CHAPTER I

PRELIMIN ARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are:

- Z is the set of all integers,
- z is the set of all positive integers,
- $\mathbf{Z}_{0}^{+} = \mathbf{Z}^{+} \mathbf{v} \{ 0 \}$
- Q is the set of all rational numbers,
- \boldsymbol{Q}^{\dagger} is the set of all positive rational numbers,
- $Q_0^+ = Q^+ \cup \{0\}$
- R is the set of all real numbers,
- R is the set of all positive real numbers,
- $\mathbb{R}_{0}^{+} = \mathbb{R}^{+} \cup \{0\}$

 $(Z^+, \min, \cdot), (Q^+, \min, \cdot), (R^+, \min, \cdot)$ we mean that Z^+, Q^+, R^+

have the usual multiplication and $x + y = \min\{x,y\}$ (minimum of x,y) $(Z^+, \max, \cdot), (Q^+, \max, \cdot), (R^+, \max, \cdot) \text{ we mean that } Z^+, Q^+, R^+$

have the usual multiplication and $x + y = \max\{x,y\}$ (maximum of x,y)

<u>Definition 1.1.</u> A triple (S,+,·) is said to be a <u>semiring</u> if and only if S is a set and + (addition) and · (multiplication) are binary operations on S such that,

- (a) (S,+) and (S, ·) are commutative semigroups,
- (b) for all $x,y,z \in S$, $(x+y)\cdot z = x\cdot z + y\cdot z$.

<u>Definition 1.2.</u> A semiring $(D, +, \cdot)$ is said to be a <u>ratio semiring</u> if and only if (D, \cdot) is a group.

Definition 1.3. Let S be a semiring. Then $x \in S$ is said to be additively cancellative (A.C.) if and only if for all $y, z \in S$ (x+y = x+z implies y = z). S is said to be additively cancellative (A.C.) if and only if every $x \in S$ is A.C..

<u>Definition 1.4.</u> Let S be a semiring. Then $x \in S$ is said to be <u>multiplicatively cancellative (M.C.)</u> if and only if for all $y, z \in S$ (xy = xz implies y = z). S is said to be <u>multiplicatively</u> cancellative (M.C.) if and only if every $x \in S$ is M.C..

Definition 1.5. Let S be a semiring with a multiplicative zero 0. Then S is said to be zero multiplicatively cancellative (O-M.C.) if and only if for all $x,y,z \in S$, xy = xz and $x \neq 0$ imply y = z.

Definition 1.6. Let S be a semiring. Then S is said to be strongly multiplicatively cancellative (S.M.C.) if and only if for all $x_1, x_2, y_1, y_2 \in S$, $x_1y_1 + x_2y_2 = x_1y_2 + x_2y_1$ implies $x_1 = x_2$ or $y_1 = y_2$.

Proposition 1.7. Let S be a semiring. If S is S.M.C. then S is M.C. or O-M.C..

Proof. Suppose that S has a mutiplicative zero O. We must show that S is O-M.C. Let $x_1, y_1, y_2 \in S$ be such that $x_1y_1 = x_1y_2$ and $x_1 \neq 0$. Then $x_1y_1 + 0y_2 = x_1y_2 + 0y_1$. Since S is S.M.C., $x_1 = 0$ or $y_1 = y_2$. But $x_1 \neq 0$, so $y_1 = y_2$. Hence S is O-M.C. Assume that S has no multiplicative zero. We must show that S is M.C. Let $x_1, y_1, y_2 \in S$ be such that $x_1y_1 = x_1y_2$. We must show that $y_1 = y_2$. Since S has no multiplicative zero then

there is a $u \in S$ such that $ux_1 \neq x_1$. We have that $ux_1y_1 = ux_1y_2$. Let $x_2 = ux_1$. Then $x_1 \neq x_2$ and $x_2y_1 = x_2y_2$. Therefore $x_1y_1 + x_2y_2 = x_1y_2 + x_2y_1$. Since S is S.M.C., $x_1 = x_2$ or $y_1 = y_2$.
But $x_1 \neq x_2$, so $y_1 = y_2$. Hence S is M.C.. #

<u>Definition 1.8.</u> Let S be a semiring with multiplicative identity 1. Then S is said to be <u>precise</u> if and only if for all $u, v \in S$, 1+uv = u+v implies u=1 or v=1.

Theorem 1.9. There is no finite ratio semiring of order greater than 1.

See [1], pages 5-11.

Corollary 1.10. If S is a finite semiring of order greater than 1, then S can not be M.C.

See [1], page 11.

The following theorem is well-known in semigroup theorem.

Theorem 1.11. Every finite cancellative semigroup is a group.

Theorem 1.12. If S is a semiring then S can be embedded into a ratio semiring if and only if S is M.C..

See [1], pages 12-14..

Assume that S is M.C.. Define a binary relation \sim on S×S by $(x,y) \sim (x',y')$ if and only if xy' = x'y for all $x,y,x',y' \in S$. In Theorem 1.12 it is shown that \sim is an equivalence relation. Let $\alpha,\beta \in \frac{S\times S}{\sim}$. Define + and \cdot on $\frac{S\times S}{\sim}$ in the following way: Choose $(a,b) \in \alpha$ and $(c,d) \in \beta$. Define $\alpha+\beta=[(ad+bc,bd)]$ and $\alpha\beta=[(ac,bd)]$. Theorem 1.12 has shown that $(\underline{S\times S},+,\cdot)$ is a ratio semiring.

<u>Definition 1.13</u>. The ratio semiring $\frac{S \times S}{C}$ in Theorem 1.12 is called the quotient ratio semiring of S and is denoted by QR(S).

Theorem 1.12 gives a natural embedding $f:S \longrightarrow QR(S)$ as foolows: Fix c \in S. If x \in S, define f(x) = [(xc,c)]. Theorem 1.12 shows that f is independent of the choice of c \in S. We identify S with f(S) so we can consider $S \subseteq QR(S)$. Theorem 1.12 also gives the following remarks:

- 1) [(c,c)] is the multiplicative identity of QR(S).
- 2) [(a,b)] is the multiplicative inverse of [(b,a)]. Therefore [(c,xc)] is the multiplicative inverse of [(xc,c)].
- Then $d = [(x,y)] = [(cx,c)] \cdot [(c,cy)] = f(x)f(y)^{-1}$. Since we identify $x \in S$ with $f(x) \in QR(S)$ we can write $d = xy^{-1}$. This is well-defined, because if $(x',y') \in A$ then xy' = x'y. Hence we shall use the notation $[(x,y)] = \frac{x}{y}$ where $\frac{x}{y}$ means xy^{-1} .

Theorem 1.14. If S is an M.C. semiring then QR(S) is the smallest ratio semiring containing S up to isomorphism.

See [1], pages 14-15.

Proposition 1.15. Let S be an M.C. semiring. Then the following hold:

- (a) If S is A.C., then QR(S) is A.C..
- (b) S is S.M.C. if and only if QR(S) is precise.
- Proof. (a) See [1], page 43.
- (b) Assume that S is S.M.C.. We must show that QR(S) is precise. Let $\alpha, \beta \in QR(S)$ be such that $1+\alpha\beta=\alpha+\beta$ and choose $(a,b)\in d$, $(c,d)\in \beta$. Then [(bd+ac,bd)]=[(ad+bd,bd)],

(bd+ac)bd = (ad+bc)bd. Hence bd+ac = bc+ad. Since S is S₀M₀C₀, we get that a = b or c = d. Thus c = 1 or c = 1.

Conversely, assume that QR(S) is precise. Let $x_1, x_2, y_1, y_2 \in S$ be such that $x_1y_1 + x_2y_2 = x_1y_2 + x_2y_1$. Let $f: S \longrightarrow QR(S)$ be the natural embedding, so $f(x_1y_1 + x_2y_2) = f(x_1y_2 + x_2y_1)$. Hence $1+f(x_1)^{-1}f(y_1)^{-1}f(x_2)f(y_2) = f(y_1)^{-1}f(y_2)+f(x_1)^{-1}f(x_2)$. Since QR(S) is precise, we get that $f(x_1)^{-1}f(x_2) = 1$ or $f(y_1)^{-1}f(y_2) = 1$. Therefore $x_1 = x_2$ or $y_1 = y_2$. Hence S is S.M.C..#

Theorem 1.16. If S is a semiring then S can be embedded into a ring if and only if S is A.C..

See [1], pages 37-39.

Assume that S is A.C.. Define a binary relation \sim on S×S by $(x,y)\sim(x',y')$ if and only if x+y'=x'+y for all x,x', $y,y'\in S$. In Theorem 1.16 it is shown that \sim is an equivalence relation. Let $\alpha,\beta\in\frac{S\times S}{\sim}$. Define + and \cdot on $\frac{S\times S}{\sim}$ in the following way: Choose $(a,b)\in\alpha$ and $(c,d)\in\beta$. Define $\alpha+\beta=[(a+c,b+d)]$ and $\alpha\beta=[(ac+bd,ad+bc)]$. In Theorem 1.16 it has been shown that $(\frac{S\times S}{S})$, +, + is a ring.

<u>Definition 1.17</u>. The ring $\frac{S \times S}{N}$ in Theorem 1.16 is called the <u>difference</u> ring of S and is denoted by D(S).

Theorem 1.16 gives a natural embedding $f:S \longrightarrow D(S)$ as follows: Fix c \in S. If x \in S define f(x) = [(x+c,c)].

Theorem 1.16 shows that f is independent of the choice of c \in S. We identify S with f(S) so we can consider $S \subseteq D(S)$.

Theorem 1.16 also gives the following remarks:

- (c,c) is the additive identity of D(S).
- 2) [(a,b)] is the additive inverse of [(b,a)]. Therefore [(c,x+c)] is the additive inverse of [(x+c,c)].
- Then $\alpha = \{(x,y)\} = \{(c+x,c)\} + \{(c,y+c)\} = f(x) f(y)$. Since we identify $x \in S$ with $f(x) \in D(S)$, we can write $\alpha = x-y$. This is well-defined because if $(x_1,y_1) \in A$ then $x+y_1 = x_1+y$.

Hence we shall use the notation [(x,y)] = x-y.

Theorem 1.18. If S is an A.C. semiring then D(S) is the smallest ring containing S up to isomorphism.

See [1], pages 39-40.

Proposition 1.19. Let S be an A.C. semiring. If S has a multiplicative identity 1 then [(1+1,1)] which we identify with 1 is the multiplicative identity of D(S).

Proof. Let $a \in D(S)$. Choose $(a,b) \in a$. Then [(1+1,1)][(a,b)] = [(a+a+b,b+b+a)] = [(a,b)].

<u>Definition 1.20.</u> Let S be a semiring and $d \in S$. Then $x \in S$ is said to be an <u>additive identity of d in S</u> if and only if x+d=d. The set of all additive identities of d in S is denoted by $I_S(d)$.

Proposition 1.21. Let S be a semiring and $d \in S$. Then $I_S(d) = \emptyset$ or $I_S(d)$ is additive subsemigroup of S.

See [2], page 7.

Definition 1.22. A semiring $(K,+,\cdot)$ is said to be a <u>semifield</u> if and only if there exists an element a in K such thar $(K-\{a\},\cdot)$ is a group. If we wish to specify the element $a \in K$ such that

 $(K-\{a\}, \bullet)$ is a group we shall say that K is a semifield with respect to a.

Theorem 1.23. Let (K,+,.) be a semifield with respect to a.

Then exactly one of the following holds:

- 1) ax = a for all $x \in K$, or
- 2) ax = x for all $x \in K$, or
- 3) $a^2 \neq a$ and $ae \neq a$ where e is the identity of $(K-\{a\}, \cdot)$. See [2], pages 10-11.

From Theorem 1.23 we see that there are three types of semifields with respect to a:

- (1) Semifields with ax = a for all $x \in K$ (called type I semifields w.r.t. a).
- (2) Semifields with ax = x for all x ∈ K (called type II semifields w.r.t. a).
- (3) Semifields with $a^2 \neq a$ and $ae \neq a$ where e is the identity of $(K-\{a\}, \bullet)$ (called type III semifields w.r.t. a).

Theorem 1.24. Let K be a type I semifield w.r.t. a. Then a is an additive zero or a is an additive identity.

See [1], page 21.

Definition 1.25. Let S be a semiring. Then a ∈ S is called an infinity element if and only if a is a multiplicative zero and an additive zero.

Definition 1.26. Let S be a semiring. Then a ∈ S is called a zero element if and only if a is a multiplicative zero and an additive identity.

From Theorem 1.24, if a is an infinity element then we call K an infinity-semifield (o-semifield) and if a is a zero element then we call K a zero-semifield (0-semifield).

Theorem 1.27. Let S be a semiring with a multiplicative zero a.

Then S can be embedded into a type I semifield if and only if S is 0-M.C..

See [1], pages 27-28.

Assume that S is a O-M.C. and |S|>1. Define a binary relation on $S\times(S-\{a\})$ by $(x,y)\sim(x',y')$ if and only if xy'=x'y for all $x,x',y,y'\in S$. In Theorem 1.27 we obtain that \sim is an equivalence relation.

Let $\alpha, \beta \in \frac{S \times (S - \{a\})}{\sim}$. Define + and \cdot on $\frac{S \times (S - \{a\})}{\sim}$ in the following way: Choose $(a,b) \in \alpha$, $(c,d) \in \beta$. Define $\alpha + \beta = [(ad+bc,bd)] \text{ and } \alpha\beta = [(ac,bd)].$ In Theorem 1.27 it has been shown that $(\frac{S \times (S - \{a\})}{\sim},+,\cdot)$ is a type I semifield.

Definition 1.28. In Theorem 1.27, if a is the zero element then $\frac{Sx(S-\{a\})}{\sim}$ is called the quotient 0-semifield of S and is denoted by Q(S) and if a is the infinity element then $\frac{Sx(S-\{a\})}{\sim}$ is called the quotient ∞ -semifield of S and is denoted by $Q_{\infty}(S)$.

The same remarks concerning QR(S) discussed after Definition 1.13 are also true for Q(S) and $Q_{\infty}(S)$. It is also true that [(x,y)] is the zero element of Q(S) if and only if x = a, and [(x,y)] is the infinity element of $Q_{\infty}(S)$ if and only if x = a.

Theorem 1.29. If S is O-M.C. semiring with a multiplicative zero a then $\frac{SX(S-\{a\})}{\sim}$ is the smallest type I semifield containing S up to isomorphism.

See [1], pages 28-29.

Theorem 1.30. Let K be a O-semifield. Then K can be embedded into a field if and only if K is A.C. and precise.

See [1], page 43.

Proposition 1.31. Let S be a O-M.C. semiring. Then the following hold:

- a) If S is A.C. then Q(S) is A.C..
- b) S is S.M.C. if and only if Q(S) is precise.

The proof of this proposition is similar to the proof of Proposition 1.15.

Theorem 1.32. Let $(K,+,\cdot)$ be a semifield of type I or type II w.r.t. a of order > 2. If there is an element b in K such that $(K-\{b\},\cdot)$ is a group then b = a.

See [2], page 13.

Theorem 1.33. Let $(K,+,\cdot)$ be a semifield of type III w.r.t. a. If there exists an element b in K such that $(K-\{b\},\cdot)$ is a group then b=a.

See [2], page 13.

Proposition 1.34. Let K be a semifield of type II w.r.t. a and let $x,y \in K$. Then xy = a if and only if x = a and y = a.

See [2], page 19.

Proposition 1.35. Let K be a semifield with respect to a.

Then K is a semifield of type III w.r.t. a if and only if there exists a unique d in K-{a} such that ax = dx for all x in K.

See [2], page 12.

Proposition 1.36. Let K be a type III semifield w.r.t. a. Then $xy \neq a$ for all $x,y \in K$.

See [2], page 19.

Theorem 1.37. Let K be a semifield of type II w.r.t. a and let e be the identity of $(K-\{a\}, \cdot)$. Then the following hold:

- (1) If a+a = a, then (K,+) is a band.
- (2) If $a+a \neq a$, then a+a = e+e, and for all $x,y \in K-\{a\}$, x+x = y+y if and only if x = y.
 - (3) a+x = a or a+x = e+x for all $x \neq a$. See [2], page 20.

Theorem 1.38. Let K be a semifield of type II w.r.t. a and let e be the identity of $(K-\{a\}, \cdot)$. Define $D = K-\{a\}$ and $S = \{x \in D | a+x = a\}$. Then the following hold:

- (1) $S = \beta$ or S is an additive subsemigroup of $I_D(e)$.
- (2) If $e \in S$ then $S = I_D(e)$.
- (3) D-S = \emptyset or D-S is an ideal of (D,+).

See [2], pages 20-21.

Theorem 1.39. Let D be a ratio semiring, a a symbol not representing any element in D and let $S \subseteq I_D(1)$ have the property that either $S = \emptyset$ or S is an additive subsemigroup of $I_D(1)$ such that D-S is an ideal of (D,+) if D is infinite. Then we can extend the binary operations of D to K = D \cup {a} making K into a semifield of type II w.r.t. a such that

- (1) ax = xa = x for all $x \in K$,
- (2) a+x = x+a = a for all $x \in S$ and a+x = x+a = 1+x for all $x \in D-S_{\bullet}$,
- (3) $a+a = \begin{cases} a \text{ or } 1 & \text{if } 1+1 = 1, \\ 1+1 & \text{if } 1+1 \neq 1. \end{cases}$

See [2], pages 23-29.

Theorem 1.40. Let K be a semifield of type III w.r.t. a and let $d \in K-\{a\}$ be such that ax = dx for all $x \in K$. Then the following hold:

- (1) If a+a = a, then (K,+) is a band.
- (2) If $a+a \neq a$, then a+a = d+d, and for all $x,y \in K-\{a\}$, x+x = y+y if and only if x = y.
 - (3) $a+x = a \text{ or } a+x = d+x \text{ for all } x \neq a$. See [2], pages 30-31.

Theorem 1.41. Let K be a semifield of type III w.r.t. a and let $d \in K-\{a\}$ be such that ax = dx for all $x \in K$. Let $D = K-\{a\}$ and $S = \{x \in D \mid a+x = a\}$. Then the following hold:

- (1) $S = \emptyset$ or S is an additive subsemigroup of $I_D(d)$.
- (2) If $d \in S$, then $S = I_D(d)$.
- (3) D-S = \emptyset or D-S is an ideal of (D,+).

See [2], pages 31-32.

Theorem 1.42. Let D be a ratio semiring, a a symbol not representing any element of D, d \in D and let S \subseteq $I_D(d)$ have the property that either S = β or S is an additive subsemigroup of $I_D(d)$ such that D-S is an ideal of (D,+) if D is infinite. Then we can extend the binary operations of D to K = D \cup {a} making K into a semifield of type III w.r.t. a such that

(1)
$$ax = xa = dx$$
 for all $x \in D$ and $a^2 = d^2$,

(2) a+x = x+a = a for all $x \in S$ and a+x = x+a = d+x for all $x \in D-S$,

(3)
$$a+a = \begin{cases} a \text{ or } d & \text{if } 1+1 = 1, \\ d+d & \text{if } 1+1 \neq 1. \end{cases}$$

See [2], pages 34-41.

Theorem 1.43. Every ratio semiring can be embedded into a O-semifield.

See [2], pages 41-46.

Theorem 1.44. Every ratio semiring can be embedded into an ∞ -semifield.

See [2], pages 46-47.

Corollary 1.45. If S is an M.C. semiring, then S can be embedded into a type I semifield.

Proof. Since S is M.C., S can be embedded into a quotient ratio semiring QR(S). By Theorem 1.43 and Theorem 1.44, $^{\circ}$ QR(S) can be embedded into a type I semifield and hence so can S.

Proposition 1.46. If S is an M.C. semiring, then S can be embedded into a type II semifield.

See [2], page 47.

Proposition 1.47. If S is an M.C. semiring, then S can be embedded into a type III semifield.

See [2], pages 48.

Assume S is an M.C. semiring. Then QR(S) exists. Let a be a symbol not representing any element of QR(S). Extend + and • from QR(S) to $K = QR(S) \cup \{a\}$ as follows:

- (1) ax = xa = a for all $x \in K$, and x+a = a+x = x for all $x \in K$. Then K is a 0-semifield. (by Theorem 1.43).
- (2) ax = xa = a for all $x \in K$, and x+a = a+x = a for all $x \in K$. Then K is an ∞ -semifield. (by Theorem 1.44).
- (3) ax = xa = x for all $x \in K$, and x+a = a+x = 1+x for all $x \in K$ (where 1 is the multiplicative identity of QR(S)). Then K is a type II semifield. (by Proposition 1.46).
- (4) Fix $d \in QR(S)$. Define ax = xa = dx for all $x \in K$ and x+a = a+x = d+x for all $x \in K$. Then K is a type III semifield (by Proposition 1.47). Let $f:S \longrightarrow QR(S)$ be the natural embedding. Since $QR(S) \subseteq K$, we can consider $f:S \longrightarrow K$. Hence S can be embedded into any type of semifield.