CHAPTER II
PROPERTIES OF DIFFERENCE RINGS

In this chapter we consider semirings of order greater
than one and we shall study the relationship between properties

of an A.C. semiring and properties of its difference ringe.

The first problem that we shall study is this chapter is
to find necessary and sufficient conditions on an A.C. semiring S

so that b(S) has a multiplicative identitye.

It is possible that an A.C. semiring S has no

multiplicative identity but D(S) has a multiplicative identity.

We now give an examples

Zxample 2.1. Let S = {nez|n>2}] with the usual addition and
multiplication. Then S is an A.C. semiring with no multiplicative
jdentity. Claim that D(S) 2 Z. Define i:D(S)—Z as follows:
for &e D(S), choose (x,y)€éo and define i(o) = x=y,Suppose that
(x',y') € » Then x+y' = X'+y so in Z, X-y = x'=y'.

Hence i is well-define. To show that i is onto. Let z e Z.

Then |z|+2+2 € S and i(z+ 121 +2, 13l +2) = 2+ (2] +2= 12l =2 = Ze

Hence i is onto. To show that i is 1-1, suppose i(a) = i(P).
Choose (xX,y)€E O (x',y')eib . Then x-y = X'=y' s0 X+y' = X'+¥.
Hence i is 1-1. Lastly, we must show that i is a homomorphism.
Letu,‘a € D(S). Choose (x,y)ea , (x',y')e[b « Then

i(d+P) = i([(x+x",y+y')]) = x+x'=y=-y' = X=y+x'=y' = i(a)+i(P).
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i(ap) = i([(xxteyy’yxy'+x'y)]) = xx'+yy'=xy'=-x'y = (x-y)(x'-y') =
i(d)i(P). Therefore D(S) € Z. Hence D(S) has a multiplicative

identity.

From Proposition 1.19, we get that if S is an A.C. semiring
with multiplicative identity 1, then 1 is the multiplicative

identity of D(S).

We shall now give a property on an A.C. semiring S which
is a necessary and sufficient condition that D(3) has a

multiplicative identity.

Definition 2.2, Let S be a semiring. Then S is called unitive

if and only if there exist a,b € 8 such that for all x,yc< S,

ax+by+y = ay+bx+xe.

Proposition2e.3. Let S be a semiring with multiplicative

identity 1. Then S is unitivee.

Proof. Let a 1+1, b = 1« Then for all x,y €S,

x+xX+y+y = (1+1)y+x+x = ay+bx+x.

ax+by+y = (1+1)x+1y+y

Hence S is unitive. #

As a result,(Q',min. or max,s) is a unitive semiring
which is not A.C. whereas Q' with the usual addition and

multiplication is an A.C. unitive semiring.

Theorem 2.4. Let S be an A.C. semiring. Then D(S) has a

multiplicative identity if and only if S is unitive.

Proof. Assume D(S) has a multiplicative identity 1.
Let a,b€ S be such that 1 = [(a,b)] = a=bes For all x,y¢ S,

x=-y = (x=y)(a=b) = ax+by-ay-bx so ax+by+y = ay+bx+xe.
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Conversely, suppose that S is unitive. Then there exist
ayb€ S such that ax+by+y = ay+bx+x for all x,ye€S. Hence in D(S)
ax+by-ay-bx = x-y. Thus (a-b)(x-y) = x-y for all x,yeS.

Therefore a-b is a multiplicative identity in D(S).
i

Remark 2.5. Let S be an A.C. unitive semiring and let a,be s
satisfy the property that for all x,yeS, ax+by+y = ay+bx+x.

If cyd €5 also satisfy this property, then a+d = b+c.

Proof. By Theorem 2.4, a-b and c-d are multiplicative

identities in D(S). Then a=b = c-d, Hence a+d = b+c. 4

Next we shall consider the problem of finding necessary
and sufficient condition on an A.C. semiring 5 so that D(Ss)

is an integral domain.

Theorem 2,6, Let S be an 1.C. semiring.

See (11, page 42.

Note that D(S) may be O-M.C. but not an integral domain
since it may not contain a multiplicative identity.

We shall give an example.

Example 2.7. Let S = {2n| ne 2"} with the usual addition and

ne

multiplication. Then D(3) {2n{11€Z} (using the same proof
as in Example 2.1) which is 0=M.C. but D(S) has no multiplicative

identity, so it is not an integral domain.

Theorem 2.8, Let S be an A.C. semiring. Then D(S) is an integral

domain if and only if 3 is S.M.C. and unitive.
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Proof. It follows directly from Theorem 2.4 and

Theorem 2.6. 4

Corollary 2.9. Let S be an A.C. semiring with 1.

Then D(3) is an integral domain if and only if S is S.M.C..

Now we shall study the problem of finding necessary and

sufficient condition on an A.C. semiring 3 so that D(S) is a field.

Using the same proof as in Example 2.1, we can show that
p(g*) ¢ D(Q;) ® @ so we have examples of A.C. semirings with the

+ + .
and Q, are very special

property that D(S) is a field. Q@
semirinés, they are a ratio semiring and a O-semifields -
respectively. It is possible for an A.C. semiring 3 which is
neither a ratio semiring nor a O-semifield to have the property

that p(s) is a field. 1In fact, S need not even have a

multiplicative identity and still D(S) can be a field.

Example 2,10, Let S = [2,00) with the usual addition and

multiplication. Then S is 1.C. semiring without a multiplicative

identity. Using the same proof as in Zxample 2.7, we can

e

show that D(S) R which is a field.

Note. Since a field contains a multiplicative identity,
If an 1.C. semiring S has the property that D(S) is a field

then S must be unitive

We shall now give a property on a unitive semiring S
which is a necessary and sufficient condition that D(3) is a field

when S is A.C..
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Definition 2.11. Let S be a unitive semiring. S is called exact

if and only if there exist ¢,d €S such that
i) for all x,y € S, cx+dy+y = cy+dx+X and
ii) for all distinct x,y € S there exist u,v €S such that

d+Xu+yV = C+XV+yUe

Theorem 2.12. Let S be an A.C. semiring. Then D(S) is a field

if and omly if S is exacte

Proof. Assume D(S) is a field. Then S is unitive so
there exist a,b €S such that for all X,y € Sy ax+by+y = ay+bx+xe
Furthermore, a-b = 1 in D(S). Let x,y €S be distinct.

Then x-y €D(S)-{0}, so there exist u,veS such that
(x-y)(u-v) = (a=b) so Xu+yv-xv=yu = a-b. Therefore xu+yv+b = xv+yuta.
Hence S is exact.

Conyersely, assume S is exact. Then there exist a,bes
such that for all x,y € S, ax+by+y = ay+bx+x and for all distinct
X,y €S there exist u,ves such that b+xu+yv = a+Xv+yu. Furthermore,
D(S) is a ring with 1 = [(a;b)]) « Let ¢.€D(5)-{0f.

Choose (x,y)€d . Hence x £ y. Then there exist u,ve S such that
b+xu+yv = a+xv+iyu. Therefore 1 = a=b = xu+yv-xv-yu = (x=y)(u=v)e

Hence D(S) is a field. ;

From the above theorem,we see that Q+, Q: , [2, ®) with

the usual addition and multiplication are 4.C. exact semiringse.

Now we shall give an example of an exact semiring which

is not A.C.e

Example 2.13. Let K = {0,1}. Define + and son K as follows:

1+1 = 0+1 = 140 = 1' 0+0 = 0 and 0+0 = 01 = O, 1«1 = 1.

Phen (K,+,+) is a semiring with multiplicative identity 1.
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Let b= 1, a = 1+1 = 1,.. Then by the same proof as in
Proposition 2.3, ax+by+y = ay+bx+x. Hence K is unitive.
Claim that K is éxact, Let x,y€ Ke Choose u = v = 0 then
b+xu+yv = b = a = a+xv+yu. Therefore K is exact.

Clearly K is not A.C. since 0O+1 = 1+1 but 1 £ 0. 4

If an AeC. semiring S has a multiplicative ideatity,then
we can give a simple property on S which is a necessary and

sufficient condition that D(S) is a field.

Definition 2.14s Let S be a semiring with multiplicative identity

1« Then S is called total if and only if for all distinct x,ye S

there exist a,be S such that 1+ay+bx = ax+bye.

Now we shall give two example of semirings one of which

is total but not A.C. and the other is both total and 4.C..

Example 215, In Example 2.13, K is a semiring with 1.

Claim that K is totale Let x,y€¢ K be distinct. Without loss of
generality assume that x = 1, ¥y = O. Choose a = b = 1,

Then 1+ay+bx = 1 = ax+by. Therefore K is totale.

Example 2.16. Let Q' with the usual addition and multiplication.

Claim that @ is total. Let x,ye @' be such that x £ y.

Without loss of generality assume that x)>y. Choose a = g;? +1

= = 14 = = :
and b = 1. Then 1+ay+bx = 1+E:§ +Y+X = %=y +X+Y = ax+0d¥e

Hence Q+ is total.

Theorem 2.17. Let S be an A.C. semiring with multiplicative

identity. Then D(S) is a field if and only if S is totale.
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Proof. Assume that S is total. Wenmus?_show that D(S)
is a field. Let o € D(S)-{0)e. Choose (x,y)€0 , s0 x £ ¥.
Since S is total, there exist a,b €S such that 1+ay+bx = ax+bye
Hence 1 = ax+by-ay-ax = (a-b)(x-y)e. Therefore D(S) is a field.

Conversely, assume that D(S) is a field. Let x,y €S be
distinct. Hence x-y € D(S)-{0}, so there exist a,b &S such that

(x=y) (a=b) = 1« Then ax+by-ay-bx = 1e Thus ax+by = 1+ay+bx. 4

Corollary 2.18. Let S be an A.C. semiring with mulgiplicative

identitye. Then S is exact if and only if S is total.

Proposition 2.19. Let S be a. semiring with multiplicative

identity. If S is total, then S is exacte.

Proofe Let 1 be the multiplicative identity of S.
Let a = 1+1 and b = 1. Then ax+by+y = ay+bx+x. Let x,yeS be
distinct. Since S is total, there exist z,w € S such that

1+Zy+wx = 2x+wye ALso 1+1+zy+wx = T+zx+wye. Hence S is exact. #

The converse of this proposition is not always true as

the following example showse

Example 2.20. Let S = [1,9). Define ® and © on S as follows:

for x,ye S, let x@y = minix,¥} and x0y = max{X,¥} . It is easy
to show that (S,9,0) is a semiring with multiplicative identity 1.
Claim that S is exacte Let a = b = 1. Clearly, for all x,yeS,
a0x0h0ydy = a@yobdx0x. For all X,¥,u,V €S, a®xOudydv = 1 =b®xOveyOu.
Hence we have the claim. To show that S is not total, note that .

there do not exist z,w € S such that 1020z@836w = 20w®30z.
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Proposition 2.21. Let E be a ratio semiring. Then E is exact

if and only if E is totale.

Proof. It suffices to show that E is exact implies E is

totale Let 1 be the multiplicative identity of E and let a,b€E

be such that ax+by+y = ay+bx+x and for all distincts x,ye E '

there exist u,ve E such that b+xu+yv = a+xv+yue Since 1,1+1 € Ee
Then al+b(1+1)+(1+1) = a(1+1)+b1+1. Hence a+b+b+1+1 = a+a+b+1 (*).
Let x,y€ E be distinct. Then there exist u,veE such that

b+xu+yv = a+Xv+yu. Let z = (li?ii +%+u) and w = (1tb+a,a.q),
Therefore 1+zy+wx = 1+1+b+a+%y+uy+§(1+b+a)+a+xv =
1+1+b+a+b+xu+yv+§y+§(1+b+a) since a+xv+yu = b+xXu+yve.

ay

1+b+a 2, )x+(1+b+a a+v)¥ N _(1+b+a)+a+ux+1+b+a+£-+vy

ZX+WYy = (

1+1+b+a+b+xu+yv+§—+§(1+b+a) by (*). Hence 1+zy+WX = ZX+W¥e #

Theorem 2.22. Let E be a ratio semiring. Then we can embed E in

a field if and only if E is precise and A.C..

See [1], pages 46=47.

We see from this theorem that the properties A.C. and
precise are necessary and sufficient conditions for a ratio
semiring to be embeddable in a field. However, if E is an A.C.
and precise ratio semiring, then D(E) may not be a field i.ee. E

may not be total. We shall now give two examples of thise

Remark 2.23. Let Q;cxj = {nOnzero polynomials l coefficients
belong to Q;} and let Qﬂrxj = {polynomials | coefficients belong
to Q+} e Then Q;:xj and Q+[x1 with the usual addition and
multiplication are A.C. and M.C. semiringe .Let Qg(x) denote

QR(Q;Exj ) and ' (x) denote QR{Q+Lx1 e



Example 2+.24. Q' (x) and Q;(x) are A.C. and precise ratio

semirings whose difference rings are not fields.

Proof. We shall prove this for Q;(x), the same proof
works for § (x). Define i:QE(x)-’Q(xl as follows: for d e Q;(x)
choose (pyq)€d and define i(a) = g y cleary i is well-defined
monomorphisme By Theorem 2.22, Q;(x) is precise and 1.C..
Claim that D(q (x)) is motafield. Define fZ:D(Q;(x))—Na as
follows: for d & D(Q;(x)), choose (d,,%,)edand choose (p(x).q(x))EOH

(r(x)ys(x)) €d,. Define f2(¢) = ﬁ—%%%- %. To show that f,

is well-define, first let (p'(x),q'(x))éd,l_‘a.lso. Then

p(x)q'(x) = p'(x)q(x). Thus p(2)q'(2) = p'(2)q(2)e Since

2 1
q(x)yq'(x)e Q;[x]. Thereforeﬁ% = ‘5:—%5%. If (d\;,dzt)ed. &

choose (p'(x),q'(x))Ed\I.I. and (r'(x),s'(x))éd:a s0 d~1-6\2 3:1- 5\'2.

Therefore 2— I‘LL M

p(x) r(x) p'(x) r'(x)
q(2)7s(2) T q'(2) S'(Z)

Hemes q(x)"s(x) = ‘q'(x)7s'(x)°

Thus f2 is well-defined. To show fa is a homomorphism.

Let *q,l,TIEED(Q;(x)). Choose (dqs95)€MN 10 (P1apPy)e T2
(p(x)yq(x))€ A, (r(x)ys(x))e dy (p'(x),q'(x))efb1 and

(r'(x),8'(x))e p,e Then f (rl‘f’"]a) =f, (ck -0 +F1 P2) =
p(x) p'(x) ) v (x) '(2) 2) (2
f (&Z(z) *q! (x)) r(z * s'(x)» *q (2) t:(a s'(2) ,

p(e) =(3) _pr(2) .p' Q) _
q(2) ~ s(2) T q'(2) T s'(2) ~ fa(']‘l)*fa(“\z)'

fa”]ﬂz) = £,((0=0,) (P 4= o)) = £,((d 1 p 4+ 0, Pr)-(a ‘IPa*szﬁ” :

p(x) p'(x) r(x) r'(x 1} (x) r'(x) _r(x) p'()
% (('q_('ff q'(x) *_s_%;% st (x) x) q'(x) * s(x) q'(x))

(2) p'(Z) r(2) r1(2) p(2) r(2) r(2) p'(2) -
a(2) q'(2) *s(2) 5'(2) ~ q(2) s(2) = s(2) q'(2)

p(2) =x(2)yj pr(2) =r'(2))
(q(Z) = 5(2))( q'(2) =~ s'(2)) = fa(‘h)fa“\a"
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x=2 eD(Q;(x))-{o‘l. If D(g'(x)) is a field, then ?:1_2 € D(Q;(x))

so there exist p(x),q(x),r(x),s(x)€ Q;(x) such that

1 _ p(x)  r(x) p(x) =r(x))\ _ _
s 2 - IGT - Henee 2R - TEY) <1 s0 12 (1)

p(x) -r(x) p(x) r(x)
£, (x-2) 2055 56 = fal-2)lEy -5 = o

Thus 1 = 0, a contradiction. Hence D(Q;(x)) is not a field.

We would now like to give a sufficient condition on a
ratio semiring E which guarantees that E is total. To do this,
we shall need the concept.of a compatible partial order on a

semiringe

Definition 2.25. A partial order on a semiring S is said to be

compatible if and only if for all x,y,a €S, x > y implies ax » ay

and a+Xx 3 at+ye

Remark 2.26. Let S be an A1.C. semiring satisfy the properties

that if S has an additive identity O, x+y = O if and omnly if

x-=y = O for all x,yeS. Then S has a natural partial order
denoted by Ly given as follows: For X,y €S, X ( . V¥ if and only if
either x = y or there exists a z €S such that y = x+z.

1) x L, X

2) Assume that x Lo and ¥ L, Ze If x =y ory = 2z, then x L, Ze
Suppose x £y and y £ z. Then there exist a,b €S such that

y = x+a and z = y+b , so z = x+a+bs Hence x L, Z°

3) Assume that x , ¥y and ¥y . X. If x = y then done.

Suppose x £Z y. Then there exist a,bé€ S such that y = x+a, x = y+b.
Thus y = y+a+b. Hence a+b is an additive identity. We get that
a=b=0 then x =y, a contradiction since X £ Yo

Hence , 1is a partial order. Claim that , 1is a compatible.
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Suppose x /Y- Let aéS. If x = y then x+a = y+a and xa = ya;
Hence x+a , y+a and xa L, Yae Suppose there exists a z€S
such that y = x+z, Hence y+a = X+a+z and ya = Xa+Zae

Thus x+a , Yy+a and Xxa . Jae.

Note that an A.C. O-semifield which is not a field is an

example of a semiring satisfying property.above.

E; satisfies property above.

Theorem 2.27. Let S be a semiring satisfying Remark 2¢25.

Then the natural partial order is a total order if and only if
D(S) = S {0} v(-8) where by =S we mean -f(S) (£f:3—D(3) is

the natural embedding).

Proof. Assume that the natural partial order is a total
order. e must show that D(8) = SV {0}V (-5).
Clearly S © {0§VY(~S) € D(S). We must show that D(3)ESu{ojv(s).
Let ae€D(S) and choose (x,y)€% « Since &£+ is a totél order, either

i

X =y or X y+a or y = x+a for some 3 € S.

Case 1« X =Yy sod = O,

Case 2. X y+a for some a €S, SO X=y = a €3S.

x+a for some a €8, SO X=y = =a € (=5).

1}

Case 3. ¥

Hence D(S) = s v{o0jv(-s).

Conversely, suppose that D(S) = 8 Vv {0j0(=8).
We must show that £+ is a total order. Let x,yeS. If x =y
then x &£+ y. Suppose x £y, so x=y ¢ D(5)-{0}.
Case 1. X=y €S then there exists an a €S such that x-y = a.
Hence x = y+a SO ¥ &+ Xe
Case 2. x-y €¢(=S) then there exists an a€ S such that x-y = =-a.

Hence y = X+a S0 X £+ Ye #
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Theorem 2.28. Let E be an A.C. ratio semiring. If £+ on E is

-

a total order then E is total.

Proof. It suffices to show that if E is totally ordered
by £+, then D(E) is a field. Let 1€3 be the: multiplicative
identity, so 1 is the multiplicative identity of D(E).

Let o € D(E)-10}. We must show that the multiplicative inverse

of o exists. Choose (x,y)€a , s0 x=y €E or x-y e (=E)

(by Theorem 2.27).

Case 1. Xx=-y €E, then the multiplicative inverse exists.

Case 2. x-y € (=E), then there exists an a ¢ E such that (x=y) = =a.
Hence -(x-y) = a € E« Therefore there existsa b €k such that

1 = ab = =(x=y)b = (x-y)(~b). Hence there exists an =b € (=E)

such that (=b)(x-y) = 1. 4

Wwe see that if the natural partial order on an A.C.
ratio semiring E is a total order then E is total. However,
if an A.C. ratio semiring has a compatible total order which is

.not the natural partial order then & may not be total.

Je now give an example of this.

Example 2.29« Let S = Q+tx] with the usual addition and

multiplication. Then (S,+,*) is an M.C. and A.C. semiring.

+ m n
Let f,g€ Q [x1, then f(x) = a X +eceta s g(x) = b x teeotb

for some éo,aq,....am, bo,b1,...,bne Q+. We say that £ & g

if and only if either

1) £ = g, or

2) m ¢ n, Or

3) m = n and there exists a j & n such that a; = bi for alli>j

a.nd a..(.b..
J J
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Claim that £ is a partial order. Let f,g,h,eQ+txJ where

: ©o.m n 2 &
£(x) = a X +...4a_, g(x) = b X +...+b  and hi{x) = C X HeeetC o

1) Clearly f & £,

2) if f £ gand gt fy thenm&é nand n&£ msom=n. If f=g
then done. Suppose f £ g. Since f{g, let j E{O,1,...,m}

be such that a; = bi for all i> j and aj .(bj. Since z ¢ £,

let kE{_O,1,...,mi be such that a; = b1 for all 1>k and yk( a .
If k{j then aj = bj' a contradiction. If j {k then 2y = bk'

a contradiction. Hence j = k, a contradiction. Thus f = g.

3) Suppose f £ g and g & h.

Case 1« m<n and n<1l, so m<l. Hence f £ h.

i

Case 2. m=n and n<l, or m<n and n=1, so m4{1l. Hence f he
Case 3« m=n and n=1 then m=n=1, If f= g or g = h then f=h.
Suppose f £ g and g # h. Since f £ g, let j€{0,1,...,m] be
such that a, = b, for all i>j and 3y <'bj. Since g ¢ h,,
let k€{0y1y...,m} be such that b, = ¢, for all 1>k and b <c,.
If j 2 k then aj(.bj - c:j so f £ hs If j<k then a = bk<,ck
so f & he

L

Therefore & is a partial order. Claim that £ is

compatible. Let f,g e Q+Lx1 and he Q+Lx1be arbitrary.

; : T | n 1
Let f(x) = a x +...+aojg(x) = bnx +e..+b_ and h(x) = CiX +esutC o

=]

Suppose f £ g. Then m & n.

Case 1« m{n then m+l {n+l also fh = gh, and clearly f+h £ g+h.
Case 2o m=n. If f=g then fh=gh and f+h=g+h. Suppose f #£g.
Since £ £ g let j G{O,...,m} be such that ai:bi for all i»> j
and aj (bj. Clearly f+h £ g+h. Let u be the coefficient of ::
j+l j

X in fhy v be the coefficient of x3+l"in ghe Then u v,

Hence fh & gh.
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Therefore & is a compatible. To show & is a total . -

order, let f,ge Q'cx) be such that f(x) = amxm+...+ao and

glx) = bnxn+...+bo. If £ # g, we must show that £{g or g (f.

L

Suppose g {f, som <ne.

Case 1. m<dn then clearly f { g.

Case 2. m==2 so bn =a or am( bm' If a < bn then £ ¢g.
Suppose am==bn. Since g4 f then am-1é'bn-1‘ If am_1< bn-1

then f { g. Assume a4 = b Continue this process.,

n-1°
We get that there exists a je¢ {0,1y...,m} such that a; {bj.
Therefore f 4 g. Hence £ is total partial order in Q+ch.
Define £ on Q' (x) as follows: Let WP € Q+(x) choose (f,g)ea
and (h,k)EP . We say thato\éfb if and omly if fk £ gh.

Claim that £ is a total order. First we shall show that for

f,8,h € Q'(x) if fh £ gh then £ £ g. To prove this,

% 2 <] T
let £(x) = a X +e..¥a y g(x)

b x%4...4b s and
n o

h(x) = clxl+...+c°. If fh = gh then f=g. Hence f L g,
Assume fh £ gh.
Case 1. m+l { n+l then m {n. Hence f&g.

Case 2. m+l =n+l then m=n. If amcl( bncl — am( bn 6 € &g,

Assume amcl = bncl' If a, l-1+am—1°1 (bncl—1+bn-1cl then

am-1cl<'bn-1°1 (since ac, = bncl implies a; = bn) hence
/i

am—1<bn—1’ so f & g.

Assume amcl-1+am-1°l:=bncl-1+bn—1cl' Then am_1 = bn-1'

If amcl_2-+am_1cl_1-bam_acl( bnc -rbn_1cl_1+-bn_2clmthen

1=2

F: L 4 a
am—Z“bn—Z’ so f £ g. Continue this process. We get that

there exists a j €{0,1,...,m} such that aj( bj' Then f & g.
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Next to show that £ is well-defined. If (£,98,)€0 and

(h1,k1)€P also then fg, = gf, and hk,h =kh Since fk & gh so

1 v
fkg,h,, so f k, L gqh,e Thus ¢ is

£kf k) & ghf k. = fg,kh,

well-defined. Let 4 ,P s 8 E @ (x). Choose (fyg)cd ,(h,k)eF

and (i,j)e¥ .

1) Since fg = fg thend £ & .

2) Ifd Lp and p £ then fk &£ gh and hg &£ kf, so fk = gh.

Hence 0 = > .

3) If a& P and P £ ¥ then fk £gh and hjkki; so fkj& ghj £ gki,

hence fjk £gik, so £fj&gi, therefore & &£ % .

4) Suppose d #£ P « Then fk #gh. Since £ is a total order on

Q'(x], either fk £ gh or gh {fk. If fk {gh then g Lp e

If gh {fk then ]'b(d .

5) Suppose d £ P then fk & gh. Hence fkij £ ghij. Therefore

ad =F>'5 and fkj2+gkij ‘ hgj2+gkij. ‘Hence & +%¥ = P+‘5 é
Hence & is a total order and & is compatible,

By Example 2.24 D(§'(x)) is not a field. 4

Proposition 230 Let S be an A.C. semiringe. If S has no

multiplicative zero then S has no additive identity.

Proof. Let O€S be an additive identity.
Hence O+xx = xx = x(0+x) = xO+xx for all xe 3 which implies

that O = xO for all xe S. Therefore O is a multiplicative zero. 4

Proposition 2.31. Let S be an 1.C. and M.C. semiring. If S

is totally ordered with respect to £+ then QR(S) is totally

ordered with respect to &+.
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Proof. Assume that S is totally ordered with respect
to t+. Must show that QR(S) is totally ordered with respect to
t+. Let & ,p¢ QR(S) be such that & #p. Choose (a,b)€@a and
(x,5) EP then ay # bx. Since S is totally ordered with respect

ay+z for some z €3. Without loss of

n

to £+, ay = bx+z or bx

bx+z for some Z € S. Hence 2. §+—z—
b~y yb

generality, suppose ay

in QR(3). Therefore p Lya, 4

We now give an example to show that the converse of.

Proposition 2.31 is not always true.

Example 2.32. Let S = [1,00) with the usual addition and

multiplication. Then S is an A.C. and M.C.. semiring with no
multiplicative zero. Note that S is not totally ordered
WePetol+ since 1,1.5€ S but 1 and 1.5 are not comparable with

respect to £+. Claim QR(S) % R. Defime i:QR(S)—R’ as
follows: for o € QR(S). Choose (x,y)€d and define i(aJ==§.

To show that i is well-defined, let (x',y')ed also.

1
Then xy' = X'y so ? = ?7 . To show that i is 1-1,
let O, P € QR(S) be such that i(d& ) = i( P). Choose (x,y)ed |,
L] .
(x*,y") € F « Then % = ?7 80 Xy' = x'y. Therefore 9 = P .

To show that i..is onto, let r ¢eR'. If r > 1 then °

=T

r-g|_:|..s

ill(ry1)]) = % = r. If r &1 then % >1. Hence i([(1.%)])=

Thus i is onto. To show that 1 is a homomorphism,

leta,]’bé QR(S). Choose (a,b)€d and (x,y)GP »

+bx a X _ . .-
Lby = gry = l(d)i-ll_F) and
%"% = i(d) i(? ) Hence we have

1}

i(&-*P) = i([(ay+bx,by)1)

ax
by
the claim. Since RY is a totally ordered with respect to &+,

i( ap) = i([(ax,by)l) =

we zet that QR(S) is totally ordered with respect to &+.
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Let S be an A.C. and M.C. semiring.

If 5 is
totally ordered with respect to £+, then D(QR(S)) is a field.
Proof.

semiring

™

Use Proposition 2.31 and Theorem 2.28,

#
We now give another sufficient condition on 2 ratio
E which guarantees that Z is total.
Proposition 2.34s Let = be a ratio semiring. If 1+1 = 1
then Z is total.
\) 1 1 ¥.
Proof. Let x,y€ Z. Then 1+x:=+y=— = 1+1+
—_ x "y X
X=+ 4 Hence Z is total
X }"x. n ] . ;#
Example 2.35.

are all total ratio semirings.

(Q+,min,-), (Q+,max,~), (R",min, *) and (R",max, )

We see that on a ratio semiring, there are three
important properties relating to the difference ring, A4.C.,

precise and total. ¥We would now like to study the relationship
is a field.

between these three oroperties on a ratio semiring.

o

Let 3 be an A4.C. and total ratio semiringzg.
Hence S is precise.

Then D(3)

There exist ratio semirings which are not A.C. and not
precise but are total as the following example shows.
Zxample 2.36. Consider Q+X~Q+ with the usual multiplication.
Define (a,b) + (c,d) = (min {a,c},min {b,dj).

is a ratic semiring.

Then (@ XQ+, +9%)

Since (1,1) +(2,2) = (1,1) = (1,1) + (3,3)
and (2,2) # (3,3), we zet that @ x Q" is not A.C..
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since (1,1) + (1,2)(2,1) = (1,2) + (2,1) and (1,2) £(1,1) # (2,1),
we get that Q+x Q+ is not precise. Simece (1,1)+ (1,1) = (1,1),

we get that Q+x.Q+ is total.

There exist ratio semirings which are neither A.C., no

precise nor total as the followinz example shows.

Example 2.37. Consider Q+x Q+ with the usual multiplication

define (a,b) + (¢,d) = (a+c,min{b,d}). Then (Q+v<Q+.+,sﬁ is a
ratio semiring. Since (1,1)+(1,3) = (2,1) = (1,1)+(1,2) and

(1,3) £ (1,2), @ x@" is not 4.C..

Since (1,1)+(1,2)(2,1) = (3,1) = (1,2)+(2,1) and

(1,2) £ (1,1) £ (2,1), @%@ is not precise. If there exist
(y40¥,5) and (x,,%5) € Q"% Q" such that

(1, 1)+(1,2) (7407,)+(1,3) (x4 %5) = (1,2)(x53%,)+(1,3) (7447 ,) -
Then (1,1)+(y,2y2)+(x1,3x2) =(x12x2)+(y1,3y2) 50
(x1+y1,min{2x2,3yé) = (1+y1+x1,min{1,2y2,3xa}). a contradicticon.

Thiis X Q@ is not total.

@" with the usual addition and multiplication is a ratio
semiring and Q+ is 1.C., precise and total.
Q+(x) with the usual addition and multiplication is a
ratio semiring and Q+(x) is 4.C., precise but not total.
(@*,min,*) is a ratio semiring which is precise, total
but not A1«Cee.
| Every ratio semiring which is A.C. and total must be

precise.
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Q+X.Q+ with the usual addition and multiplication is 4.C.
but not precise. (Since (1,1)+(1,2)(2,1) = (1,2)+(2,1) and
(1,2) £ (1,1), (2,1) £ (1,1), we see that @ X Q" is not precise).
Hence it is not total since 1.C. and total imply precise.

9 %x Q" in Example 2,36 is not A.C. and not pracise but
total.

Q+x Q+ in Example 2.37 is neither A.C. nor precise nor
total.

An open problem is the following: Does there exist a

ratio semiring which is precise but neither Ai.C. nor total

We shall now give a necessary and sufficient condition
which guarantees that a ratio semiring is precise. Again we shall
need a natural partial order, but this time it will be a natural

partial order on a ratio semiring with the poperty that 1+1=1.

Remark 2.38. Let E be a ratio semiring such that 1+1=1,

Then (E,+) is a band so E has a natural partial order given as

follows: 1if x,y€ S say that x £ y if and only if x+y=y.

Proposition 2.39. Let E be a ratio semiring such that 1+71=1.

Then the natural partial order is a total order if and only if

E is precise.

Proof. Assume the natural partial order is a total
order. e mus£ show that E is precise. Let u,v€& E be such that
1+uv = u+v, We must show that u =1 or v = 1. Since u,veZx
Then either u £ v or v £ u. Without loss of generallity,

assume u £ ve. Then u+v = v.

Case 1« uv &£ 1. Then 1+uv = 1. Hence v = 1.
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Case 2. 1 £ uv. Then 1+uv = uv. Hence uv = v. Thus u = 1.

Conversely, assume that Z is precise. Let x,y €E.

Then 1+(1+-§-){1+§) = 1+§+§ and 1+i—+1 +§= 1+§.+£- , so

™

1 X X . . -
1+(1~+%)(1-+;) = (14-%)+(14-§). Since Z is precise, 1-+% =1

cr 1_+§‘7= 1o If 1+£ =1, then x+y = x so ¥y & x. If 1+§= T

then y+x = y, 50 X & 7. 5
F

The proposition is not always true if E has a compatible
total order which is not the natural partial order as the

following example shows.

=

Example 2.40. Let E = (Q+,min,~). Then EXZ is not precise.

Let (x,y)€& EXE and. (u,v) € EXE. Define (x,y) & (u,v)

if and only if either i) x4u or ii) x = u and y £ v.

Claim that £ is a total order.

1) (x,x) & (x,x)

2) Suppose that (x,y) & (u,v) and (u,v) & (x,¥).

Case 1. x<u so (u,v) 4 (x,y), 2 contradiction.

Case 2. x =1u, soy & vandvtysoy=v. Hence (x,5) = (uyv).

3) If (x,y)*%& (u,v) and (u,v)% (a,b) then x4£u and uca so x%a.

i~

Case 1. x{a, so (x,¥) (aybls

Case 2. X=a, SOX=u=as0y Ly and v<£bsoy £ be
Hence (x,y) & (a,b) so £ is a partial order.

4) Let (a,b)€ EXE. Claim that if (x,y) & (u,v), then
(x,7)(a,b) & (u,v)(a,b) and (x,y)+(a,b) & (u,v)+(a,b)e
To prove this, suppose (x,y) & (u,v).

Case 1. x<{u then x+a {u+a:and xa<{ ua so (x,y)+(ayb) & (u,v)+(a,b)

and (x,y)(a,b) & (u,v)(a,b).

| 1793bB5HE
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Case 2 X = u theny £ v so y+b & v+b and yb £ vb. Therefore
(x,y)+(a,b) & (u,v)+(a,b) and (x,y)(a,b) £ (u,v)(a,b).

5) Let (x,y) and (u,v)e EXE.

Case 1. x{u then (x,y) & (u,v).

Case 2. u {x then (u,v) £ (x,y).

Case 3. u=x then either y{v orv{yorv=y. Ify=umv,
then (x,y) = (u,v)e If y {v, then (x,y) & (u,v)e If vy,
then (u,v) & (x,y). Thus EXE has a compatible total order but

EXZ is not precise. 4
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