CHAPTER III
PROPERTIES OF QUOTIENT O-SEMIFIELDS

In this chapter we shall study the relationship between
properties on M.C. (0=M.C.) semirings and properties of their
quotient ratio semiring (quotient O-semifields). In this
chapter the words "O=M.C. semirings'" means a semiring with zero

element O, which is 0-M.C. and of order greater than one.

We saw in Chapter II that Q' Lx) and Q;rxl are M.C.
semirings whose quotient ratio semirings, Q' (x) and Q;(x), are
not total, i.e. D(Q (x)) and D(Q;(x)) are not fields.
We also saw in Chapter II that Zz" is an M.C. semiring whose
quotient ratio semiring is isomorphic to Q' which is total
i.e. D(Q+J is a field. So we see that some M.C. semiring S have
the propertz that QR(S) is total whereas in other M.C. semirings S,
QR(S) is not total. We shall now find a necessary and sufficient
condition on an M.C. semiring which guarantees that its quotient

ratio semiring is total.

Definition %3.1. Let S be a semiring then S is called derivable
if and only if for all a1,a2,b1,bae S such that a1b2 £ azb1
there exist x1,x2,y1,y26 S such that

a0 X,y 5+, DX Y +asb X F, = 2 box Yo tasbyxoy, .

Proposition 3.2. Let S be an M.C. semiring.

Then QR(S) is total if and only if S is derivable.



Proof. Assume S is derivable. Let o,pe QR(S) Dbe
such that & £ p . Choose (aT,aZ)ﬁq ’ (b1,b2)ep . Then
a;b, £ a,b, . Since S is derivable, there exist x,,X,,¥,¢7,€5
such that a2b2x2y2+a1b2x2y1+a2b1x1ya = a1b2x1y2+a2b1x2y1.
a1Y1+b1x1 ) a1"1+b1-"'1
a¥, 0%y T 2%y DoY)

Hence in QR(é), 1+ which implies that

1+ d[(:{1,yz)l+ F[(xq,xa)] = d.[(xq.anh P[(}H!Ya)] .
Hence QR(S) is total.
Conversely, suppose that QR(S) is total. To show that S

is deiivable. Let ajya5yb9b, €8 be such that a b, £ a,b;. Then
;2 4 Ei in QR(S). Since QR(S) is total, there exist
a1y ByXp 24%q Dg¥y
Xq1X39Y91Y2 € S such that 1+a ¥ e e e
2 20 B 272 2v2

Hence
a2b2x2y2+a1b2x2y1+a2b1x1y2 = a1bax1y2+a2b1x2y1 so S is derlvable.#

Using the same proof as in the cases Q;ij and Z°. We
see that Q;txjy{o} is 0=-M.C. semiring whose quotient O-semifield
Q:(x)U{O} is not total whereas‘zg is a 0-M.C. semiring whose
quotient O-semifield is isomorphic to Q; which is total. VWe
shall now give a necessary and sufficient condition or a O-M.C.

semiring S which guarantees that its quotient O-semifield is total.

Definition 3.3. Let S be a semiring with O. Then S is called

O-derivable if and only if for all 11,a2,b1,b263 such that
a1b2£ a,b, an§ asyb, £ O there exist X,,X,y¥,47,€ 5 such that

X5,¥, # 0 and a,b,%,5,+2,b,X,71+a,0,X,F, = 39D,%55+3,00X57 4

Proposition 3.4. Let S be a O-M.C. semiring.

Then Q(S) is total if and only if S is O-derivable.

Proof. Similar to the proof of Proposition 3.2. #
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Proposition 3.5. Let S be an M.C. semiring of order greater than

one. Then QR(S) has no zero element.

see (11, page 12.

We see from the preceding Proposition that if 3 is an M.C.
semiring of order greater than one then QR(S) cannot be a field
since a field must contain a zero element. We see from the remark
after Definition 1.28 that O;M.C. semirings are the only semirings
which can possible have the property that their quotient
O-semifield are fields. Every 0-M.C. ring R (e.g.{2n | nezZ} or
any integral domain) has the property that Q(R) is a field.

There exist 0=-M.C. semirings S which are not rings such that Q(s)

is a field. Before we give an example we shall need a lemma.

Lemma 3.5. Let K be a O-semifield. If there exists an x € K={0}
such that x has an additive inverse, then K is a field.

See (1), page 22.

Example 3.7. Let S = {ao+a1x+...+anxn|n ez;'and aq1eeerd € Z,
aoefZ;} with the usual addition and multiplication. Then S is
an 1.C. and O-M.C. semiring but 3 is not a ring (since 1€ S but
its additive inverse does not exist in 8)s

Consider the O-semifield Q(s), (1,11, [(x,=x)) € Q(s)-{0}
and [(151)) + [(xy=x)] = [(~x+x,=x)] = ((0,-x)) = 0 in Q(8). BY
Lemma 3.6, Q(S) is a field. Claim that D(S) ® Zix). Define
£:D(3)—12Zlx) as follows: Letad e D(s). Choose (p(x)yq(x))€a .

Then p(x),q(x)€ 8 € Zlx) define f(a) = p(x)=q(x).

1) if (r(x),s(x))€a also,then p(x)+s(x) = q(x)+r(x) so

p(x)=-g(x) = r(x)=s(x). Therefore f is well-defined.
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e L] = [ # *
2) Let p(x)€Zix) Then p(x) a_+a X+eest+a X for some a_oezo_,

a.}gc-o,an Z, nEZ;.

Case 1. a,o a2 0, Then f(E(P(x)g0>]) = p(x)-o = p(x)'
Case..2. a, ¢ 0. Then -a0> 0 so -p(x),=2p(x)E€ S.

Thus £(C(-p(x),-2p(x))1) = =p(x)=(=2p(x)) = p(x).

Hence f is ontoe.
3) Lettl,P € D(S) be such that £(a) = f(P).
Choose (p(x),q(x))ea , (r(x),s(x))€p . Then p(x)=q(x) = r(x)-s(x)

so p(x)+s(x)

q(x)+r(x) sod= P « Hence f is 1-1.

L) Let O ,P € D(S). Choose (p(x),q(x))es and (r(x),s(x))ep .

Then £( ap ) = £(L(p(x)r(x)+q(x)s(x),p(x)s(x)+q(x)r(x))]) =
p(x)r(x)+q(x)s(x)=-p(x)s(x)=q(x)r(x) = (p(x)=q(x)) (r(x)=-s(x)) =
£(D)E(P). - And

f(a+p) = £(C(p(x)+r(x),q(x)+s(x))1) = p(x)+r(x)=-g(x)-s(x) =

f(d)+f(P). Hence f is a homomorphism.

Therefore .we have the claim, so we see that D(S) is not a field.

Z; is a 0=-M.C. semiring such that Q(Z;) (= Q:) is not
a2 field. This shows that the quotient O-semifield of O-M.C.
semiring may or may not be a field. We shall now give a
necessary and sufficient condition on a 0-M.C. semiring which

guarantees that Q(S) is a field.

Definition 3e8. Let S be a semiring with O. Then S is called

extensive if and only if for all x €S there exist a,be S

with b £ O such that bx+a = O.
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Theorem 3.9. Let S be a 0-M.C., semiring. Then Q(S) is a field

if and only if S is extensive.

Proof. Assume Q(S) is a field. Let xe€S & Q(8).
Then there exist a,b €3 with b £ O such that x+% = 0.

Hence xb+a = O so S is extensive.

Conversely, suppose that S is extensive and let a€Q(S).
Choose (x,y)€d o Then y # O. Since S is extensive,
there exist a,b€S8 with b £ O such that bx+a = O —£*).
Since y,be€ S-{0} € q(s)-{0}, the multiplicative inverses of

y and b exist in Q(S). Multiplying (*) by ;% we get that

; + % = 0 in Q(S). Hence -0 exists in Q(S).

Thus Q(S) is a field. 4

We now give an example of an A.C., 0-M.C. semiring S

which is not a O-semifield and D(S) is a field.

Example 3.10. Let S = [1,%)9{0} with the usual addition and

multiplication. Then S is an A.C. and 0-M.C. semiring. S is
not a O-semifield since 2 € S-{O} and the multiplicative inverse
of 2 does not exist. Using the same proof as in Example 2.1

we get that D(S) T R which is a field.

Note that Q(S) ® R; (Using the same proof as Example 2.32)

so Q(S) is not a field.

we already gave an example of an A.C., 0-M.C. semiring S
which is not a ring such that Q(S) is a field in Example 3.7
and if S is the semiring in Example 3.7 then D(S) = Z[x)

so D(S) is not a field.
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Clearly, if S is a field then D(S) and Q(S) are fields.
It is natural to ask is the converse true i.e. suppose that
S is an A.C., O=M.C. semiring such that D(S) and Q(S) are field,

must S be a field. The answer is yes as the next Theorem shows.

Theorem 3.11. Let S be an i1.C. and 0-M.C. semiring.

Then D(S) and Q(S) are field if and only if S is a field.

Proof. Assume that S is a field. Clearly D(S) and Q(S)
are fields.

Conversely, assume that D(S) and Q(S) are fields.
To show that S is a field, it suffices to show that S5 is a ring.
Let uc S=-{0} then [(u,u)l € Q(s), the additive inverse of C(u,u)l
exists. Let x,y€ S be such that [(u,w)]+{(x,y)] = [(O,u)] .

Then 0 = u(uy+ux) = ua(y+x). Hence x+y = O 1).

Since D(S) is a field, S is exact. Let a,b€ 3 be such that

for all p,q €S5S, ap+bq+q = aq+bp+p (2).

and for all distinct p,q€ S there exist u,v €3S such that
b+qu+DV = a+qV+pu. Since a+x £ a, there exist u,v€S such that
b+(a+x)u+av = a+(a+x)v+au. Hence b+au+xu+av = a+av+xv+au

which implies that b+xu = a+xv - (3.

By (1), O = XV+yVv S0 a = a+Xv+yv = b+xu+yv. Since 2 £ b,

we get that w = xu+yv S-{O}. Hence a = b+w.

By(3), b+xu = b+w+XV, SO XU = WXV . (4.
By(2),for all p,q€ S, (b+w)p+bg+q = (b+w)q+bp+p sO

bp+wp+bq+q = bg+wq+bp+p, SO0 wg+q = Wq+p e (B)a

Let z €S be arbitrary. By(1), 0 = zu(x+y) = z(ux+uy) =
z(wexv+uy) = zw+z(xviuy) = z+wz(xveuy) (by (5)). Hencé for all

z€S, 2z has an additive inverse so S is a ring, S is a field. P
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Let S be an A.C. and S,M.C. semiring. Then D(S) is a
O-M.C. s0 Q(D(S)) exists. Since S is S.M.C., S is either M.C.
or 0=-M.C..
Case 1. S is M.C.. Then QR(S) exists. Since S is 4.C. and
S.M.C., QR(S) is A.C. and precise so D(QR(S)) is 0-M.C..
Hence Q(D(QR(S))) exists.
Case 2. S is 0-M.C.. Then Q(S) exists. Since S is 1.C. and
S.M.C., Q(8) is A4.C. and precise so D(Q(S)) is O=M.C..

Hence Q(D(Q(S))) exists.

We see from the above that if S is an A.C.y, S.M.C,
semiring with O then Q(D(S)) and (D(Q(5))) are fields. It is
natural to ask, are these two fields isomorphic? Answer yes!

Note that if S has no O, then Q(D(QR(S))) and 3(D(S))

are fields which are isomorphic as we shall show.

Theorem 3.12., Let S be an 4.C. and S.M.C. semiring with O,

Then the fields Q(D(Q(5))),Q(D(S)) are naturally isomorphic.

f1 fZ
Proof. —> D(S) (D(3))

S

[ L

US) —— D(Q(3)] —m Q(D( (8)))
g4 &2

Let h,:5—q(s), 841:Q(8)—>D(Q(s)), 8,:D(Q(8))—2(D(Q(s)))

£,:5—D(8), £5:D(8)—>Q(D(S)) be the embedding given by the

constructions. Since g h,:S—>D(Q(S)), there exists a
monomorphism h,:D(S)—D(Q(S)) such that h,f, = g,h, and for all

((x4¥)) € D(s), ha(E(x,y)lJ = g1h1(x)-g1h1(y).



Since gahazD(S)——+Q(D(Q(S))) where Q(D(Q(S))) is a field
containing D(S), there exists a monomorphism "

hy:Q(D(S))—>Q(D(Q(S))) such that hyf, = gyh, where hy is given

: ' g5h,(Py)
as follows: For [(F'l’ Pa)] e Q(D(s)), h3([(P1.F2)]) = m "
Since faf1:s-—+Q(D(S)) where Q(D(S)) is a field containing S ,

Q(S) is a quotient O-semifield containing S. Then there exists

a monomorphism i1:Q(S)~—*Q(D(S)) such that i,h, = f,f, where

faf](x)

Since Q(D(S)) is a field, it is also a ring so there exists a

monomorphism iZ:D(Q(S))—-*Q(D(S)) define as follows
For [(P4y Po)E D(Q(S8)), iZ([(F1’ Fa)]) = i1(F1)-i1(P2).
~ Hence i,g, = ij. Since Q(D(Q(S))) is the smallest field -

containing D(Q(S)), there exists a monomorphism

13:Q(D(Q(S)))——9Q(D(S)) defined as follows:

i, (p,)
| : =21 s
For [(PqsPy)0€ Q(D(A(3))), i5(L(PysPy))) = iz(Fb)'

Hence 1332 = ia. Claim that iah2 = fa. To prove this, let
((x4¥)) € D(S). Then i h,([(x,y)]) = 12(g1h1(x)-g1h1(3)) =
i231h1(x)-1251h1(y) = 11h1(x)-i1h1(y) = f2f1(x)-f2f1(r) =

fz(f1 (x)‘f1(y)) = fg([(x’Y)]). - Hence iZhZ = faa

Next we shall show that iBhB:Q(D(S))-ﬁ+Q(D(S)) is the

identity map. Let [(F1l Po)1€ Q(D(s)). Then

i 311(P ) ijh,(P)  £5(P)
_ 38 ] Z2farfet. T2t .
LahatliPer P2 = 158050000~ 185(P) © LR T ((F1.P2ﬂ
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In Theorem 3,12 if S has no O we shall prove that
Q(D(QR(S))) is isomorphic to Q(D(S)). Before we can prove this

we shall need a lemma.

Lemma 3¢13. Let S be an A.C. and M.C. semiring and QR(S) the
quotient ratio semiring of S and f:S—>QR(S) the embedding
given by the construction. Let K be any O-semifield and
i:S—>K a homomorphism. Then there exists a monomorphism

g:QR(S)—K such that gof = i.

Proof. Claim that i(x) £ 0 for all x €S. Suppose not,

let x €S be such that i(x) = O. Let yeS-{x}. Then

i(x) = i(x)i(x) = 00 = Oi(y) = i(x)i(y) = i(xy), SO XX== Xy
Thus x = y, a contradiction. *Hefice we have the claim.

Let deQR(S). Choose (x,y)€¢d , Define g@) = %%g.
Suppose (u,v)€& . Then uy = vx, % = L;; s.o g is well-defined.
Let o ,PQQR(S). Choose (x,y)eo.,"(z,w)eP . Then

ilxw+ryz) _ i(x) i(z)
iyw)  ~ iyt iw)

g(d.-i-F) = g(C(xw+yz,yw)l) = = g(d )+g(l‘3 )

g( ®p) = g(llxz,yw)1) = T3 = I(5) I(w) =

Hence g is a homomorphism.

If g(ad) = g(F) then 1’%—:% = E%—:—%. Hence xw = yz. ThusO\:F:.
s0 g is one-one map.

i(x)i(a)

T = i(X)g

Let x€S. Fix ae S, g(f(x)) = g(l(xayal)l) =

so gof = i. #
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Theorem 3.14, Let S be an 1.C. and S.M.C. semiring such that S

has no O. Then the fields Q(D(QR(8))), Q(D(8)) are naturally

isomorphic.

Proof. By Lemma 3,13 then there exist a monomorphism
i1:QR(S)-—+Q(D(S)) such that i h, = 5% S Using the same proof

in Theorem 312, we have Theorem I L
4

Now we shall study relationships between the properties
A.Cey MoCey SaMeCoy precise, total, unitive, exact, derivable,

O-derivable and extensive in a semiring.

Proposition 3,15. Let S be a semiring with 1. Then the following

hold:

i) if S is S.M.C. then S is precise.
ii) if S is total then S is unitive, exact, derivab

(or O-derivable if S has a 0 )

Proof. i) Let u,vE S be such that 1+uv = u+v.

Then 11+uv = 1v+1u so u = 408 F ) he

ii) Assume S is total. Then, we proved in
Chapter II that S is unitive and exact. To show that S is
derivable, 1let uq,ua,v1,vae S be such that u,v, £ UV,
Then there exist X,y € s such that 1+xu1v2+yu2v1 = xu2v1+yu1v2
S0 u2v2+u2v2xu1v2+u2v2yu2v1 = uavzxu2v1+ uavzyu1v2. Therefore
uava+u1vzxu2v2+u2v1yu2va = u1v2yu2v2+u2v1xu2v2. Choose
¥q = XU, Vo X, = Yu,Vs Y, = % = 1 then
uavax2y2+u1v2x2y1+u271x1ya = u172x132+u2v1x2y1. Hence S is
derivable. A similar proof shows that if S has a O then

4 is total which jmplies that S is O-derivable. 4
i
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Proposition 3.16., Let S be a ratio semiring. Then the following

hold:
i) if S is precise then S is S.M.C..

ii) if S is derivable then S is total and so is exact

Proof, i) Assume S is precise. Let x1,x2,y1,yae-s be

' X ¥s 7 Xa¥5 XY ¥, X
a2 - T2 tatl | <2 2.
such that x1y1+x2y2 = X, Y,+X5Y e Then 1+ = + S g

XY XV X7 T %
*a ¥2 _ 4
Since S is precise, — = 1 or — = 1. Hence X, = X, O J, = ¥,
X, Y4 1 2 1 2

Therefore S is S.M.C..

ii) Assume S is derivable. We.must show that S
is total. Let x,y€S be such that x £ y. Then 1x # 1y.
Since S is derivable, there exist u1,u2,r1;v2 S such that
txu2v1+yu1v2d xu1v2+ yu2v1-
T2 YV THaVs THVp

yu2v2+xn2v1+yu1v2 = xu1v2+yu2v1, 1
v u, u, v
Therefore 1+x§; +y§a = xia +y§; . Hence S is total. 4
2 2 | 2
Remark 3.17. In a O-semifield K, if K is O-derivable then K is

total so exact.

Proposition 3.18. Let Sq» S, be semiring with multiplicative

identities. Then ans is not precises.

2

Proof. Let x ES1-{‘H and yesa-{‘lj then
(1’1)+(x'1)(1,y) = (1,1)+(x’3) = (1+x,1+2{) = (x,1)+(1'y)- But

(x,1) £ (1,1) and (1,y) # (1,1). Hence S,XS, is not precise. 4
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Proposition 3.19. Let S be a semiring with 1. If S = 513452

where S.], S2 have order > 1 and 1 GS1NS2. Then S is not precise.

Proof. Let xes,l-{ﬂ and yeSa-{ﬁ.
Then (1,1)+(x,1)(1,¥) = (1,1)+(x,5) = (1+x,1+y) = (x41)+(1,¥)

but (x,1) # (1,1) and (1,y) # (1,1). Hence S is not precise. 4

The converse of this proposition is not always true

as the next example shows.

Example 3.20. Let S = {1,2,3,6,12]. Define a+b = geced {a,b}

(greatest common divisor of a,b), a*b = l.c.m {ayb} (least
common multiple of a,b). Then S is a semiring with 1. S is not
precise since 1+2¢3 = 1 = 2+3 but 2 £ 1 and 3 £ 1.

Clearly S # S;X5, where S;, S, are semirings of order > 1.

Example 3.21., Let S = [1,90), define x+y = min {x,y} and

Xy = max{x,y} then (S,+,¢) is a semiring and 1€ S is a
multiplicative identity and an additive zero.

.1) S is precise. Let u,v €S be such that 1+uv = u+v then

17 =uor v,

2) S is unitive. Let a = b = 1 then for all x,y €S,

1x+1y+y = 1y+1x+x = X5¥.

3) 'S’ is exact. Since for all X,y €S, T+xx+yy = 1 = 1+xy+xy .

4) S is derivable. Let a,,a,yb,yb, €S be such that a,b, # asb,.

Letx1=x2=y1'

a b X,y +a, b X,y +a b XY, & Xy =aqbyXgyytay X,y .

=y, = max{a.1,a2,b1,b2}. Then

5) S is not A.C. and not M.C. since 1+2 = 1+3 but 2 £ 3 and

1'3 =~ 2‘3 but 1 ,é 2.
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6) S is not S.M.C.. Since 13424 = 3 L 1e442+3 but 1 £ 2
and 3 £ L.

7) S is not total. Since 2,3€8 and there do not exist X,y €S

such that 1+2y+3x = 2x+3¥ (since 1+2y+3x = 1 but 2x+3y 2 2).

Example 3.22. Let Se = (1, e0)v{x} where o is a symbol not

representing any element of [1,00).

Define x+y = min {X,¥} if X7 e[1,00),
x y -= max {X,y} if X,V €e(M,00), ©0 +® =®® =0 ,
x+00 = o0+X = X and XX = X00 - o for all x e [1y00)

Then (Sec ,+9*) iS5 a semiring where 1 €S 15 a multiplicative
jdentity and an additive zero and is a zero element.

Using the same proof as in Example 3.21, we can show that

Seo 1S precise, unitive, exact and derivable.

We must show that S,is O-derivable, let a1,a.2,b1,b2€ S be
such that a,,b, £ oo and a b, = a,bye if a, =® then b, £
Choose X, = X, = Yq =95 = max {a1,b1,b2} . We get that
a2b2x2y2a1b2x2y1+a2b1x1y2 = x1;=;a1b2x y2+a2b1x2y1 .

If by =0 . Choose X, = X, = ¥q =¥ = max {a,l,aa,ba‘].

Then a2b2x2y2+a1b2xzy1 +a.2b,lx1y2 = a1b2x132+ aab,lxay.‘.

If a, £ oo and b1 £ . Choose x, = x2 =Y¥q = y'a = max{a,l,aa,b,l,ba}
‘ghen' a2b2x232+a1b232y1+a2b1x132 = a1b2x1y2+a2b1x2y1¢

Sco is not A.Ce, O=M.Cey SeMaCoe, total, extensive (since 2€ S

but there do not exist bya & Spped # oo such that 2b+a = & )

_E:.x_ample 3,23, In Example 2.13, K is a O-gsemifield. (we called K

is the Boolean semifield). Claim that K is S.M.C.,

Let x1,x2,y1.y251{ be such that x1y1+x2y2 = x,lya-n-xzy,l.
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We must show that x, = X, or yq = Yoo Ir x, £ X,, then assume

that x, = 0 and x, = 1. Hence ¥q = ya. Thus K is S.M.C..

1
Since K is total (see the proof in Example 2.15), then K is
unitive, exact, derivable, O-derivable. But K is not extensive

(since 1€ K but there do not exist b,a€k, b £ 0 such that

bl+a = 0). Clearly K is not A.C..

Now we get the following implications:

S.M.C. implies precise, M.C.y O0=M.C.
does not imply total, derivable (Q+(x) with the usual
addition and multiplication)
does not imply unitive, exact (2Z with the usual
addition and multiplication)
does not imply O-derivable (" (x)u{0} with the usual
addition and multiplication)

does not imply extensive, A.C..(K the Boolean semifield).

precise implies unitive ~
does not impl¥ A.Ce, M.C., S.M.Cey total(Example 3.21)
does not imply O-M.C., extensive (Example 3.22)
does not imply derivable, O-derivable (Q+(x) and Q+(x)u{0}
with the usual addition and multiplication).
does not imply exact (Z with the usual addition and

multiplication)

total implies unitive, exact, derivable, O-derivable.
does not imply A.C. ((@"(x),mim,*))
does not imply precise, S.M.C.(Q+th!Qﬁ‘Q+,min,-)

does not imply extensive (K the Boolean semifield)



unitive does
does

does

does
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not imply A«Cey M<Co, S.M.C., total (Example 3.21)

not imply O-M.C., extensive (Example 3422)

not imply precise (@*’x@" with the usual addition
and multiplication)

not imply derivable, O-derivable (Q+(x), Q+(x)u{0}

with the usual addition and multiplication).

does not imply exact (Z with the usual addition and
multiplication)
exact implies unitive

does not imply A.Cey MeCey S.M.C., total (Example 3,21)

does not imply O-M.C., extensive (Example 3,22)

does not imply precise (Q5<Q+,min,-)

The following is an unsolved problem: Suppose that S is

exact. Is S

derivable or O-derivable %

derivable does not imply A«Cey MeCoy S.M.C., total (Example 3.21)

does not imply O=M.C., extensive (Example 3.22)

does not imply precise ((thQ+,min,-))

does not imply unitive, exact (2z* with the usual

O-derivable

' addition and multiplication)

does not imply A.Cey O=MeCey SeMeCoy total,
extensive (Example 3.,22)

does not imply precise ((Qﬁ£Q+u{Ok,min,-))

does not imply unitive, exact (2Z with the usual

addition and multiplication)
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Extensive implies derivable

does not imply A.C. (({A € Z | A is finite} ,0,Nn))

does not imply O-M.C. (Zh = the set of congruence
classes modulo 4 with the usual
addition and multiplication)

does not imply S.M.C., precise (ZXZXZXZ with the
‘usual addition and multiplication)

does not imply total, exact (Z with the usual addition
and multiplication)

does not imply unitive (2% with the usual addition
and multiplication)

The following is an unsolved problem.

'Sﬁppose that S is extensive. Is S O-derivable?
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