CHAPTER I

PRELIMINARIZES

In this chapter we shall give some notations, definitions
and theorems used in this thesis. Our notations are:
Z 1is the set of all integers,
Z is the set of all positive integers,
z" =z'o{o}
Q@ 1is the set of all rational numbers,
Q is the set of all positive rational numbers,
@' =a"u{o}
R is the set of all real numbers,
R is the set of all positive real numbers,
R, = R" 0 {0}
CZ+,min,-),(Q+,min,-J,(R+,min,-) we mean that 2%,q", R
have the usual multiplication and x+y = min{x,y}(minimum of Xy¥)
(z+,max,-),(Q+,max,'),(R+,max,-) we mean that z*,af, R*

have the usual multiplication and x +y = max{x,y}(maximum of x,y)

Definition 1.1. A triple (S,+,*) is said to be a semiring if

and only if S is a set and + (addition) and - (multiplication) are
binary operations on S such that,
(a) (S,+) and (S,*) are commutative semigroups,

(b) for all x,7,2¢€ S, (X+¥)*2 = X+2 +Yy+2.

Definition 1.2 - A semiring (D,+,+) is said to be a ratio semiring

if and only if (D,*) is a group.



Definition 1.3. Let S be a semiring. Then x€S is said to be

additively cancellative (A.C.) if and only if for all y,z €S

(x+y = x+2z implies y=2z). S is said to be additively cancellative

(A.C.) if and only if every x€ S is A4.C..

Definition 1.4, Let S be a semiring. Then x€ S is said to be

multiplicatively cancellative (M.C.) if and only if for all y,ze€ S

(xy =xz implies y=2z). S is said to be multiplicatively

cancellative (M.C.) if and only if every x€ S is M.C..

Definition 1.5. Let S be a semiring with a multiplicative zero O.

Then S is séid to be zero multiplicatively cancellative (0-M.C.)

if and only if for all x,y,z€ S, xy=%2z and x £ O imply y = z.

Definition 1.6. Let S be a semiring. Then S is said to be

strongly multiplicatively cancellative (S.M.C.) if and only if

for all X11X5954975 € S, x1y1-Fx2y2:=x1y2fbx2y1jimplies Xq = X, Or

Y1=Y2‘

Proposition 1.7. Let S be a semiring. If S is S.M.C. then S is

M.C. or O-M-C..

Proof. Suppose that S has a mutiplicative zero 0. We
must show that S is 0-M.C. Let Xq9Y 4975 € S be such that
X4¥, = 57, and e £ 0. Then X, ¥, + Oya = X7, + Oy1.
Since S is S.M.C., x4 =0 or 9= - But x1;£0, SO ¥,=¥, -

Hence S is 0O-M.C. Assume that S has no multiplicative zero. We

must show that S is M.C. Let Xq9T495 € S be such that X ¥q=%X,5 5.

We must show that Yq=95 Since S has no multiplicative zero then



theré is a u€ S such that ux, £ Xqe We have that ux,y,=ux,y,.

Let x,= uxje. Then x, ;éxa and X,¥,=X;¥5¢ Therefore

x1y1+x232 = X T 5+X5T 40 Since S is S.M.C., x, = X, or Tq =T

But x1;£x2, 80 ¥4 =75 Hence S is M.C.. 4

Definition 1.8. Let S be a semiring with multiplicative identity

1. Then S is said to be Erecise if and only if for all u,ve€ S,

1+uv = u+v implies u=1or v="1.

Theorem 1.9. There is no finite ratio semiring of order greater
than 1.

See [11, pages 5=11.

Corollary 1.10. If S is a finite semiring of order greater than

1, then S can not be M.C.

See [1]1, page 11.

The following theorem is well-known in semigroup theorem.

Theorem 1.11. Every finite cancellative semigroup is a group.

Theorem 1.12. If S is a semiring then S can be embedded into a

ratio semiring if and only if S 1is M.C..

See [11, pages 12=-1h..

Assume that S is M.C.. Define a binary relation ~on SX3
by (x,y)~(x',y') if and only if xy' = x'y for all Xy FsX'y¥'€ S.

In Theorem 1.12 it is shown that ¥is an equivalence relation.

SxS 9 .
Let o -P € = . Define + and +on S:JS in the following way:
Choose (a,b)e oo and (c.d)eP . Define d+p = [(ad+bc,bd)] and
d% - [(ac,bd)] « Theorem 1.12 has shown that (SX3,+,*) is a
[y ]

ratio semiring.



Definition 1.13. The ratio semiring S:,a in Theorem 1.12 is

called the quotient ratio semiring of S and is denoted by QR(S).

Theorem 1.12 gives a natural embedding f:S-—QR(S) as
foolows: Fix ceS. If xeS, define f(x) = [(xc,c)] .
Theorem 1.12 shows that f is independent of the choice of c ¢ S.
We identify S with f£(S) so we can consider S € QR(S).
Theorem 1.12 also gives the following remarks:
1) [(cyc)] is the multiplicative identity of QR(S).
2) [(a,b)] is the multiplicative inverse of [(b,a)].
Therefore [(c,xc)] is the multiplicative inverse of [(xc,c)] «
3) Let &.¢ QR(S) and choose (x,y)€a .
Then d = [(x,¥)] = [(cxyc)]s [(cycy)] = f(x)f(y)-1.
Since we identify x e S with f(x) € QR(S) we can write d = xy-1.

This is well-defined, because if (x',y')€o then xy' = x'y.

‘Hence we shall use the notation [(x,y)] = ? where ? means xy-1.

Theorem 1.14. If S is an M.C. semiring then QR(S) is the smallest

ratio semiring containing S up to isomorphism.

See L"]’ pages 11'{'-15.

Proposition 1.15. Let S be an M.C. semiring. Then the following

hold:
(a) If S is A«C., then QR(S) is 4.C..

(b) S is S.M.C. if and only if QR(S) is precise.

Proof. (a) See [1], page 43.

(b) Assume that S is S.M.C.. We must show that
QR(S) is precise. Let ay € QR(S) be such that 1+uF = a+p and

choose (a,b)€d , (c,d)&F . Then [(bd+ac,bd)] = [(ad+bd,bd)],



‘(bd+ac)bd = (ad+bc)bd. Hence bd+ac bc+ade Since S is SeM.C.,

[}

we get that a = b or ¢ = de Thus o = 1 or P = 1.

Conversely, assume that QR(S) is precise.
Let x1,x2,y1,yae S be such that X ¥ X5 = XyF o+ X5¥ e Let
f:3—QR(3) be the natural embedding, so f(x1y1+x2y2)=‘f(x1y2+x2y1).

Hemce 14£(x,)™ ' 2(y,) 7 2(x,)2(y,) = £(y) 7 £(y,)+£(x) T £ x,).

Since QR(S) is precise, we get that f(x1)“1f(x2) =1 or

f(y1)'1f(y2) = 1. Therefore Xq = X5 OF §q = Yy Hence S is S.M.C..#

Theorem 1.16. If S is a semiring then S can be embedded into a

ring if and only if S is A.Ce.

See [11, pages 37=39.

Aséume that S is A.C.. Define a binary relation ~on S%§
by (x,y)~(x',y') if and only if x+y' = x'+y for all x,x', ¥,¥'€ S.
In Theorem 1.16 it is shown that ~is an equivalence relation.

Let Q,P 3 %is o - Define + and * on Eég in the following way:

Choose (a,b)e o and (c,d)e‘b « Define d+P = [(a+c,b+d)] and
op = [(ac+bd,ad+bc)) « In Theorem 1.16 it has been shown that

§£§ s +4%) is a ring.

Definition 1.17. The ring S$S in Theorem 1.16 is called

the difference ring of S and is denoted by D(S).

Theorem 1.16 gives a natural embedding f:S—D(S) as
follows: Fix ceS. If xe¢ S define f(x) = [(x+cyc)]e
Theorem 1.16 shows that f is independent of the choice of ce S.
Wwe identify S with £(S) so we can consider S € D(S).

Theorem 1.16 also gives the following remarks:



1) U e,c)) is the additive jdentity of D(S).

2) {(a,b)) is the additive inverse of [(bya)l.
Therefore [(cyx+c)]l is the additive inverse of [(x+cyc)] o

3) Let deD(S). Choose (x,y)E*
Then o = ((x,¥)) = [(c+x,¢)] +[(cyy+c)] = f(x)-£f(y). Since we
identify x €S with £(x)€ D(S), we can write o = X=Ye This is

well-defined because if (x1.y1)€¢ then X+¥, = X +¥e

Hence we shall use the notation [((x,7)] = X=Yo

Theorem 1.18. If S is an A«C. semiring then D(S) is the smallest

ring containing S up to isomorphisme.

see (11, pages 39-40,

Proposition 1.19. Let S be an 1.C. semiring. If S has a

multiplicative identity 1 then [(1+1,1)] which we identify with

1 is the multiplicative identity of D(S).

Proof. Letde D(8). Choose (a,b)ET

Then [(1+1,1)]([(a,b)] = [(a+a+b.,b+b+a)] = [(a,b)e

Definition 1.20. Let S be a semiring and d € S. Then xe S is

said to be an additive jdentity of d in 8 if and only if x+d=de

The set of all additive jdentities of d in S is denoted by Is(d).

proposition 1.21. Let S be a semiring and d € S. Then Is(d)==ﬁ

or Is(d) is additive subsemigroup of S.

See [21, page 7.

Definition 1.22. A semiring (Ky+,*) is said to be a semifield

if and only if there exists an element a in K such thar (K=1{a},*)

ig a group. If we wish to specify the element a &K such that



(K-{a},*) is a group we shall say that K is a semifield with

respect to a.

Theorem 1.23. Let (K,+,+) be a semifield with respect to a.

Then exactly one of the following holds:

1) ax

a for all xe K, or

n

2) ax = x for all xe¢ K, or
3) e £ a and ae £ a where e is the identity of (K-{aj,*).

From Theorem 1.23 we see that there are three types of
semifields with respect to a:

(1) Semifields with ax = a for all xe€ K (called type I

semifields Werete a)e

(2) Semifields with ax = x for all xe€ K (called type II

semifields Wer.te. a)e

(3) Semifields with e £ a and ae £ a where e is the

identity of (K-{a},+) (called type III semifields w.r.t. a).

Theorem 1.24. Let K be a type I semifield we.r.t. a. Then a is

an additive zero or a is an additive identity.

See [1], page 21.

Definition 1.25. Let S be a semiring. Then a€ 5. 1is called an

infinity element if and only if a is a multiplicative zero and

an additive zero.

Definition 1.26. Let S be a semiring. Then a€ S is called a

zero element if and only if a is a multiplicative zero and

an additive identity.
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From Theorem 1.24, if_.a is an infinity element then we

call K an infinity-semifield (oo -semifield) and if a is a

zero element then we call K a zero-semifield (O=-semifield).

Theorem 1.27. Let S be a semiring with a multiplicative zero a.

Then S can be embedded into a type I semifield if and only if S
is O0=M.Cae

See [11, pages 27-28.

Assume that S is a O-M.C. and 1S1>1. Define a binary
relationvon Sw(3-{a}) by (x,y) ~(x',y"') if and only if xy' = x'y
for all x,x',¥,y'€ S. In Theorem 1.27 we obtain that ~is

an equivalence relation.

Let RN Sx(S-{a}) . Define + and *on Sx(i- al) in the

~J

following way: Choose (a,b)ea ,(c,d)eF « Define
0 +p= [(ad+bc,bd)] and 8p= [(acybd)] » In Theorem 1.27 it has

been shown that ( S%(E- 2 );+,-) is a type I semifield.

Definition 1.28. In Theorem 1.27, if a is the zero element

then Sx(i: aj) is called the quotient O-semifield of S and is

denoted by Q(S) and if a is the infinity element then 2ﬁ£%;LiLl

is called the quotient oo-semifield of S and is denoted by QoelS).

The same remarks concerning QR(S) discussed after
Definition 113 are also true for Q(S) and Q(S8). It is also
true that [(x,y)) is the zero element of Q(S) if and only if

X

a, and [(x,y)) is the infinity element of Qu(S) if and only if

X = Qe
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Theorem 1.29. If S is 0=M.C. semiring with a multiplicative

zero a then SE(3=131) ;o tne smallest type I semifield
containing S up to isomorphism.

See [11, pages 28-29.

Theorem 1.30. Let K be a O-semifield. Then K can be embedded

jnto a field if and only if K is A.C. and precise.

See [11, page 43.

Proposition 1.31. Let S be a 0-M.C. semiring. Then the following

hold:
a) If S is A.Ce then Q(S) is A.C..

b) S is SeM.C. if and only if Q(S) is precise.

The proof of this proposition is similar to the proof of

Proposition 1.15.

Theorem 1.32. Let (K,+,¢) be a semifield of type I or type II

Wwer.t. a of order >2. If there is an element b in K such that
(K- {b},+) is a group then b = a.

See (2], page 13.

Theorem 1e33. Let (K,+,+) be a semifield of type III wer.t. .a.

If there exists an element b in K such that (K-{b},*) is a group
then b = a.

See [2),page 13.

Proposition 1.34. Let K be a semifield of type II we.r.t. a and

let x,ye K. Then xy = a if and only if x = a and ¥y = a.

See [21, page 19.
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Proposition 135 Let X be a semifield with respect to a.

Then K is a semifield of type III wer.t. a if and only if there
exists a unique d in K-{a} such that ax = dx for all x in K.

See [2], page 12

Proposition 1.36. Let K be a type III semifield werete. a.

Then xy # a for all x,y€ K.

see [21, page 19.

Theorem 1.37. Let K be a semifield of type II w.r.t. a and

jet e be the identity of (K-{a},*). Then the following hold:
(1) If a+a = a, then (K,+) is a bande
(2) If a+a # a, then a+a = e+e, and for all x,y e K={a},
x+x = y+y if and only if X = ¥.
(3) a+x = a or a+x = e+x for all X £ ae.

see [21, page 20.

Theorem 1.38. Let K be a semifield of type II w.r.t. a and let

e be the identity of (K-{a},*). Define D = K-{a} and

s = {xeD|a+x = a}. Then the followinz hold:
(1) S = f or S is an additive subsemigroup of ID(e).
(2) If e€S then S = ID(e).
(3) D=3 = # or D=8 is an ideal of (Dy+).

Theorem 139 Let D be a ratio semiring, a a symbol not

representing any element in D and let S € ID(1) have the property
that either S = 6 or S is an additive subsemigroup of ID(1) such
that D-S is an ideal of (D,+) if D is infinite. Then we can
extend the binary operations of D to K = D v { a} making K into

a semifield of type II werete a such that
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(1) ax = xa = X for all x €K,
(2) a+x = X+a = a for all xe S and
a+x = x+a = 1+X for all x € D=Sa,
a or 1 if 1+1 = 1,
(3) a+a = {
1+1 if 141 £ 1.

See (21, pages 23-29.

Theorem 1.40. Let K be a semifield of type III w.r.t. a and let

de K-{a) be such that ax = dx for all x€ K. Then the following
hold:

(1) If a+a = a, then (K,+) is a band.

(2) If a+a £ a, then a+a = d+d, and for all x,ye K={a},
x+x = y+y if and only if X = Je.

(3) a+x = a or a+x = d+x © for all x £ ae.

See (21, pages 30-31.

Theorem 1.41. Let K be a semifield of type III we.re.t. a and let

de K-{a} be such that ax = dx for all xe K. Let D = K-{a} and
S = {xeD|a+x = al. Then the following hold:
(1) S =g or S is an additive subsemigroup of ID(d).
(2) If des, then 5 = I (d).
(3) D-3 = § or D-S is an ideal of (Dy+).

See [2), pages 31-32.

Theorem 1.42. Let D be a ratio semiring, a a symbol not

representing any element of D,d€ D and let S € ID(d) have the
property that either S = 4 or S is an additive subsemigroup of
ID(d) such that D-S is an ideal of (Dy+) if D is infinite.
Then we can extend the binary operations of D to K = D viaj

making K into a semifield of type III w.r.t. a such that
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for all x €D and aa = da,

(1) ax = xa = dx
(2) a+x = x+a = a for all x €S and
a+x = x+a = 4d+x for all x € D=5,
a or d if 1+1 = 1,
(3) a+a = {
d+d if 1+1 £ 1.

See (21, pages 34-41.

Theorem 1.43. Every ratio semiring can be embedded into a

O-semifield.

See [2], pages 41-k6.

Theorem 1.44. Every ratio semiring can be embedded into an

o -semifield.

See (21, pages 46-47.

Corollary 1.45. If S is an M.C. semiring, then S can be embedded

into a type I semifield.

Proof. Since 3 is M.C., S can be embedded into a quotient

ratio semiring QR(S). By Theorem 1.43 and Theorem 1.4%,

QR(S) can be embedded into a type I semifield and hence so can S.

Proposition 1.46. If S is an M.C. semiring, then S can be

embedded into a type II semifield.

See (21, page 47.

Proposition 1.47. If S is an M.C. semiring, then S can be

embedded into a type III semifield.

See (2], pages 48.
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issume S is an M.C. semiring. Then QR(3) exists.
Let a be a symbol not representing any element of QR(S). Extend

+ and » from QR(S) to K = QR(8)u {a}as follows: '

(1) ax = xa = a for all x¢ K, and x+a = a+x = x for all
xe K. Then K is a O-semifield. (by Theorem 1.43).
(2) ax = xa = a for all x€K, and x+a = a+x = a for all

xeX. Then K is an oo-semifield. (by Theorem 1.44).

(3) ax = xa = x for all x €K, and x+a = a+x = 14X
for all x€ X (where 1 is the multiplicative identity of QR(S)).

‘Then K is a type II semifield. (by Propssition 1.46).

(4) PFix d €QR(8). Define ax = xa = dx for all x€K
and x+a = a+x = d+x for all.x:EKJ Then K is a type III
semifield (by Proposition 1.47).
Let £:5—> QR(S) be the natural embedding. Since QR(3) € K,
we can consider f:3—>K. Hence S can be embedded intc any type

of semifield.
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