อิทธิพลของตัวเร่งปฏิกิริยาต่อเวลาการขึ้นรูปโพลิเอสเตอร์เอสเอ็มชื่

นาย สุชล มั่นรักเรียน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2535

ISBN 974-581-166-1

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

Effect of Catalysts on Cure Time of Polyester SMC Processing

Mr. Suchol Manrukrian

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Program of Petrochemistry Chulalongkorn University

1992

ISBN 974-581-166-1

Copyright of the Graduate School, Chulalongkorn University

Thesis Title	Effect of Catalysts on Cure Time of Polyester		
	SMC Processing		
Ву	Mr. Suchol Manrukrian		
Department	Petrochemistry		
Thesis Advisors	Associate Professor Suda Kiatkamjornwong, Ph.D.;		
	Wing Commander Somsak Naviroj, Ph.D.		
Acccepted	by the Graduate School, Chulalongkorn University in		
Partial Fulfillmen	t of the Requirements for the Master's Degree.		
/	Dean of Graduate School		
(Professor	Thavorn Vajrabhaya, Ph.D.)		
Thesis Committee			
	Father Audl. Chairman		
(Associate	Professor Pattarapan Prasassarakich, Ph.D.)		
	ade kiathan f. Thesis Adivisor		
(Associate	Professor Suda Kiatkamjornwong, Ph.D.)		
	Smok Thesis Co-Adivisor		
(Wing Comm	nander Somsak Naviroj, Ph.D.)		
	Swasawan: Member		
(Chachawar	Surasawadi, Ph.D.)		
	Payson South L. Member		
(Assistant	Professor Paipan Santisuk, M.S.)		

สุซล มั่นรักเรียน : อิทธิพลของตัวเร่งปฏิกิริยาต่อเวลาการขึ้นรูปโพลิเอสเตอร์เอสเอ็มซี (EFFECT OF CATALYSTS ON CURE TIME OF POLYESTER SMC PROCESSING) อ.ที่ปรึกษา : รศ.คร.สุคา เกียรติกำจรวงศ์; น.ท.คร.สมศักดิ์ นะวิโรจน์, 156 หน้า. ISBN 974-581-166-2

การวิจัยนี้ได้ศึกษาตัวเร่งปฏิกิริยา 3 ชนิค คือ เทอเชียรี-บิลทิลเปอร์เบนโซเอต (ที่บีพีบี), 1.1-ไค-(เทอเชียรี-บิลทีลเบอร์ออกซี) ไซโคลเฮกเซน (คีทีบีซี), เบนโซอิล เบอร์ออกไซค์ (บีพีโอ) และตัวเร่งปฏิกิริยาผสมระหว่างทีบีพีบีกับคีทีบีซี เพื่อศึกษาอิทธิพลของตัวแปรต่าง ๆ ได้แก่ ชนิคและปริมาณ ของตัวเร่งปฏิกิริยาต่ออายุการเก็บรักษาของแผ่นเอสเอ็มชี และลักษณะการบ่มในแม่พิมพ์ที่เวลา 1 และ 2 นาที่ การทคลองใช้ที่บีที่บีเป็นตัวเร่งปฏิกิริยา สามารถเก็บแผ่นเอสเอ็มซี่ได้นานถึง 45 วัน โดยมีระยะเวลา เก็บรักษาที่เหมาะต่อการนำไปขึ้นรูปที่ประมาณ 17-30 วัน ความเข้มข้นที่เหมาะสม 2 ส่วนในร้อย ที่อุณหภูมิ แม่พิมพ์ 150 ช. การใช้เวลาบุ่ม 1 นาที่ วัสดุจะมีความแช็งแรงเชิงกลต่ำกว่าเมื่อใช้เวลาบุ่ม 2 นาที่ แต่ สามารถทำให้วัสคุมีความแข็งแรงสูงขึ้นได้ โดยการผสมพารา–เบนโชควินโนน (พีบีคิว) ความเข้มข้น 0.025 ส่วนในร้อย ในทานองเคียวกับการใช้คีทีบีซีเป็นตัวเร่งปฏิกิริยา แผ่นเอสเอ็มซีจะมีอายุการเก็บรักษา ได้นานประมาณ 30 วัน การใช้ตัวเร่งปฏิกิริยาผสมระหว่างที่บีพีบีกับดีที่บีซี จะเร่งให้วัสดุเกิดการบ่มได้เร็ว ขึ้นเล็กน้อย ส่วนการใช้บีพีโอเป็นตัวเร่งปฏิกิริยาให้ข้อคีคือ สามารถใช้อุณหภูมิขึ้นรูปต่ำเพี่ยง 120 ํช. แต่มี ซ้อเสียที่ของผสมเอสเอ็มซีมีความหนืดสูงขึ้นเร็วมาก ความเข้มข้นที่เหมาะสมของบี้พีโอประมาณ 1 ส่วนใน ร้อย และสามารถเก็บแผ่นเอสเอ็มซีได้นานเพียง 10 วันเท่านั้น วัสดุที่บุ่มเพียง 1 นุาที่มีความแข็งแรงต่ำ กว่าการใช้เวลาบ่ม 2 นาทีเพียงเล็กน้อย แต่การใช้บีพีโอเป็นตัวเร่งปฏิกิริยา วัสดุที่ได้มีความแข็งแรง เชิงกลต่ำกว่าการใช้ที่บีพีบีและดีที่บีซีเป็นตัวเร่งปฏิกิริยาประมาณร้อยละ 10 ตังนั้น ตัวเร่งปฏิกิริยาที่ เหมาะสมสำหรับเอสเอ็มซีของโพลิเอสเตอร์ในงานวิจัยนี้คือ ที่บีพีบีและคีที่บีซี โคยมีการผสมพีบีคิวความ เข้มขัน 0.025 ส่วนในร้อย ในองค์ประกอบของเอสเอ็มซี่ด้วย ส่วนบีพีโอมีความไม่เหมาะสมที่จะนำมาใช้ เป็นตัวเร่งปฏิกิริยาเพียงลำพังในโพลิเอสเอร์เอสเอ็มชี

ภาควิชา	สหสาชาวิชาปิโตรเคมี–โพลิเมอร์
	ปิโตรเคมี
ขีการ ส ถน	2534

ลายมือชื่อนิสิต กรีก 2457/200
ลายมือชื่ออาจารย์ที่ปรึกษา 🔊 เพลงได้จาวงส์
ลายมือชื่ออาจารย์ที่ปรึกษารวม

C005101 : MAJOR PETROCHEMISTRY

KEY WORDS: SMC/DUAL CATALYST/CURE TIME/UNSATURATED POLYESTER/COMPOSITES.

SUCHOL MANRUKRIAN: EFFECT OF CATALYSTS ON CURE TIME OF POLYESTER SMC PROCESSING. THESIS ADVISORS: ASSOC. PROF.SUDA KIATKAMJORNWONG, Ph.D.; Wg.Cdr.SOMSAK NAVIROJ, Ph.D., 156 PP. ISBN 974-581-166-2

In this research, three types of catalysts: t-butyl perbenzoate (TBPB), 1,1-di-(t-butyl peroxy) cyclohexane (DTBC), and benzoyl peroxide (BPO), and the effect of added parabenzoquinone (PBQ) were studied. The effect of types and concentration of catalysts on storage life of the SMC, mechanical properties, and curing characteristics in the mold of the SMC at 1 and 2 minutes were investigated. When the TBPB catalyst was used, the storage time of SMC could be as long as 45 days. Between 17-30 days the hardness of SMC was suitable for molding at 150°C and 2 minutes curing time. The shorter curing time (1 minute) gave lower strength to the composite but with an addition of PBQ of 0.025 phr, the strength was enhanced. So did the SMC with the DTBC catalyst and the storage life of SMC was about 30 days. The dual catalysts system of the DTBC catalyst in conjunction with the TBPB catalyst provided a faster cure than did the TBPB catalyst alone. By using the BPO catalyst, it was found that the molding temperature was reduced to 120°C but the viscosity of paste was increased rapidly and the sheet could be stored for only 10 days. After a 1 minute of cure, the strength of composite became somewhat lower than that of a 2 minutes curing time, and was also lower than those by TBPB and DTBC catalysts by 10%. Therefore, the most suitable catalysts for the SMC in this research were TBPB and DTBC, in the presence of 0.025 phr of PBQ in the SMC component, the BPO cannot be used as the sole catalyst in the SMC.

ภาควิชาสี	หสาขาวิชาปิโตรเคมี-โพลิเมอร์	ř.
สาขาวิชา	ปิโตรเคมี	
ปีการศึกษา.	2534	

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude and appreciation to his advisor, Assoc. Prof. Dr. Suda Kiatkamjornwong and to his co-advisor, Wg.Cdr. Dr. Somsak Naviroj, for their invaluable guidance, advice, kindness, and encouragement throughout the course of this thesis, and for their kindness and helpfulness in the preparation and corrections throughout the writing up of his thesis.

The author also wishes to thanks Assoc. Prof. Dr. Pattarapan Prasassarakich, Dr. Chachawan Surusawadi, and Asst. Prof. Paipan Suntisuk for serving on committee as chairperson and members of this thesis, respectively.

All instruments, equipment and chemicals used in this research were made available by the financial support from the National Metallurgy and Material Center, Ministry of Science, Technology and Energy whose contribution is greatly appreciated. His sincere thanks are also due to Wiwattanadate for Dr. Dawan her cooperative Nanthavichitr Co., Ltd., Hoechst Thai Co., Ltd., and Siam Chemical Industry Co., Ltd. for providing the materials.

He would also like to express his special thanks to Miss Sangkhae Chamawit for assistance in helping some experimental work, Mr. Charoon Bhusiri and other people at Department of Material Science who offered assistance during his study, and also to Miss Apinya Udompakdee and his friends at Thai Airways International Co.,Ltd. who offered facility of manuscript preparation.

Finally, he would like to thanks his parents for their patience, support and encouragement over the years of his study, special appreciation to his mother and sisters for their love, sympathy, and encouragement throughout his study.

CONTENTS

	PAGE
THAI ABSTRACT	iv
ABSTRACT	v
ACKNOWLEDGEMENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
CHAPTER	
I. INTRODUCTION	
1.1 The Purpose of	the Investigation2
1.2 Significance of	the Problem3
1.3 Objectives	
1.4 Scopes of the Ir	nvestigation4
II. THEORY AND LITERATURE	REVIEW
2.1 Theory	
2.1.1 Chemistr	y of SMC7
2.1.1.1	Unsaturated Polyester Resin8
2.1.1.2	Catalyst11
2.1.1.3	Filler15
2.1.1.4	Thickener17
2.1.1.5	Internal Mold Release18
2.1.1.6	Inhibitor18

P	Δ	C	F
_	$\boldsymbol{\mathcal{L}}$	~7	и.

2.1.1.7 Reinforcement19
2.1.2 Manufacture of SMC20
2.1.3 Cure Analysis of SMC in Molds23
2.2 Literature Review26
III. EXPERIMENTAL
3.1 Chemical and Material39
3.2 Machine and Equipment43
3.3 Formulation for SMC45
3.4 Mixing Procedure and Preparation for
the SMC46
3.4.1 Paste Mixing Method46
3.4.2 SMC Sheet Preparation47
3.4.3 Molding Procedure48
3.5 Effect of the Catalysts on Hardening
Characteristics of the Resin49
3.6 Effect of the Catalysts on Cure
Reaction of the Resin52
3.7 Effect of the Catalysts on Viscosity
Behavior of the Resin Paste53
3.7.1 Sample Preparation53
3.8 Effect of the Catalysts on Storage Life of
the SMC55
3.8.1 Effect of Temperature on Storage
Life of the SMC 55

PAGE

		3.8.2 Effect of Type and Concentration
		of the Catalysts on Storage Life
		of the SMC56
	3.9	Effect of the Catalysts on Mechanical
		Properties of the SMC57
		3.9.1 Sample preparation57
		3.9.2 Testing Procedure59
	3.10	Effect of the Catalysts on Micromechanical
		Properties of the SMC61
IV.	RESULTS	AND DISCUSSION
	4.1	Effect of the Catalysts on Hardening
		Characteristics of the Resin62
	4.2	Effect of the Catalysts on Curing Time
		Through the Curing Reaction of the Resin78
		4.2.1 Evidence of the Curing Reaction in
		the Polyester Resin in the Presence
		of the Catalysts78
		4.2.2 The Effect of Curing Time on the
		Extent of Reaction at the Middle
		Layer of the SMC84
	4.3	Effect of the Catalysts on Viscosity
		Characteristics of the Resin Paste88
	4.4	Effect of the Catalysts on Storage Life of
		the SMC96

	4.4.1	Effect of Temperature on Storage
		Life of the SMC in the Absence of
		the Catalyst97
	4.4.2	Effect of the Type and Concentration
		of the Catalyst on Storage Life of
		the SMC99
4.5	Effect	of the Catalysts on Mechanical
	Propert	ties of the SMC103
	4.5.1	Effect of the TBPB Catalyst on
		Mechanical Properties of the SMC104
	4.5.2	Effect of the DTBC Catalyst on
		Mechanical Properties of the SMC111
	4.5.3	Effect of the BPO Catalyst on
		Mechanical Properties of the SMC114
		4.5.3.1 Effect of the Mold
		Temperature on Curing
		Characteristic of the SMC114
		4.5.3.2 Effect of the Concentration
		of BPO Catalyst on
		Mechanical Properties of
		the SMC116
	4.5.4	Effect of the Added Parabenzoquinone
		(PBQ) on Mechanical Properties of
		the SMC119
	4.5.5	Effect of the Dual Catalysts on
		Mechanical Properties of the SMC122

	4.6	Effect	of the Catalysts on adhesion
		Proper	ties between Matrix and Fiber127
V.	CONCLUSI	ONS AND	SEGGESTION
	5.1	Conclus	sions135
		5.1.1	Effect of t-Butyl Perbenzoate
			(TBPB)136
		5.1.2	Effect of 1,1-di-(t-Butyl Peroxy)
			Cyclohexane (DTBC)137
		5.1.3	Effect of Benzoyl Peroxide (BPO)138
	5.2	Suggest	ion139
		5.2.1	Maturation or Post Cure139
		5.2.2	Replacement of the Thermoplastics
			Cover Sheet140
		5.2.3	Further Research Work141

REFERENCES

APPENDICES A-B

VITA

LIST OF TABLES

TABLE
2.1 A typical SMC formulation
2.2 Commercial peroxide classifications
2.3 Comparison of activity of the t-amyl vs t-butyl
peroxides at mold temperatures of 120 and 150°C28
2.4 The SMC formulation
2.5 Effect of catalyst types on physical properties3
3.1 Material and source of supply used in the SMC
compounding4
3.2 Some physical properties of the resin, Alpolite
UP 7464
3.3 Some physical properties of the treated CaCO3,
Sila Flex 3 CG special grade4
3.4 The detail of compression molding machine used in
the experiments4
3.5 The recipe of SMC in the experiment4
3.6 Type and concentration of the catalysts on effect
to hardening characteristics of the resin5
3.7 Formulation of the resin mix for the study of the
effect of catalysts on viscosity behavior of the
paste5
3.8 Type and concentration of the catalysts used in
the study of the effect of catalysts on storage
life of the SMC

PAGE

3.9	Type and concentration of the catalysts used in
	the study of the effect of catalysts on mechanical
	strength of the SMC58
4.1	Effect of the type and concentration of the
	catalysts on hardening time of the resin72
4.2	Effect of the added PBQ in the component of the
	SMC on flexural strength and modulus of the SMC121
4.3	Effect of dual catalysts of TBPB and DTBC on the

mechanical properties of the SMC......124

TABLE (continued)

LIST OF FIGURES

FIGU	PAGE
2.1	A flow diagram of an SMC manufacturing process20
2.2	Sheet molding compound machine21
2.3	Viscosity of B-staged pastes, formulation: 100 phr
	Derakane 790; 120 phr CaCO ₃ filler; 1.3 phr MgO
	paste; 4 phr zinc stearate, tested at 25°C31
2.4	Viscosity of B-staged pastes, formulation: 100 phr
	Derakane 790; 120 phr CaCO ₃ filler; 1.3 phr MgO
	paste; 4 phr zinc stearate, tested at 25°C33
3.1	A setup of the study of the effect of catalysts
	on hardening characteristics of the resin51
3.2	A setup of load and 3 supportings for flexural test:
	(a) Specimen geometry and loading, all
	dimensions are in mm.
	(b) Flexural test setup60
4.1	Concentration effect of TBPB on hardening time of
	the resin64
4.2	Concentration effect of DTBC on hardening time of
	the resin65
4.3	Concentration effect of BPO on hardening time of
	the resin66
4.4	Combined effect of the added PBQ influencing TBPB
	on hardening time of the resin67
4.5	Dual catalytic effect of the dual catalysts of
	TBPB and DTBC on hardening time of the resin68

4.6	Effect of different catalysts on hardening time of
	the resin
4.7	Effect of the parabenzoquinone inhibitor (PBQ)
	added in the 2 phr TBPB catalyst containing resin
	on hardening time of the resin74
4.8	The infrared spectra of the polyester resins
	mixed with 2 phr of the TBPB catalyst before
	the curing reaction and after the curing reaction
	at 150°C for 2 minutes79
4.9	The infrared spectra of the polyester resins
	mixed with 2 phr of the DTBC catalyst before
	the curing reaction and after the curing reaction
	at 150°C for 2 minutes80
4.10	The infrared spectra of the polyester resins
	mixed with 1 phr of the BPO catalyst before
	the curing reaction and after the curing
	reaction at 150°C for 2 minutes81
4.11	The infrared spectra of the SMC material,
	collected at the middle layer of the specimen,
	in the presence of the 2 phr TBPB catalyst85
4.12	The infrared spectra of the SMC material,
	collected at the middle layer of the specimen,
	in the presence of the 2 phr DTBC catalyst86
4.13	The infrared spectra of the SMC material,
	collected at the middle layer of the specimen,
	in the presence of the 1 phr BPO catalyst87

FIGURE (Continued)

D	Ά		C
r	М	J.	L

4.14	The complexation reticulation of MgO and
	polyester resin89
4.15	Effect of the concentration of MgO on the paste
	viscosity under the influence of the TBPB catalyst.91
4.16	Effect of the concentration of TBPB catalyst on
	the paste viscosity under the influence of 1.2
	phr MgO and in the absence of MgO93
4.17	Effect of the catalysts on viscosity of the
	polyester paste after 5 hours of mixing94
4.18	Effect of the catalysts on viscosity of the
	polyester paste after mixing for 1 day95
4.19	Effect of storage life on hardness of the SMC at
	the temperatures of 28°C and 40°C in the absence
	of the catalysts98
4.20	Relationship between the storage life and
	hardness of the SMC in the absence/presence of
	the TBPB catalyst at the concentrations of 0.5,
	1, 2, and 3 phr100
4.21	Relationship between the storage life and
	hardness of the SMC in the absence/presence of
	the DTBC catalyst at the concentrations of 0.5,
	1, 2, and 3 phr101
4.22	Relationship between the storage life and
	hardness of the SMC in the absence/presence of
	the BPO catalyst at the concentrations of 0.05,
	0.1, and 1 phr102

4.23	Effect of curing time on flexural strength
	at a function of storage time105
4.24	Effect of curing time on flexural modulus
	at a function of storage time106
4.25	Effect of the concentrations of the TBPB catalyst
	on the flexural strength of the SMC under the
	influence of the storage time and the curing time.109
4.26	Effect of the concentrations of the TBPB catalyst
	on the flexural modulus of the SMC under the
	influence of the storage time and the curing time.110
4.27	Effect of the concentrations of the DTBC catalyst
	on the flexural strength of the SMC under the
	influence of the storage time and the curing time.112
4.28	Effect of the concentrations of the DTBC catalyst
	on the flexural modulus of the SMC under the
	influence of the storage time and the curing time.113
4.29	Effect of the mold temperature at 150°C on
	characteristic of the SMC containing the BPO
	catalyst (overall brownish yellow on the surface
	indicates the occurrence of burning.)114
4.30	Effect of the concentrations of the BPO catalyst
	on the flexural strength of the SMC under the
	influence of the curing time at 1 and 2 minutes
	for the the storage time of the SMC at 3 days117
4.31	Effect of the concentrations of the BPO catalyst
	on the flexural modulus of the SMC under the
	influence of the curing time at 1 and 2 minutes
	for the storage time of the SMC at 3 days118

4.32	Scanning electron micrograph (at 500 x) of the
	fracture surface of the high mechanical property
	SMC was produced by 1 minute of curing time;
	containing 2 phr of the TBPB catalyst added with
	0.05 phr PBQ, having the flexural strength of
	237.8 MPa. The SEM micrograph shows a little
	wet-out, but a full wet-through129
4.33	Scanning electron micrograph (at 1000 x) of the
	fracture surface of the high mechanical property
	SMC was produced by 2 minutes of curing time;
	containing 2 phr of the TBPB catalyst added with
	0.05 phr PBQ, having the flexural strength of
	247.2 MPa. The SEM micrograph shows a little
	wet-out, but a full wet-through130
4.34	Scanning electron micrograph (at 1000 x) of the
	fracture surface of the low mechanical property
	SMC was produced by 1 minute of curing time;
	containing 0.5 phr of the TBPB catalyst, having
	the flexural strength of 152.5 MPa. The SEM
	micrograph shows both a poor wet-out and
	wet-through131
4.35	Scanning electron micrograph (at 1000 x) of the
	the fracture surface of the SMC was produced by
	2 minutes of curing time; containing 1 phr of
	the TBPB catalyst, having the flexural strength
	of 222.3 MPa. The SEM micrograph shows a little
	wet-out, but a full wet-through