y ¢S
say that x-vy iff there exists a z ¢S such that xtz =y+tz.
Clearly x ~x for all x €S and x~y implies that yn x

for all x,y €S. Suppose x~y and y~z. Then there exist
a,b€&$S such that x+a = y+a and y+b = 2z+b . Thus

x+atb = y+a+b = z+atb, so x wvz. Thus v is an equi-
valence relation. Suppose that x:-y. Then there exists
an a « S such that x+a = y+a. Thus for all k &8,

(x+tk)+a = (y+kd+a. Thus x+k asr ytk. Similarly, k(xta) =
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k(y+a) so kx+ka = ky+ka. Thus kx «v ky, so we have that
v is a congruence on S. Thusw~ =4 or SxS. Ifrv=A4 then
S is AC. Ifs= SxS then for each x,yc S there exists an

a €S such that y+a = x+a. #

5.1.4 Lemma. Let D be a division semiring. For x: 0D

let nc(x) = z(a,b)é.(DxD)\d Xx+a =x+b§. Say that x~ y

iff nclx) nc(y). Then v is a congruence on S.

Proof: Clearly.vis an-equivalence relation. Suppose that

xvy. Let (bq, ba)f ncl{x+al. Then >§+a+b1 = x+a+b2

where b1¢ b Suppose that afb1 = a+b2 . Then

5

y+a+b1= y+a+b2 Y] (bq,bz)élnc(y+a). Suppose that

3 . + +
atb, # atb,. Then (a+b1,a+b2) cnc(x). Thus (at+b,,a b2)
ncly) so (b1,b2)(;nc(y+a). So in either case

nc(x+a)§.nc(y+a). Similarly, nc(y+a) € nc(x+a) so

we have that nc(x+a) = nc(y+a) or in other words that
x+a v y+ta . Now suppose that (bq,bz)aznc(ax). Then
= + = $
ax+b1 ax b2, so :-(+§,I X 92 . b1 # b2 50 91 # 92
a a a
thus (91,92)<_nc(x). Thus (91’92)£;nc(y), so
a a'‘a
Q1+y = 92+y. Thus b, +ay = b +ay. ., Thus (b, ,b.Jdenc(ay)
a a 1 3 : T2
and nc(ay)< ncax). So as above, nclay)=nc(ax) and we
have that v is a congruence on D. #
5.1.5 Theorem. Let S be a type III semiring where [iS]] >1.

Then either 1+1=1 and S is not AC or S is AC (and thus1+1#1).
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Thus either S is AC or (S,+) is a band.

Proof: Consider QS, the quotient division semiring of
S. QS is congruence-free. Define/vas in Lemma 5.7.4.
By this lemma ~ is a congruence on QS. Thereforemn=
or SxS. Let R denote the subsemiring generated by 1 in
QS. We distinguish two cases:

Case A: v =& . Thus nclx)/# ncly) for éLL x,y € QS.
thus QS (and S considered as  a subsemiring of QS) is not
AC since if it were AC nc(s) = @ for all s €QS. Now
suppose that 1+1 # 1. ~'Denote 1+1 as 2. We have that
nc(1) # nc(2). But clearly nec€1) Enc(2). Thus
nc(1) c nc(2), so there exists (x,ydenc(2) such that x+2

= y+2 but x+1 # y+1. T h et = 'y + 1 so x+x+1:z+x+1
2

j.e. x+y+1=y+1. Reversing the role of x and y we get that
2

xty+1 = x+1. Thus x+1=y+1 which is a contradiction. Thus
2

1#1+1 is impossible so 1+1=1. Thus x+x = X for all x in
S.

Case B: v = QSx@S. Suppose that S is not AC. Then
QS is not AC. Since:v= QSxQS if x#y and there exists
a z £ QS such that z+x=z+y then by .applying Lemma 5.1.3
to QS we see that for all x,y,z ¢QS, x+y=x+tz. In par-
ticular, (1+#1)=1-01+1). Thus R (the subsemiring generated
by 1) is not isomorphic to 1+. Thus R= 1 and (S,+) is

a band. (But in fact this too is impossible since by the
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the argument above x+x=x+z for all x,z ¢QS. Thus
(1+1)x= x+z so 1x=x+z , i.e. x=x+z. Choose x1¢x2 ¢ QS.
Then x1=x1+x2=x2 which is a contradiction.) #

As we have already proven that a non-AC type III
semiring may fail to possess multiplicative inverses
(the basic question of this thesis) from now on we shall
primarily consider AC type III semirings. Let S be an
AC type III semiring. Then S can be embedded in a differ-
ence ring. We have already shown that the qguotient

division semiring of S is congruence-free. As it

happens the same result is true for the difference ring.

5.1.6 Theorem. Let S be an AC type III semiring. Then

the difference ring of S is a field.

Proof: Let DS be the difference ring of S. Let - be

a nontrivial congruence on DS. Definz a relation~/on §
by saying that x»jy iff x=y~0 in DS. Clearly xﬁfx and
x'Jy implies y-ﬁx for all x,y - S. Suppose that x‘fy and
y~z. Then x-y+ 0 and y-2-0 so z-y~ 0. Thus x-y. vz-y

4
so (x-y)-(z-y)~0. Thus x-z+-0 so x-2z. Thus wfis an

equivalence relation on S. But suppose a €S and xn;y.

/
Then x-y 0 so (xt+ta)-(y+a) -0. Thus xtam~my+a. Similarly
considering a as an element in DS, a(x-y)~ (0 so ax-aya (.

/ y
Thus axnray. Thus ~ 1s a congruence relation on S. But

~ris nontrivial. Thus there exists(x,y « SxS such that
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x-ya0. Thus x'?y sowf# SxS. Since 3;45 congruence-free
~ =8 . But sincer~v#4 , there exist x,y,z,d €S such that
x-y#z-d in DS and x-y~z-d. Thus (x+d)-(y+z)~0.

Thus x+dfv;+z in S. But x+d#y+z. Thus nﬁ#flwhich is a
contradiction. Thus DS is a congruence-free commutative

ring with 1, i.e. DS is a field. #

Thus every AC type III semiring can be embedded in a
field. The converse of the theorem above is false.
S=ier+ such that x31} with the usual addition and multi-
plication is not congruence-free since

o= {xiZ such that xeS}Xé§32 such that x ¢ SjUA is a

congruence on S. But DS=Q.

Definition: Let S be a commutative semiring with 1.

Then S is said to be precise iff for all x,yeS, 1+xy=xty

implies x=1 or y=1.
5.1.7 Proposition. Every AC type IIL semiring is precise.

Proof: Let S be an AC type III semiring. Then S can be
embedded in its difference ring DS which is a field by
Theorem 5.1.6. Suppose T+xy=x+y. 'Then considering

1,x and y as elements in DS we get that x(y-1)=y-1.

Thus x=1 or y=1. #

The converse of this proposition is false. There exist
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precise AC division semirings which are not congruei.ce
free.

For example let S=R+(X), the division semiring
formed by nonzero polynomials uifh coefficients 1in
RE- Give S the usual addition and multiplication.
DS=R(X) which is a field. However, S is not congru-
ence free as can be shown by the following rather complex
relation . For f1(x) » g1(x) € m+(x) say that

fz(x) 95

f,(x) 91(x) iff deg f1 - deg f2 = deg g1 - deg g5-

1 ”

fz(x) gz(xJ

(x)

wvis clearly well defined, symmetric, reflexive and
transitive. Claim thata is a congruence relation.

Suppose f, (x) g, (x) ang=bethe 0x) efR+(XJ.
1 "o 1

fz(x) gz(x) hz(x)

- deg h2f2 = deg h1 + deg f1 - deg h2 - deg f2

1

deg h1f1

deg h1 + deg 9, ~ deg h2 - deg 95 = deg h1g1 - deg h292

h g LR GNEKS DIVENRDIT Y (x)
deg Fi—l . Thus ] e, ~  — o
(x) h,(x) 2

g
22 h2(x) >

92

h, + f1 b Ty ¥ b f
Now deg( — — ) = deg(
f

2 2 2 2

max (deg h,f_,deg h_f,) - deg h Similarly

1727 24z

h + g
1 1 - "
deg( — ) = max(deg h192’91h2) deg(h292) G1)
Wy 85
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Now suppose that deg h,f, > deg h f . Then deg h, +
1 2 - 2 h P 1
+ deg f, (2). Then deglmb Sty =
by 3

- deg h

deg f2 > def h2

deg h, + deg f2 - deg f, - deg h, = deg h

1 2 2 1

by (2) deg h1 - deg h2 > deg 9, + deg h2. Thus

deg h1 + deg 9, > deg 9q - deg 9,- hThUZ deg h192 >

deg g,h, so by (1) we get that deg (—l +—l )
172 hy, 95

+ deg 95 ~ deg h2 - deg 9, = deg h1 - deg h2:

5

deg h1

f
1, 1. Thus 1 W Lk +El' Suppose that

2
deg f,h, > deg h, f, (3) . Then by the above argument

+deg’ /hs= deg h,= deg f,= deg f, -

1 2 ¢ 2 1

deg f., = deg 9, ~ deg gz. But by (3) deg f, + deg h,>

1 2

deg f,+ deg h Thus deg f,- deg f,> deg h,- deg h,so

2 1° 1 2 1 2
deg 9, - deg 922 deg h1- deg hz ¥.8.. deg gqhzz deg h1 5

Thus from (1) deg(il +El} = deg 94 deg g, so again

hgw—93
h f h 91

——+——"V—l+—*. Thus~ is indeed a nontrivial congruence
5 Tg g0

+
on R (X) so m+(x) is not congruence-free.
SECTION 5.2 PARTIAL ORDERS ON TYPE III SEMIRINGS

In this section we investigate partial orders dn

type III semirings.
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There exist nontrivial MC commutative semirings
which have an additive identity. For example consider
(S,+,.) where S={xcm1x21} , multiplication is as usual
and for any x,y ¢S, xty = max{x,y). Then S is an MC
commutative semiring with 1 and 1 is the additive
identitiy in S. However, we shall now show that no
nontrivial type III semiring S (i.e. S# {1+ ) has an
additive identity. Suppose that S is AC and«-S is an
additive identity. Thenat® =% so0 (1+41)%x= X j.e. 1+1=1
uhich contradicts Theorem,sil &addeS isn't AC, S # {1} =l =o0
Since~ is AC this contradicts Theorem 2.1.6. MWe have

proved the following theorem.

5.2.2 Theorem. Let S be a type III semiring of order

greater than 1. Then S has no additive identity.

Definition: Let S be a semiring which has no additive iden-
tity but with a multiplicative identity and which has a
partial order 2 . We say that 2is compatible iff for all
x,y,geS, x2yw»ax=ay, xaz ya, xta Zyta and atx=aty.
Additionally, 1+121.

For example the usual ordering on Z+ is compatible.
We require that S not have an additive identity to avoid
conflict with the usual definition of compatible partial

orders on rings. By Theorem 4.2.2 "= or the trivial

partial order 1is compatible for every non AC type I1II semiring.
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If S is type III and non AC then 141=1 so the stipula-
tion that 1 + 1 > 1 is redundant. If S is AC and
type III and > is a compatible partial order on S
then 1+41>1 implies that for all n &2+, and for all

a S, na 2 a.

52.3 Theorem. Let S be an AC type III semiring and > a

compatible partial order on S.  Assume also that (S}l > 1.
Then S has no minimal or maximal elements with respect

to >.

Proof: Let K be the set of all minimal elements in

S. K#S since > cannot be the trivial partial order =
since 1+1#1 but 1+1>1. Claim that S\ K is a double ideal.
Suppose that s &S N\K. Then there exists a keS such

that s>k. Therefore as>ak for all ae$S (ak#as since

S is MC). Thus as< K so asgS K. Similarly a+s>atk (a+s?#
atk since S is AN alsonarsEnsS N Kuppihes S\ K is a double
ideal. Thus by Proposition 2.2.17 S\NK =S i.e. K=0. #
Notation: Let S be an AC type III semiring. We can
define a natural partial order 2, on 3 which is com-
patible by saying that for x,y<S, x2.¥ iff x=y or there
exists an ae€S such that x=yta. F{rst we verify that 2.

js indeed a partial order. Clearly x2 X for all x €S.
Suppose that x>y and y>x . Then either x=y or there exist

T

Jq,azz;s such that x=y+ a, and y=x+az. Thus y=y+a1+az.

c B c . i i + = 7oz e
Thus y+a1+L2 y+2(d1+a2) Since S is AC, 2(a1 a2) a ta,

But S is also MC so 2=1 which contradicts Theorem 5.1.6.
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Thus x=y. Now suppose x>+y and y2+z. Since the case
where x=y or y=z is trivial suppose x>+y and y>+z.
Then there exist a1,a2 €S such that x= +a1 and y=z+a2.
= z+a, ta..
Thus x z a1 a2

2. is a partial order on S.

so x2+ z and 2+ is transitive. Thus

To show that 2, is compatible, suppose that x> ¥y.
Then there exists an a €S such that x=yta. Thus for all
k ¢S, x+k=y+k+a, so x+k>+y+k. Similarly kx=k(y+a)=
kytka so kx>+ky. 1+12+1 by definition. Thus 2+ is
compatible. Now a compatible partial order is just a
congruence without symmetry so it is not surprising that
the study of > yeilds interesting results in the theory
of congruence-free AC semirings. We call 2+ the natural

additive partial order on S.

52.4 Theorem. Suppose that S is an AC type III semiring

which is totally ordered by 2+. Then S is a division

semiring.

Proof: Consider S as a subsemiring ofits difference
ring DS. We have already proven that DS is a field.
Choose x ¢ S. then 1/x ¢DS. But 1/x = a - b for some
a,becS. However, since 2+ is totéL either a>+b or b>+a
(clearly a#b). Suppose that a>+b. Then there exists
an s & S such that a=b+s. Thus 1/x = s, so T4% & B
Claim that b>_ a is impossible. Suppose that b> a. Then

there exists s €S such that b=a+s But then 1 = x(a-b) =
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wx(-s). Thus 1 + xs = x(-s) + xs = x(s=s) = 0 so 0 €S
which is impossible. Thus b>+a is impossible and 1/x € S.
Since x € S was arbitrary, S is a division semiring. i

When > is total DS = S U-SUJ0t where —s=g-1s] se S DS}
where S is considered as a subset of DS. This is true
since for all x,yeS x2+y or y2+x so there exists
an a, or an a, €S such that x+a1=Y or y+a2=x. Thus x-y=

a, Of y=x=a,. After the next few results we can prove

1

a partial converse to Theorem 5.7.7. First we intro-

duce the concept of Archimedean semirings.

5.2.2 Definition. Let S be a semiring without an

additive identity with a compatible partial order 2.
Then S is said to be Archimedean iff for all x,yeS
there exists an n ezt such that nx ? Y

For example 1+ with the usual order is Archimedean.
Thus the definition of Archimedean in the context of
semirings without an additive identity is the analogue
of its classical definition for rings except that no
consideration of negative integers or zero is necessary
(or possible). Note that this concept rétains virtually
no meaning in the case of non AC type three semirings
since they are bands with respect to addition. In fact,
if we were to apply the definition above to non AC type
II1I semirings then the only Archimedean partial order

would be the trivial partial order. It turns out,
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that each AC type III semiring is Archimedean in a

nice way.

5.2.5 Theorem. Let S be an AC type III semiring and

> a compatible order on S. Then given x,y €S there

. +
exists an n&Z such that nx 2 Y.

Proof: Define a relation~on S by saying that for
- - +
x,y<S, xrvy iff there exist Ny #05 «7 such that

n1x2y and nzyz x. Clearly for all x,y ¢S x~x and xay

implies y~ x. To show transitivity suppose that xm vy

4 +
and y.. z. Then there exist n1,n2, n €l such that

377
> > e & >
NyX2 Yo NoY2X%, n3y2 z and n,z2'Y Thus n3n1x_n3ygz

and n,n,z> n,y> x. Thus xevz so~/is transitive. Now

2 4 2

. +
suppose that x~y. ~As above there exist n1,n2 ez such

that n1x > y and ”2Y2 X - Choose a €S. Then n1x + n1a2

42 > y+a. Thus nq(x+a)2y+a. Similarly n2(y+a)2 x+a.

Thus y+aaxta. Clearly n

y+n

1xa2 ya and nzyazxa SO ax. . ay.

Thus~sis a congruence on S soe~ =4 ore~ = SxS. But given
x ¢S, 1(2x) > x and 4x > 2x . Thusa = Sx§ so given

. +
x,y =S there exists an neZ such that nx2y.

EXAMPLE: Let S = (a )7 a R’ for all niz® . Define

(a Y+ (b Y= (a +b )., and (a )+ (b )" = Ca b ).
nn: nno n n n" n nn-.

Then (S,+,.) is an AC, MC commutative semiring with
+

1 . Say that (3H)T21 (bnl‘iff there exists an N gl

such that for all n2 N a_ > b . (> is the usual order on
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S but for any kez" (k )w(1a

nwg

+ . . .
on R ). Then >, is a compatible partial order on

<4 (n)... Thus S is not

Archimedean and thus not congruence-free.

Next we prove a partial converse to Theorem 5.1.7.

5.2.6 Theorem.” Let S be an AC division semiring

which is Archimedean with respect to the total order

2, Then S is congruence-free

Proof: Let~ be a congruence on S which is not & .

Let C = { seS| s~1} . There exist x#y €S such that
xvy. Thus x/yeC. Since x/y~1 implies y/x~ 1 also,
we get that y/x e C. Now if x/y <+1 then 1 <+ y/x .

so we can assume that there exists an a =C such that

& 1. Now for all z¢8S and xeC, 1 + zvx + z.

Thus (x+z)/(1+z)~ 1 so Cx+z/(t+z) €C. Suppose y ¢ S

and 1 <, Y <& a. Then there exist b,d eSS such that
1+d=y and y+b=a. Set z=b/d eS. Then (z+a)/(z+1)=y.
Thus ye C. Thus for all y e S such that a2+y2+1, y ¢ C.

We write this as 1~ [1,al .But 1~a implies that awa

S0 1n:a2. Thus 1 v ﬁ,aaj and by induction for arbitrary

Now a=1+b+d. Thus a '=C(1+b+d) > 1 + n(b+d).

Since S is Archimedean and totally ordered for each

+
m>+1 we can choose an ngZ such that n(b+d}2+m.

Thus C contains ;& €S lx2+f}.
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Now suppose that y4*1. Then 1/y >+ 1. Thus
1/yeC, so yeC. Thus for all seS, seC. Thusvis
SxS. Sincen # 4 was an arbitrary congruence on S, S is
congruence-free. (Note: This proof is a generali-
zation of the proof that Q+ is congruence—-free on page
127 of ref. 2.)

Let S be an AC commutative semiring with 1 which
has no additive identity. Then 2 is well defined on
S, i.e. 2, is a compatible partial order on S. DS,
the difference ring of S, is a ring. MWe define a
partial order > on DS by saying that for x,y,a,b €S,

x =y >a=>b iff xtb 24 aty. It is easy to verify
that > is a well-defined partial order on DS. Claim
that > is compatible as a partial order on a ring.

We must show that: 1) « >Bimplies*+V 2> g +Vv

for all=,p£ and YeDS
and 2) «> 0 and g >0 imply that
wg > 0 for all=, peDS.

To prove 1) supposex > g . Write™= x1—y1,i?=
X5=Y5 and vV = Xz"Y3 where x1,x2,x3,y1,y2,and Y= e S:
Then x1+y2+x3+y32+ x2+y1+x3+y3. Thus(x1-y1)+(x3—y3)2

(x -y1)+(x ) soatY > f +V .

2 3773

To prove 2) using the notation above assume

that« > 0 and > 0. Thus for any seS, s-s = 0 in

+ +
DS so x,+s 2. yqts and x,+s2 +s. Thus X 4 24 Y

1 2
and x, 24

5

,a3, €S such that

Therefore there exist a >

Yo 1
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X y1+a1 and x2=y2+a2. We get that X485 24 Yq85-

1:
Thus choosing an s €S, we have x132+s 2+ s+y1az.
Thus (x1a2 - y1a2) >s -s = 0. Thus (x1 —y1)a2 > 0

considering Xqr Yqr and a, as elements in DS. Thus
(x1—y1)(x2-y2) > 0 since in DS a, T X5 T Yo This prooves
the claim.

If z, is total on S then as mentioned earlier DS=
SU=-SU {0} since each nonzero element in DS is either in
the image of the canonical embedding of S in DS or

is the additive inverse of an element in that image.

Now we prove a theorem which is related to Theorem 5.2.6.

5.2.7 Theorem. Let F be a field and S a semiring with

1 without an additive identity such that F = su-su {0
Furthermore assume that F is Archimedeam with respect
to >, the order inherited from >, on S (i.e. 2 as

described above). Then S is congruence=free.

Proof: First note that since F = §!/=-S_U /0, S is AC

so >, can be defined on S. Note also that F = DS.

Next claim that S is totally ordered by 2+. Choose any
x # yeS. Then x-y and y-x g F. Now both x-y and y-x
cannot be in -S since otherwise 0€ -S so 0 «S.

Without loss of generality suppose that y-x ¢S. Then y=
x+ts for some se¢ S, is y 2, X. Thus > is a total order

on S.
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Claim that S is a division semiring. Choose xeS.
Then x-k F. But suppose x_k -S. Then there exists
an s €S such that -sx = 1. Thus sx = -1 so S is not
closed with respect to multiplication which is a
contradiction. Thus S is a division semiring.

Finally claim that S is Archimedean with respect
to >, . Choose a,beS. Since F is Archimedean with
respect to > there exists an n €2 such that b ¥ na.
Thus b ¥+ na if nc2+. Otherwise na is not defined
in' S. But if n =0 then b # 0 i.e. 2b -2b & 2b = b.
which contradicts the fact that 3b &  4b. Thus n # 0.
Note that since F = 8 U #sUf0}, >, totally orders §
and thus > totally orders F. Thus if 0>n (inZ)
and nb £4a then nb > a . ~Thus 0 > (-n)b + a. But
(-n)b + a ¢S and each s &S > 0. Thus nc0 is impossible.
Thus S is Archimedean, so by Theorem 5.2.3 S is

congruence-free.

5.2.8 Theorem. Let S be an AC type III semiring

which is totally ordered by 2 . Then there exists

5 . + i ; ;
a monomorphism ¢ from S into R such that @15 isotonic
with respect to the orders > on S and the usual

+
order > on R .

Proof: Let >, be the order induced by 2, on DS.

1

Since >, is total on S, 21is total on DS. Moreover,

DS is Archimedean with respect to the total order 2,
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since S is Archimedean with respect to the total order
2+. Thus by Theorem 1.1.3 there exists an isotonic
monomorphisms= : DS — R (isotonic with respect to

21 and >). Let ( be the natural embedding of S into DS.
Then sett‘ing‘#:‘i"E ; we see that¢ is isotonic with
respect to > and >. For all s¢ S t(s) >1 0. Thus

(et )(s) R, Thus ¢: s—> R' " #

In Less precise terms the theorem above shows
that each AC type II1I semiring which is totally ordered
by >, (i.e. each AC congruence-free division semiring
which is totally ordered by 3+) is a subsemiring of
R+. Thus we see, for example, that C (the complex
field) cannot equal SU-SU {0} where S is a semiring
with 1 and without an additive identity since C cannot

be embedded in R. The following corollary is an

immediate consequence of Theorem 5.2.8.

5.2.9 Corollary. Let S be a semiring which can be
embedded in an AC type III semiring § which is totally
ordered by 2+ (2+ is the additive partial order on

5). Then there exists an embeddingﬁ#:5~ﬂR+ which is
isotonic with respect to the natural additive partial

) +
order on S and the usual ordering on R .

To sum up the results above. Every AC type III
semiring which is totally ordered by >,  is a sub divi-

. .. F : 2
sion semiring of IR . Thus the natural gquestion i1s:



59

"Which AC type III semirings S are totally ordered
by >,?" The next theorem shows that either S is
totally ordered by S is S is extremely pathological

with respect to 2+.

5.2.10 Theorem. Let S be an AC type III semiring. Then

S is totally ordered by 24 OF for each x,y ¢S, there
exists an« € DS such that considering x and y as
elements of DS o is related to x by > ( the partial
order on DS inherited from S ) but not to y or vice

VErsaa.

Proof: Let > be the partial order induced by 2, on
DS, the difference ring of S. For x ¢S, define
cor(x) ={s e DS such that s is related to x by 2}.
For x,y €S define xay iff cor(x) = cor(y). ~ is an
equivalence relation on S.

To show that ~ preserves multiplication suppose
that x~y and a ¢ S. considering x,y and a as elements
in DS suppose thatae¢DS and &« > ax. a > 0 so “/a 2 x.
Thus*/a ecor(x) so %«/a ecor (y). ' Thus %/a > y or
y > #*/a. Thus ® > ay or ay > @ so ««ccoray). After

cor(ay) so

1]

similar arguments we see that cor(ax)
ax o~ ay.

Suppose that « > x+a. Thena-a > x so=-a e carixd).
Thus« —a € cor(y) so se¢cor(y+a). Again after similar

arguments we see that cor(y+a) = cor(x+a)] so
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xtan/ yta.

Thus ~v is a congruence on S. Thus~ = 2or SxS.
If «v =4 then > is a total order on S. Ifs = §x§
then for each x,y ¢S there exists an«e DS such that
«ecor(x) bute € cor (y) or vice versa. This com-

pletes the proof. x
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Section 5.3 Congruence free subsemirings of W

In this section we briefly study congruence-free subsemirings
of G where df has the usual additive and multiplicative structure.
Thus (3 is AC. We have already shown that if S is a type III
semiring then if =, is total, S is a devsion-semiring. We have
also shown that if 2, is not total then S has an improbably patho-
logical structure with respect to - Thus we suspect that =, °
must be total.

Every AC semidivision ring of order > 1 must contain an
isomorphic copy of ﬂfr . 1f the hypothesis above is true we should
be able to prove that every non~trivial congruence free subsemiring
of Ef is E?.. Unfortunately ~we have not been able to prove this

but have derived some interesting results concerning conzruence-free

IF
subsemirings of & ,

5.3,1 Theorem : Let § be an AC type III semiring which can be
/
embedded inan AC type III semiring S which is totally ordered by

>, -+ Let ¢ : 8-y be the isotonic monomorphism described

A

in Corollary 5.2.9. Then ¢(S) is dense in K" . Moreover if

I‘] ' T

v . ( IX has the usual

4 +
$(S) # I~ then ﬂQ N ¢(S) 1is dense in!

topology. )

Proof : uote first that ¢(S) is congruence-free. Let 2 be the

T

usual ordering oan . By Thneorem 5.2.1 ¢iS) has no minimal element
- ¥ ..r

witli respect to Z . Choose an open interval (a,b) in M . te can

; b - a ;
choose a k € ¢(S) such that k < . Thus there exists an
2



62

o : . .
ne.’ such that nk¢ (a,b). Since the open intervals are a basis
+ . - +

for the topology on R, ¢(8) is dense inR .

i + i

Now suppose that ¢(S) # ﬂl . Suppose that there exists an

: 4 . o . . ot
open interval {a,b)ElR such that (a,b)& ¢(S). Choose any x= ™ .

; . O . . ‘

Since ®(S8) is dense in i there exists a k €& ¢(S) such that
x ¢ (ka,kb) (Since we can choose a monotonic increasing sequence

(kn) in ¢(8) such that kna < x and (kna) approaches x from the

left. k -» >. For som n_ large enough X ¢ (k a,k_b)). Thus
11 d 9] no Tlo

x ¢ $(8). Thus ¢(S) - XY Which is/4 contradiction. Thus

~ |-_+\ . - ‘.\ + \ o -
(a,b)1 (< N ¢(8)) # ¢. Since (asb) was arbitrary i\ $(S) is
dense infR T.o#

From the proof of the theorem above the following corollary is

immediate.

-+
5,3.,2 Corollary. Let § be a congruence-free subsemiring of {} ‘with the

usual algebraic structure, Then

1) & is dense in (& J

2) If S # (L'+ then @+ S is dense in ..'.'1—.

e conclude with the following theorem.

5.3,3 Corcllary. Let S be as described above and let p be a

prime number. Then p divides the denominator of some element in S
reduced to lowest terms. lMoreover S is infinitely penerated as a

semiring.

proof : Let p be a prime number. Let (Si), ; be
-

tors of S. Then DS, the difference ring of §, ic & rield so DS =w o

5 - 1 s irsEa o ; =
¢ DS. Thus - = f (S8i ,...,blk) - F(8%, 000, 5= ) wW.oere

hus 1
- B 1 1 2z 1 n

]
Tl

fl and £ are multivariable polynomials with cocfficients in 7
n -



63

Thus if we reduce Sil,..., Sik, Seyseens S« to lowest terms p must
divide the denominator of at least one of the Sii""’ Sik, Sal,...,

S« .
n

Thus (Si}i_ I when reduced to lowest terms must contain an

element Sio such that p divides the denominator of Sio. Thus

(Si). must be infinite. g
T I
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