CHAPTER IV

ALMOST MULTIPLICATIVELY C ANCELLATIVE. SEMIRING

In [2] a generalization of the concept of semifield was
given. In (11 it was shown that a semiring S with zero element
is embeddable in a O-semifield if and only if S is 0-M.C.

In this chapter we generalize the property of a 0-M.C. to a new
‘concept, almost multiplicative cancellatively, so that semiring
with this property can be embedded in generalize semifields.
Before we give the definition of almost multiplicative
cancellativity we shall give two short propositions of

independent interest.

Proposition 4.1. Let S be a semiring with a multiplicative - ..

zero a which is O-M.C.. Then a is either the additive identity

or the additive zero.

Proof. We can embeded S in a O=semifield or an
oo —semifield. If S can be embedded in a O-gsemifield then a is
the additive identity. If S can be embedded in an ow=-semifield

then ais the additive zero. #

Proposition 4.2. Let S be a semiring. If there exists an a€3S

such that every x € S={a} is M.C. then either S is M.C. or

S iS O-M.C..



S5k

Proof. We must show that a is a multiplicative zero or
that a is an M.C. element. Suppose that a is not a .
multiplicative zero. Then there exists a bE€S such that ab £ a.

Let x,y €S be such that ax = ay then abx = aby. Hence X = 7. #

Definition 4.3. Let (S,+,*) be a semiring. S is called an

almost multiplicatively cancellative semiring (A.M.C. semiring)

if and only if there exists an a€ S such that (S-fa},;) is a
cancellative semigroup. If ae€sS has the property that (S={at,y*)

is a cancellative semigroup then S is called A.M.C. semiring w.r.t. a.

Proposition 4.4. Let S be an A.M.C. semiring. Then the number

of multiplicative idempotents in S is £ 2.

Proof. Let a € S be such that (S-{aly+) is a cancellative
semigroup. If e¢ S-{a} is an idempotent then for all x € S-{a},
eax - ex so ex = Xx. Hence e is the identity of (S={a}y*)e
Thus e is the only idempotent in (s-{a}l,*). Hence e,a are the

only possible idempotents in (S, %) ”

Proposition 4¢5. Let S be an A.M.C. semiring.,

Let A = {a¢ S| (s-la},+) is a cancellative semigroup]. If there

exists an a€ A such that a is not M.C. in S then IAl & 2.

Proof. Since a € A is not M.C. then there exist x,y¢€ S
such that x # y and ax = ay. Suppose thatlA| >2. Then
there exist b,c € A-{a} such 'that b A c. Clearly x,y€ S-{a} or
x,y € S={b} or x,y‘e S-{c} . If x,y€S=-{b} or X,y € S={c} then
X = ¥,.a contradiction. Hence X,y¢€ S=-{a}.
Case 1. a is a multiplicative zero. Then aa = ab which implies

that a = b, a contradiction.
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Case 2, a is not a multiplicative zero. Then there exists a
u €S such that au £ a. Since ax = ay so aux = auy which

implies that x = y, a contradiction. #

Theorem 4.6, Let S be an A.M.C. semiring w.r.t. a. Then

exactly one of the following holds:

a for all x€S, or

%

a and there exists a 1€ S-{a} such that 1x = x

\V]
~
W)
n

for all xe S and there exists a bé¢ S-{a} such that ab £ a, or
3) ax = X for all xeS, or

L) there exists a 1€ S-{a}] such that 1x = x for all x¢€S§

and a =a 4 Or
5) xy # a for all x,ye€S.

Proof. Consider a.a.

Case 1. az = a.

Subcase 1.1. a is a multiplicative zero.

Subcase 1,2, a is not a multiplicative zero so there

exists a b€ S-{a} such that ab £ a.

Subcase 1.2.1, there exists a 1€S=-|a} such that 1a = a.
Claim that 1x = x for all x¢ S. Since a.2 = a and ab £ a. Hence
abab = abb so ab = b. Hence 1b = 1(ab) = ab = b. Let yes-{a}.
we have that (1y)b = (y1)b = y(1b) = yb so 1y = y. Since 1a = a,

we have 1x = x for all xe S.
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Subcase 1.2.2. Assume that for all x €S- {a}, ax £ a.

Claim that ax = x for all xe¢S. Since aa = a, we get that

for all y eS-{a}, ayay = ayy so ay = y. Thus ax = x for all x €S§.

Case 2, aa £ a.

Subcase 2,1. there exists a 1 €S-{a} such that 1a = a.

Claim that 1x = x for all xe€S. Since 1a = a we get that

for all xe S-[a_}, laax = aax so0 1x = x. Hence 1x = x for all xe¢ S.

Subcase 2.2. for all xeS-{a}, ax £ a. Since a2 £ a
therefore ax £ a for all xe S and for all x,y € S-{a},xy £ a.

Hence xy £# a for all x,ye¢ S. #

From Theorem 4.6. We see that if S is an A.M.C. semiring
w.r.t. a. Then there are exactly five mutually exclusive
possibilities:

In 1) we say that S is a Classification I semiring w.r.t. a.

In 2) we say that S is a Classification II semiring we.r.t. a.

In 3) we say that S is a Classification III semiring wer.t. a.

In 4) we say that S is a Classification IV semiring w.r.t. a.

In 5) we say that S is a Classification V semiring w.r.t. a.

Corollary 4.7. i) Let S be a Classification II semiring w.r.t. a.

Then ax = x for all x £ 1.

ii) Let S be a Classification IV semiring weret. a.

2=1.

Then either ax Z x for all x€S or a
iii) Let S be a Classification V semiring w.r.t. a.

Then either ax £ x for all x¢ S or aZ = an for all nc« Z+-[1}.



Proof. i) Since S is a Classification II semiring

Wer.t. a. there exists a be& S-{a} such that ab £ a.
Hence ab = b. Let x € S={1} be arbitrary. Then axb = xb
therefore ax = x (since ax £ a, if ax = a then 1b = b = ab =
axb = xb so x = 1, a contradiction).

ii) If ax = x for some x€ 3 then aax = ax = X = 1x.

5 2
Therefore a = 1.
2
iii) If ax = x for some x€ S then a x = ax, so

> 3

a’x = aax. Hence a” = az. Thus aa = a® for all n.eZ+-[1}.
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#

Theorem 4.8. Let 3 = {1,a} be an 1.M.Ce. semiring. Then S must

be isomorphic to one of the structures given below:

(1) .l a 1 and + | a 1
a a a a a a
1 a 1 1 a a
(2) . 1a 1 and + a 1)
a a a a a a
1 a 1 1 a 1
(3) AR 1 and + a 1
a3 a a a a 1
1 a 1 1 1 1
(L") . a 1 and + a 1
a a a a a 1
1 3 1 1 1 a
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(5) , |2 1 and + EY 1
a 1 1 a 1 1

1 1 1 1 1 1

(6) R 1 and : + a 1
a 1 1 a a a

1 1 1 1 a 1

(7) R 1 and + a 1
a 1 1 a a 1

1 1 1 1 1 1

(8) and + | a 1
a 1 a

1 a 1

In (1)=(4) S is a Classification I semiring w.re.t. a.

~ Furthermore 5 is a type I semifield we.r.t. a and 3 is a
Classification III semiring w.re.te. 1. Furthermore 3 is a

type II semifield w.r.t. 1. In (5)-(8) 8 is a Classification V

semiring w.r.t. a. Furthermore S is a type III semifield

Werete 2.
From now on we assume that |5l » 2 for all semiring 35.
Theorem 4.9. There does not exist a Classification II semifield.

Proof. Let S be a Classification II semiring we.r.t. a.

Suppose that S is a semifield w.r.t. b. By Theorem 1.25 either

bx = b for all x€3S or bx = x for all x&S or b2 Z b and

be £ b where e is the identity of (S-{a},+).
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Case 1. bx = b for all x€S3. Clearly b # a. Hence bb = b1 so

——

b = 1 therefore 1a = 1, a contradiction.

Case 2. bx = x for all x€3. If b = a taen al =1,

a contradiction so b # a. Since b2==b, bb=b1 so b = 1.

Since (S={b},+) is a group, let e be the identity of (3={b}, ).
Then ea = a. By Corollary 4.7, ae = e so a=e. Let c¢8-{a,1}.
Then there exists a d € S-{a,1} such that cd = e = a,

a contradiction.

Case 3. b2;£b and be # b where e is the identity of (S-{b},')._
Clearly b#Za and b#1, so 1,a € S={b}but ‘12 =1 and a° = &y

a contradiction since a group has only one idempotent. #

Theorem 4.10. There does not exist a Classification IV semifield.

Proof. Let S be a Classefication IV semiring w.r.t. a.

Then there exists a 1€ S-{a}such that 1x = x for all x € S.
Suppose that S is a semifield w.r.t. b. By Theorem 1.23, either
bx = b for all x€ S or bx = x for all x€ 3 or b2 Z b and be £ b

where e is the identity of (S={b},*).

Case 1. bx = b for all x€S. Clearly bZa and b#1. Consider

1, be 3-{a}. Them 1b = b = bb, hence b = 1, a contradiction.

Case 2. bx = x for all x€¢S. Clearly b#Za, so 1,be¢ S={a}
hence 1b = b = bb therefore 1 = b. Let e be the identity of
(s-{b},*). Since a €3-{b}, ea = a. Hence eaa = aa = aal which

implyies that e = 1, a contradiction.

Case 3. b> £ b and be £ b whére e is the jdentity of (S-{b}, ).
Clearly b # 1 so 1€ 3-{b}. Hence 1 = 1e = e. But 1b = b,

a contradiction.

#
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Proposition 4.11. Let S be a Classification I semiring wer.t. a.

If there is an element b in 3 such that (S-{b},s) is

a cancellative semigroup then a = b.

Proof. Suppose not. Let c € S-{a,bl. Then aa=ac=a

§0 a = ¢, a contradiction. #

Propsition 4.12. Let S be a Classification II semiring w.r.t. a.

If S is a Classification II semiring w.r.t. b then a = b.

Proof. Let 1€ S-{a} be such that 1x = x for all xe¢ S

and let 1' € S-{b} be such that 1'x = x for all x€S. Then 1=1'.

By Corollary 4.7 (i), a = ab = b. 4

Proposition 4.13. Let S be a Classification III semiring

Werete ae If S is a Classification III semiring we.r.t. b

then a = b.

Proof. Clearly the identity of any semigroup is unique.

We shall now show that if S is Classification IV or V

semiring w.r.t. a then a may be not unique.

Example 4.14. Z" with the usual addition and multiplication is

a Classification IV semiring w.r.t. 2 and a Classification IV

semiring w.r.t. 3.

z" -{1} with the usual addition and multiplication

is a Classification V semiring we.r.t. 2 and a Classification V

semiring w.r.t. 3.

Example 4.15. Let K = {x€Q [x ® 1} with the usual addition

and multiplication. Then K is an M.C. semiring. Let a be

a symbol not representing any element of K. Extend + and

#
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from K to S = KtJ{a} by aa = 1, a1l = 1a = a, ax = xa = x for all
x # 1.and a+x = x+a = 1+x for all x€ 3. Claim that (S,+,¢) is

a semiring. e must show that (a) (x+y)+z = x+(y+z) for all
X,¥,2€8, (b) (xy)z = x(yz) for all x,y,z €3, and

(c) (x+y)z = xz+yz for all x,y,z € 3.
To show (a), we shall consider the following cases:

Case 1. X =y = 2 = a.

(x+:l;)+z = (a+a)+a = a+(a+a) = x+(y+z).

Case 2 X =y = a, 2 £ 2.

(x+y)+z = (a+ad+z = (1+1)+z = 1+(1+2) = 1+(a+z) = ax(a+2) = x+(y+z).

Case 3« x =a, y £ a4 z/=a.

x+(y+2).

(x+y)+z = (a+y)+a = a+(a+y) = a+(y+a)

Case 4 x =a, y # a, z # a.

a+(y+z) = x+(y+2).

n

(x+y)+2 = (a+y)+z = (1+y)+2 = 1+(y+2)

Using Case 2-- Case 4, the commutativity of + and the
fact that (K,+) is a semigroup we can prove the remaining cases

of (a).
To show (b), we shall consider the following cases:

Case 1. x =y = 2 = 13,

(xy)z = (aa)a = a(aa) = x(yz).
Casez. x=y=a’ Zﬁ’it
Subcase 2.1. z=1. (xyl)z=(aa)1=11=1=aa=a(al)=x(yz).

Subcase 2.2. z#1. (xy)z=(aa)z=1z=2z=az=a(az)=x(yz).



Case 3 X =a, y# a, 2 = a.

(xy)z = (ayla = a(ay) = a(ya) = x(yz).

Case 4. x = a, ¥y 2 2, 2 ﬁ 2 e

—

Subcase 4.1. y=z=1. (xy)z=(al)l=al=a=2ai=a(11)=

XLyl

Subcase 4.2. y=1, z£1. (xylz=(aylz=az=2=1z=x(yz).

Subcase 4.3. y#1,z2=1. (xy)z=(ay)l=yl=ay=a(y1)s=

x(yz)e
Subcase 4.4. y=1, z=1. (xylz=(aylz=yz=2(yz)=x(yz).

Using Case2 - Case 4, the commutativity of  and the fact

that (K,*) is a semigroup we can prove the remaining case of (b).

To show (c), note that if x = 1 then x(y+z) = xy+xz.

Assume x # 1. We shall consider the followinz cases:

Case 1. X =Y =2 =91.

a(a+a) = a(1+1) = 1+1 = 313+3a.
Case 2. X =Y = a, 2 £ a.

Subcase 2.1. 2z = 1. x(y+z) = a(a+1) = a(1+1) = 141 =
T+a = aa+al = Xy+X2e.
Subcase 2.2, z £ 1. x(y+z) = a(a+z) = a(1+2) = 1+2 =

aa+az = Xy+X2zZ.

Case 3. X = 3, ¥ # dy 2 de

x({y+z) = a(y+a) = a(a+y) = aa+ay = ay+aa = Xy+X2Z.
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Case be x = a, ¥y # a, 2 # a.

Subcase 4¢1. Y=2=1. x(y+z)=a(1+1)=1+1=a+a=al+al

= XY+XZe

Subcase 4.2. y=1, z2£1. x(y+z)=a(1+2)=1+z2=a+z=,

al+az = Xy+X2Z.

Subcase 4.3. y#1, z2=1. x(y+z)=a(y+1)=a(1+y) =

al+ay = ay+al = Xxy+xz.

Subcase LGebe y£A1, 2#1. x(y+z) =a(y+z) =y+z=ay+az =

XY +XZe

case 5¢ X £ 2, ¥ = Z = Ae

x(1+1) = x1+x1 X+X = Xa+Xa = Xy+XZ.

x(y+z) = x(a+a)

Case 6. x A a, ¥y =a, 2 £ a.

x(1+2) = x1+x2

x(a+z) X+X2 = Xa+Xz = XY+XZ.

1]
1]

x(y+z)
Case 7. x £ a, y # a, 2 = a. Done by Case 6.
Case 8. x £ a, ¥y £ ay 2 # a. Done.

Hence (S,+,°*) is a semiring. Furthermore 5 is a
Classification IV semirin3 w.r.t. a and a is the unique element

in 3 such thar (S-{a},+) is a cancellative semigroup.
o

Examole 4.16. Let K = [x €Q+’ X 1} with the usual addition

and multiplication. Then K is an M.C. semiring. Let a be

a symbol not representing any element of K. Exten + and. from
K to S = Kv{al by ax = xa = 2x for all x €S and a+X = X+a =2+X
for all xe€ 3. Claim that (8,+y°) is a semiring. We must show

that
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(2 (x+y)+z = x+(y+z) © . for all x,y,z €S,
(b) (xy)z = x(yz) for all x,y,z €3 and
(c) x(y+z) = xy+xz for all x,y,z ¢ 3.

To show (a), ‘we shall consider the followinz cases:

Case 1. X =y = 2 = a.

(x+y)+z = x+(y+2)

Case 2. x =y =12, 2 £ a.

(x+y)+z = (a+a)+z (2+2)+2 = 2+(2+2) =2+(2+2) = a+(a+z) = x+(y+z).

Case 3. x=a, y # a, z = a. Done.

Case 4. x = a, y # a, z £ a.

(x+y)+2 = (a+y)+z (2+y)+2 = 2+(y+2) = a+(y+z) = X+(7+2)

Using Case 2= Case 4, the commutativity of + and the

fact (K,+) is a semizroup,we can prove the remaining case of (a).
To show (b), we shill consider the following cases:

Case 1. x =y = 2 = a.

(xy)z = x(yz).

Case 2. X =y = a, z £ a.

(xy’z = (aa)z = (22)z = 2(22) = 2(az)

n

a(az) = x(yz).

ay ¥ # a, 2 = a. Done.

I

Case 3. x

a, Yy #a, z £ a.

Case 4., x

(xy)z = (ay)z = (2y)z = 2(yz) = a(yz) = x(yz).

Using Case 2 - Case 4, the commutative of « and the fact

(£,+) is a semizroup, we can prove the remaining cases of (b).
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To show (c), we shall consider the following cases:

Case 1. X =y = 2 = a.

a(a+a) = a(2+2) = 2(2+2)

x(y+z) . 22422 = aa+aa = Xy+X2z.

Case 2. X =y =a, 2 £ a.

x(y+2) = a(a+z) = a(2+2) = 2(2+2) = 22+2z = aa+az = Xy +xXz.
Case 3. x =a, y £ a, 2 = a. Done by Case 2.

Case 4. x = a, y £ ay, 2 £ a.

2(y+z) 2y+22 = ay+az = Xy+XzZ.

n

a(y+z)

x(y+z)

Case 5. x £ a, ¥y =2 = a.

x(y+z) = x(a+a) =x(2+2) = x2+x2 = Xa+Xa = Xy+XZ.

Case 6. x £ a, ¥y = a, 2 # a.

x(2+2) = X2+X2 = Xa+XZ = Xy+XZ.

x(y+z) = x(a+z)

a. Done by Case 6.

Case 7. x £ a, y £a, z

Case 8. x £ a, y £ ay, z £ a. Done.

Hence (S,+,%) is a semiring. Furthermore, S is a
Classification V semiring weret. a and a is the unique 2lement

such that (S-{a},+) is a cancellative semigroup. 4

Proposition 4+17. Let S be a Classification I semiring wer.t. a.

Then either a is the additive zero or a is the additive identity.

Proof. Since a is a multiplicative zero and S-{a}
is MeCe 4 S is 0-M.C. semiring. By Proposition 4.1 a is the

additive zero or a is the additive identity. #
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Proposition 4.18. Let S be aClassification II semiring were.t.a.

Then S={1} is an M.C. semiring where 1 is the multiplicative

identity of S.

Proof. To show that S-|1} is a semiring, we shall show
that for all x,y e S-{1} , x+y # 1 and xy £ 1. To prove this,
suppose not. Let x,y€S= 1 be such that x+y = 1.

By Corollary 4.7 i), 1 = x+y = xa+ya = (x+yla = 1a = a ,

a contradiction. Suppose there exist x,7 € S={1} such that

1 = xy. Again, by Corollary 4.7 i), 1 = xy = x(ya) = fxy)a = a,
a contradiction. Hence (S-{1},+,¢) is a semiring.

Next, we must show that S-{1} is M.C.. Let x,y,2z¢S=-{1} be

such that xy = xz. We must show that y = z. If x = a then done.

Assume that x £ a.

Case 1« ¥y = a. Then xz = xa = x. If 2z £ a then xz = x1 which
implies that z = 1, a contradiction. Hence z = a so y = z.

Similarly, if z = a then y = a.
Case 2. y # a. Then x,y,2 €S={a} soy = z.
Hence (S={1},+,+) is an M.C. semiring. P

Corollary 4.19. For all Classification II semiring wer.t. a

is always a Classification III semiring were.t. 1 where 1 is

the multiplicative identity of S.

Proof. Follows directly from Proposition 4.18. #
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Proposition 4.20. Let S be a Classification III semiring werete.a.

If there is a b€ S-{a} such that b is M.C. in S then S is M.C..

Proof. Let X,y,2€S be such that xy = xz. We must

show that y = z. If x = a then done. Assume that x # a.

Case 1« ¥y = a. Then x = Xz SO xb = xzb which implies that
b = bz. Therefore ab = bz which implies that a = 2.

Similarly, if z = a then y = a.
Case 2. ¥y # a. Then X,¥,2 ¢S-{a} « Hence y = Z.
Therefore S is M.C.. 4

7% with the usual addition and multiplication is a

Classification III semiring werste 1 satisfying Propcsition 4e20.

Let S be a Classification III semiring werete. 2e
If a is M.C. in S then S may be not M.C.. Every type II

semifield wer.t. a is an example of this.

In Example 4415, S is a Classification IV semiring

wer.t. a.such that a and 1 are M.Ce. in S but S is not M.C..

Proposition 4e21. Let S be a Classification V semiring werete 2.

If there is a be S such that b is M.C. in S then S is M.C..

Proof. Let X,¥,z €S be such that xy = xz. We must .
show that y = z. Since Xy = XZ, xbxy = xbxz so xxby = xxbz

which implies that by = bz. Hence y = 2. 4

zt-{1} with the usual addition and multiplication is a

Classification V semiring wer.te 2 satisfying Proposition L,21,
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Theorem 4.22. Let S be a Classification II semiring w.r.t. a.

Then i) 1+x = 1 or 1+Xx = a+x for all x £ 1.
ii) exactly one of the following holds:
1) (S,+) is a band iesee X+X = X for all x€S.

2) 1+1

a and (S-{1},+) is a band.

3) 141 = a+a and x+x = y+y if and only if x = y for all x,y¢€ S-{1} .

|

proof. i) Let xes-{1}. If 1+x £ 1 then

1+x = a(1+x) al+ax = a+X.

ii) Consider 1+1.

Case 1. 1+1 1. Then x+x = x for all.x €3 so (S,+) is a band.

al+al = a(1+1) = a+a = a and

Case 2. 1+1 = a. Then a+a

for all x e S=}1}, x+x = ax+axX = x(a+a) =..xa = X.

Case 3. 1+1 &S-{1,a}. Then 1+1 = a(1+1) =.al+al = a+a.

Let x,y € S-{1} . Clearly, if x =¥ then X+X = y+y. <Lf

x+x = y+y then x(1+1) = x1+x1 = X+X = J+J = y(1+1), so X =¥« 4

Note. If S is a Classification II semiring w.r.t. a then

141 =1 or 1+1 = a+a.
Now we shall give some example of Theorem 4,22,

Example 4.23. (Z+,min,-} is a semiring. Let a be a symbol not

representing any element of z'. FExtend + and + from z* to

S = Z+U{aﬁ by ax = xa = x for all x # 1, al = 1a = aa = a.

For all x £ 1, a+x = x+a = a = a+a., t+a = a+l =1

Claim that (S,+,+) is a semiring. We must show that
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(a) (x+y)+z2 = x+(y+z) for all X,¥,2 €S,
(b) (xy)z = x(yz) for all X,y,z €3S, and
(¢) x(y+z) =  XYy+X2 for all X,¥y2 €5

First we shall show (a)e.

case 1. X = 1 0ory=10rz=1. Then (x+y)+z = x+(y+2z) = 1.
Assume that x £ 1, y #1 and 2 £ 1.
gggg_g. X =aory=4aorz=ae Then (x+y)+2 = x+(y+z) = a.
Case 3e X3¥y92Z S-= 1,2 . Then done.
Next, we shall show (b).
Case 1. X = 10ory=10rz-= 1. Then (xyl)z = x(yz).
Assume that X,¥,Z €S- {1y.
Case 2. X = & Or y = aor z = a. Then (xy)z = x(yz).
(29_53_):. x,y,zis-{'l,a‘]. Then done.
Lastly, we shall show (c)e
giﬁi_l' x = 1. Then done.
Assume that x £ 1.
x+x = x if 2 = 1,
gggg_g. y = 1. Then x(y+z) = x and X+X2 = x+x = x if 2 = a,

x+xz=x if z € 3=-{1,a}.

Case 3. 2z = 1o Done by Case 2.

Assume that X,¥7,2€ S={1}.
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Case 4. x = a. Then x(y+z)

"

XY +XZ.

Assume that x £ a.

a. x(a+z) = xa = x and Xy+X2Z = X+XZ = X.

1}
1]

Case S5« ¥
case 6. 2z = a. Done by Case 5.

Suppose that X,¥,2 ¢ S={1,a}. Then done.

Hence S is a Classification II semiring w.r.t. a such

that (S,+) is a band. Furthermore 1 is the additive zero.

Example 4.2k. 2% with the usual addition and multiplication is

a semiring. Let a be a symbol not representing any element of z*
Extend + and ¢ from 2 to 8 = z+u[a} by a+x = 1+xfor all x €3S
and ax = xa = x for all x e s-{1}, a1 = 1a = a.

Claim that (S,+,+) is a semiring. We must show that

(a) (x+y)+2 = x+(y+2z) for all X,¥s2 €35,

(b) (xy)z x(yz) for all X,¥,2 €S, and

1}

(c) x(y+z) - Xy+X2 for all X,¥,Z €S.

The proof of (a) is similar to the proof in Example 4.15

used to show (a).

we shall first to show (b).

Case 1. x =1ory="710r 2= 1. Then (xy)z = x(yz).
Suppose that X,Ys2 € S={1} .
Case 2. X =a oOr y =aorz= a. Then (xy)z = x(yz).

Suppose that x,¥,2 € s-{1,a}. Then (xy)z = x(yz).
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Lastly, we shall show (c).

Case 1. x = 1. Then x(y+z) = Xy+Xz.

Suppose that x £ 1.

Case 2. X = Y = 2 = a.

x(y+z) = ala+a) = a(1+1) = 1+1 = a+a = aa+aa = Xy+Xz.

CaBEBC x=y=a.,z’£a.

a(a+1) = a(1+1)

Subcase 3.1. 2z = 1. Then x(y+z)

1}

T+1 a+a = aa+al = Xy+XZ.

Subcase 3.2. z Z 1. Then x(y+z) = a(a+z) = a(1+z)

1+2 = a+2 = aa+az = Xy+Xz.

Case 4o x = a, y # ay, 2 = a. Done by Case 3.

"

Case 5. x =a, y £ ay, 2 £ a.

Subcase S5e.1. ¥ = 2z = 1. Then x(y+z) = a(1+1) = 1+1 =
a+a = al+al = Xy+XZe.

Subcase 5.2. ¥y = 1, 2z # 1. Then x(y+2z) = a(1+z) =1
1+z = a+z = al+az = Xy+X2z.

Subcase 5¢3. y £ 1, z = 1. Done by Subcase 5.2.

Subcase S.4. y £ 1, z # 1. Then x(y+z) = a(y+z) =
Y+Z = ay+az = Xy+XZe.

Case 6. x £ a, ¥y = a, 2 = a.

x(y+z) = x(a+a) = x(1+1) X+X = Xa+Xa = XY+XZe
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Case 7. X #Z a, ¥y =2, 2 £ a.

1]
1]

x(y+z) = x(a+z) x(1+2) = X+X2z = Xa+X2 = Xy+XZ.

a. Done by Case 7.

Case 8. X £ a, ¥ # a, 2
Case.9. x £ a, ¥y £ a, 2 # a. Done.
Lase. 7.

Hence S is a Classification II semiring w.r.t. a

such that 1+1€ s-{1,a}. 4

Example 4.25. (2*-{1,min,+) is a semiring. Let a,1' be

symbols not representing any element of Z+-{1}.

Extend + and + from Z'={1} to § = @*t-11})v{11,aY by 1T = 1
1132 = al' = aa = a, 1'x = x1' = ax = xa = X for all x ez+-{1} :
11410 = 1'%a = a+1! = a+a = a, 1'+x = x+1' = 1. for all xez =-{1}
a+x = x+a = a for all xeZ -{1}.

Claim that (S,+,+) is a semiring. We must show that

(a) (x+y)+2 = x+(y+2z) for all X,¥,2 €3,
(b) (xy)z - x(yz) for all X,y,2 ¢S, and
(¢) x(y+z) = XY +XZ for all X,¥,2 € 3.

First, we shall show (a).
Case 1. X = aory =a or z = a. Then (x+y)+z = a = x+(y+2).

Suppose that x,7,2 € S-{a}.

1]
M
]

Case 2. X 2z = 1'. Then (x+y)+2 x+(y+2).

1]
g
L]

|

1. Then

]
5]
n

Case 3. x =y =1' orx =2 = 1" or y

(x+y)+2 = a = x+(y+2).

Casé 4. exactly one of the following holds: x = 1, 3 =1, z=11,
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Then (x+y)+z = 1' = x+(y+2).
Suppose that X,y,z € S-{1',a}. Then done.
Next, we shall show (b).
9353_1, x =1" ory =1' or z = 1'. Then (xy)z = x(yz).
Suppose that x,y,z €3-{1".
Case 2. X =aorys=aorzs=a. Then (xy)z = =x(yz).
Suppose That Xy¥92 € S={1'ya}. Then (xy)z = x_(yz).
Lastly, we shall show (c).
9253_1. x = 1'. Then x(y+z) = Xy+Xz.
Suppose that x £ 1'.

Case 2. y=2=1'ory=1', 2 =a.ory=a, z = 1Y or ¥y = 2 =

x(y+z) = Xa = X = X+X = XYy+XZ.
Suppose that y,ze€ S-{1',a}.

Case 3. x = a. Then x(y+z) = Xy+xz.

Suppose that x,y,z € S-{1',a}. Then x(y+2z) = Xy+XZ.

Hence S is a Classification II semiring w.r.t. a such

that 1'+1' = a. Furthermore a is the additive zero. 4

Theorem 4.26. Let S be a Classification II semiring w.r.t. a.

Define D = S=-{1} « Then

1) ID(1) = 4 or ID{1) is an additive subsemigroup of ID(a).
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2) If a.GID(1) then ID(1) = ID(a).
3) D-ID(1) = g or D—ID(1) is an ideal of (Dy+).

proof. 1) Suppose ID(1) £ . Let x GID(‘I). Then
14x = 1. a = al = a(1+x) = al+ax = a+Xx, SO X € ID(a). Hence
ID(1) |~ ID(a). For all x,y'EID(1), Ae(xey) = (1+x)+y = T+ = 1y

S0 X+y € ID(T). Hence ID(‘I) is an additive subsemigroup of IDf(a.).

2) Suppose a € ]‘.D(‘I). Then 1+a = 1. We must show that

1}

a so

ID(a) = ID(‘l). Let xGID(a). Then a+Xx

1 = 1+a = 1+{a+x) = T+x. Hence x & ID(‘I). Thus ID(‘I) = ID(a).

3) Suppose D-ID(1) £ 6. Let u.&D-ID(1) and veD. To
show that u+ve D—ID(1 ). Since u,veD, urveD and

1+(usv) = (1+u)+v £ 1 (by Proposition 4.18). 4

Theorem 4.27. Let S be a Classification II semiring.

Then S is not finite.

proof. Let aeS be such that (3-{a},*) is a cancellative
semigroup. Let 1 €S be such that 1x = X for all x¢& S.
Clearly |S|> 2. Suppose that the order of S is finite.
By Proposition 4.18,.8={1} is a finite M.C. semiring cf order

greater than one, & contradiction with Corollary 1.170. 4

proposition 4.28. Let 3 pe a Classification II semiring w.r.t. a.

Then S is not A.Cew

proof. Let X,¥€ s-{1,a} be such that x Zy. By
Theorem 4.22 (i), 1+x = 1 or 1+x = a+x. If 1+x = a+x then
x is not A.C. so done. Suppose 1+x = 1. igain, 1+y = 1 or

1+y = a+y. Hence ¥ is not A.C. or 1 is not AeCee 4
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Note. z; with the usual addition and multiplication is a

Classification I semiring w.r.t. O such that Z; is A.C..

z" with the usual addition and multiplication is a
Classification III semiring w.r.t. 1 and a Classification IV

semiring w.r.t. 2 such that Z' is 1.C..

Z'-{1] with the usual addition and multiplication is a

Classification V semiring w.r.t. 2.such that Z'-{1} is A.C..

Proposition 4.29. Let S be a Classification II semiring wer.t. a.

with either an additive zero or an additive identity.
Then 1 or a(1 is the identity of (3,+*)) is the additive zero

or the additive identity.

Proof. Suppose that S8 has an additive zero ¢ and ¢ £ 1.

Since ac = ¢ = c+cc = c(a+c) = cc. Therefore a = c.

Suppose that S has an additive identity O and O £ 1.

Since Oa = 0(a+0) = 0a+00 = 0+00 = 00, Therefore a = O. #

Proposition 4.30. Let S be a Classification III semiring w.r.t. a.

Then either (S-{a},*) has an identity or S is M.C..

Proof. Case 1. There exists an e € S~{a} such that
e2 = e, Claim that ex = x for all xe¢ 3-{a}. Let x €S-{a},

then er = ex which impnlies that ex = x.

Case 2. Suppose that xa £ x for all x€S=-{a}. Claim that S is

M.C.. Let x,y,2 €3S be such that xy = x=z.

Subcase 2,1, x = a. Then y = z.
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Subcase 2.2. x £ a. If y = a then x = xz which

implies that xz = xaa. Then z = a(if z £ a then z = za,

a contradiction). Similarly if z = a then y = a. Now assume

that y,z € S={al. Then y = z. Hence S is M.C.. 4

If S is a Classification III semiring were.te a such
that (S-{a},*) has an identity then we say that S is a

Classification III semiring w.r.t. a of form 1.

If S is a Classification III M.C. semiring then we say

that S is a Classification III semiring of form 2,

Proposition 4.31. Let S be a Classification III semiring w.r.t. a

of form 1. Then _-
i) a+x = a or a+x = e+x for all x Z a (e is the

identity of (S-{al},*).

ii) exactly one of the following holds:
1) (S,+) is a band.

2) a+a = e and (S={a},+) is a band.

3) a+a = e+e and x*Xx = y+y if and only if x = y for all x,y € S-{a}.

Proof. The proof is similar to the proof of Theorem 4.22.

Note that if S is a Classification III semiring w.r.t. a of

form 1 then a+a = a or a+a = e+e.

Proposition 4.32. Let S be a Classification III semiring w.r.t.a.

of form 1. Define D = S=-{a}. Then

1) I(a) = 4 or ID(a) is an additive subsemigroup of

ID(e) (e is the identity of (S={al,*)).
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2) if e EID(a) then ID(a) = ID(e).
3) D-ID(a) = g4 or D-ID(a) is an ideal of (D,+).

Proof. The proof is similar to the proof of Theorem 4.26.

proposition 4.33. Let S be a finite Classification III semiring.

Then 13| = 2.

Proof. Since (S-{a},*) is a finite cancellative
semigroup then (S-{a},+) is a_group. Let e be the identity of
(5={a},+). Claim that x+y # a for all X,y ¢ S-{a}. To prove
this, suppose not. Let x,y € 3-{al be such that x+y = a.

Then a = x+y = xe+ye = (x+y)e = ae = e, a contradiction.
Hence we have the claim. Thus (S-{a},+,») is a ratio semiring.

Therefore | S={a}] = 1, so S| = 2. 4

Remark %.34. i) Let S be a Classification III semiring w.r.t. a

of form 1 with either an additive zero or an additive identity.
Then a or e (e is the identity of (S={a},+)) is the additive

zero or the additive identity.

ji) Let S be a Classification III semiring w.r.t. a
of form 2 with either an additive zero or an additive identity.

Then a is the additive zero or the additive identity.
Proof. i) Similar to the proof of Proposition 4.29.

ii) Suppose that S has an additive zero c. Then

c = c+c2 = c(a+c) = cc which implies that ¢ = a.

Suppose that S has an additive identity O. Then

Oa = 0(a+0) = 0a+00 = 0+00 = .00 .which implies that a = O. 4
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Proposition 4.35. Let S be a Classification IV semiring w.r.t. a.

Then 1) ax = a if and only if x = 1.

2) if 1+1 = 1 then (S,+) is a band.

"

3) if 1+1 = a then a+a.= aa.

4) if 1+1€ S={1,a} then x+x = y+y if and only if

x = y for all x,ye S-{al.

Proof. 1) If x = 1 then ax = a. Assume that ax = a.

Clearly x £ a, so aax = a2 = a21 which implies that x = 1.

2) Clearly if 1+1 = 1 then (S,+) is a band.
2
3) If 1+1 = a then a~ = a(1+1) = a+a.

4) Suppose that 1+1€ S-{1,a}. Let x,ye S-{al.

If x+x = y+y then x(1+1) = X+X = y+¥ y(1+1) which implies that

x = y. Clearly X =y SO X+X = J+Y¥e. P

Note that in a Classification II semiring w.r.t. a, 1+x = 1 or
1+x = a+x for all x £ 1, 1+1 = 1 or 1+1 = a+a. But in a
Classification IV semiring this ﬁrOperties may not hold:

2% with the usual addition and multiplication is
a Classification IV semiring w.r.t. 3 which is an example of
this d.e. 1+4x £ 1 and 1+x £ 3+x for all xeZ', 1+1 £ 1 and

1+1 £ 3+3.

Now we shall give some example of Theorem L
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Example 4.36. (Z%,min,+) ((Z%,max,+)) is a Classification IV

semiring w.r.t. 2. Furthermore, 1 is the additive zero

(1 is the additive identity).

+

Example 4.37. Z  with the usual addition and multiplication

is a Classification IV semiring w.r.t. 2 such that 1+1 = 2 and

a+a = 4 .

+

xample 4.38. 27 with the usual addition and multiplication

is a semiring. Let a be asymbol not representing any element
of Z". FExtend + and » from Z© to S = Z'u{a} by

ax = xa = 2x for all xe¢ 3=-{1t, 1a = al = a, and

a+xXx = x+a = 2+x for all x € 38S.

Claim that (S,+,+) is a semiring. We must show that

(a) (x+y)+z = x+(y+2z) for all x,y,z¢ S,
(b) (xy)z = x(yz) for all x,y,z €3, and
(el x(y+z) = XY +X2Z for all %x,¥,z ¢ S.

To show (a), use a proof similar to the proof of

Example 4.16 (a).

We shall show (b). If x =1 o0ory =1 or z = 1 then
(xy)z = x(yz). Suppose that x,y,z¢ S={1}. The proof is

similar to the proof of (b) in IZxample 4,16.. .
Lastly, we shall show (c).
Case 1« x = 1. Then x(y+2) = Xy+X2a

Supoose x £ 1.
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Case 2 X = ¥ = 2 = ae.

x(y+z) = ala+a) = a(2+2) = 2(2+2) = 22+22 = aa+aa = Xy+Xz.

Case 3. X =Y =a, 2 £ a.

Subcase 3.1. 2z2=1e x(y+2)=al(a+1)=a(2+1) =2(2+1) =

22+21 = 22+2 = 22+a = aa+a = aa+al = Xy+xz.

Subcase 3.2. z#1. x(y+z)=a(a+z)=a(2+2) =2(2+z) =

22+22 = aa+az = Xy+XZ.

Case 4 x = a, y # ay 2 # a. Done by Case 3.

1

Case 5 x =a, y £ a, 2 £ a.

Subcase 5.1« ¥y = 2z = 1« Then x(y+z) = a(1+1) = 2(1+1) =

2+2 = a+a = al+al = Xy+Xz.

Subcase 52 ¥ = 1, 2 £ 1« Then x(y+2) = a(1-2) = 2(1+z)

= 2+2z = a+2z = a+az = al+az = Xy+xz.
Subcase 5.3« ¥ £ 1, 2 + 1. Done by Subcase 5.2.

Subcase S.4. y £ 1, 2 £ 1. Then x(y+z) = a(y+z) =

2(y+z) = 2y+22 = ay+az = XYy+X2Ze

The proof of the other cases is clear from Case 2 - Case 5 and

the fact that + and » are commutative.

2
Thus 3 is a1 Classification IV semiring w.r.t. a such that a+ra=a,

1+1¢ 8={1,a}t and a is not M.C. in 3. 4

Proposition 4.39. Let 5 be a Classification IV semiring we.rs.t. a

with either an additive zero or an additive identity. Then 1

(1 is the multiplicative identity of S) is the additive zero or

the additive identity.
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Proof. Suppose that S has an additive zero c.

Then 1c c = c+c2 = ¢(1+c) = cc which implies that ¢ = 1.

Supnose that 3 has an additive identity O.

Then 0=01=0(1+0) = 01+00 = 0+00 = 00 which implies that 0 = 1. P

Proposition 4.40. Let S be a Classification IV semiring.

Then S is not finite.

Proof. Let a €3 be such that (8-{a},*) is a cancellative
semigroup. Then a2 # 2. Let 1€3 be the multiplicative identity
of Se. By Theorem 4.8, it is clear that |31 ?» 2. Suppose that
3 is finite. Then (3-{a}*) is a finite cancellative semigroup,
so (3S={al,*) is a group. Let e be the identity of (3={a},*) ,
then 1 = e. Since a2 %4 a, there exists an x & S-{a} such that
aax = 1, so a has a multiplicative inverse. Hence (3,*) is a

group. Thus (3,+,+) is a finite ratio semiring. Hence |3/ =1,

a contradiction.

4
bed

Pronosition 4.41. Let S be a Classification V semiring w.r.t. a.

If there exists a d € 3-{alsuch that a+a = d+d then ax = dx

for all x e 3.

Proof. adz(a+a) ad(da+da), so ad = a = d .

Let ye S-{a}. Then ayd ady = dZy = dyd which implies that

ay = dy. Hence ax = dx for all xe¢ 3. #

Proposition 4.42. Let 3 be a Classification V semiring w.r.t. a.

If a is not M.C. in 3 then thnere exists a de€ S-{al such that

ax = dx for all x ¢ S.
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Proof. 3ince a is not M.C. in S, there exist d,ye 3
such that d £ y and ay = ade Then d = 2 or y = a since if
d,y € 3={a} then aay = aad which implies that y = 4, a
contradiction. Without loss of generality, we may assume that

2 3

2 ; . :
Yy = 2. Then aa = ad where d # a, so a d = ad” which imnlies

that ad = da, so ad = 3.2 = da. Let x € 3-{a}

Then axd = adx

]

dax = dxd, so ax = dx. Therefore ax=dx

for all x e 3. 2

Proposition 4.43. Let S be a Classification V semiring w.r.t. a.

Assume that there exists a d e 3=lal} such that ax = dx for all

X €S. Then 1) a+x=a or a+x=d or a+x=d+x for all x € 3.
2) If a+a=a then x+x=x for all x¢ 3-{dt.

3) If. 4+d4a then a+ta=4d or a+a = d+d and for all

X, y € 3={a},x+x = y+y if and only if x = y.

Proof. 1) Assume that a+x Z a. Then

d(a+x) = da+dx = dd+dx d(d+x)e If d+X = a. then d(a+x) =ad-=dd

1]

which implies that a+x = d. Suppose that d+x £ a, so

d(a+x) = d(d+x) which implies that a+x = d+x.

2) Assume that a+a.= a. Let xe 3-{d,a}.

Then ax(x+x) = ax2+ax2 = (a+a)x2 = ax2 which implies that x+x=x

since x+x #Z a if x+x = a then x+x = a+a, so Xy = ay for all

y € 3 therefore xd = ad dd which implies that x = d or a,

contradictione.

3) Suppose that a+a #Z a. Then
d(a+a) = da+da = dd+dd = (d+d)d. If d+d = ay then d(a+a) = ad

= dd which implies that a+a = d. Suppose that d+d £ a.

Then d(a+a) = d(d+d) which implies that a+a = d+d. 4



Proposition 4.44, Let S be a Classification V semiring w.r.t. a.

Assume that there exists a d € S-{al such that ax = dx for all x €S

and for all x,y¢ S-{a}, x+y £ a. Then
1) a+x = a or a+x = d+x for all x eS.
2) if a+a = a then (3,+) is a band.
Define D = S-{a}. Then
3) ID(a) is an additive subsemigroup of ID(d).
4) if deIp(a) then Iy(a) = I,(a).

5) (D-Ij(a),+) is an ideal of (D #)s

6) if x,ye€ ID(d) then xy e ID(dZ).

Proof. 1) Let xe€S-{a}. Suppose that a+x # a. Then

d(a+x) = da+dx = dd+dx = d(d+x) which implies that a+x = d+x.

If a+a £ a then d(a+a) da+da = dd+dd = d(d+d) which implies

that a+a d+d.

2) Let xeS-{a}l. Then ax(x+x) = ax2+ax2 = (a+a)xa = ax

which implies that x+x = x. Thus (3,+) is a band.

3) Let x eID(a). we must show that x e ID(d).
4° = ad = (x+a)d = xd+ad = xd+dd = d(x+d) which implies that
d = x+d. Thus ID(a) = ID(d)- Since (Ip(d),+) is a semigroup
and for all x,ye ID(a). a+(x+y) = (a+x)+y = a+y = a we get that

X+Y € ID(a). Hence ID(a) is an additive subsemigroup of ID(d).

k) 1If deID(a), let erD(d). Then

a = a+d = a+(d+x) = (a+d)+x = a+x, SO erD(a). Thus ID(a) = ID(d).
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55 Let x € D-ID(a) and yeD. If y EID(a) then

(x+y)+a = x+(y+a) = x+a # a. Suppose that y‘%ID(a). Then

(x+y)+a = x+(y+a) £ a. Hence x+y eD—ID(a).

6) Let x,¥y EID(d). Then x+d = y+d = d. Hence
d2 = (x+d)(y+d) = xy+xd+yd+d2 = xy+xd+d(y+d) = xy+xd+d2 =

xy+fx+d)d = xy+d>. Thus xy € I (d7).

Now we shall give some example of Theorem b b4,

Example 4,45, (Q+,min.') is a ratio semiring. Let a be a

symbol not representing any element in Q+. Then
IQ+(3) = {xeq"|x2>3}. Let s =[{xeqQ | x>6}. Clearly
S is an additive subsemigroup of IQ+(3) and Q+-S is an ideal of
(¢",+). Then by Theorem 1.42 we can extend the binary operations
of @© to K = @'u{a} making K into a semifield of type III and
also a Classification V semifing w.r.t. a by

1) ax = xa = 3x for all xeQ" and a° = 9,

2) a+x = Xx+a = a .. for all xe S and

a+x = x+a 3+x for all x eQ+-S,

3) a+a = 3.

Proposition 4.46. Let S be a finite Classification V semiring.

Then ISt. = 2.

Proof. Let aeS be such that (S-{al,*) is a cancellative
semigroup. Then (S-{a},*) is a finite cancellative semigroup
so (S-{a},*) is a group. Let e be the identity of (sS-{a},’).
Claim that x+y £ a for all x,y e S-{a}l. To prove this, suppose

not. Let x,ye¢ S-{a} be such that x+y = a,
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Then a = X+y = xe+ye = (x+y)e = ae, a contradiction.
Hence we have the claim. Thus (S-{a},+,*) is a finite ratio

semiring. Therefore [S-{a}| = 1 so IS| = 2. #

Now we shall give some examples of a Classification V
semirings S we.r.t. a such that a is not M.C, in S. Then there
exists a d € S={a} such that ax = dx for all xe&S and S has the

following properties:

1) there exist x,y € S={a} such that x+y = a and *

there exist u,ve S-{d} such that u+v = d.

2) there exist x,y ¢ S-{a} such that x+y = a and for all

u,ves, u+v £ d but there exist z,we€ S such that zw = d.

3)there exist x,y € S-{a} such that x+y = a and for all

U, v €S, u+v £ d and uv £ d.

Zxample 4.47. z'-{1,3} with the usual addition and multiplication

is an M.C. semiring. Let a,b be symbols not representing any
element of Z+-{1,3\. We can extend the binary operation + and ¢

of 2°-{1,3} to s = (z'-{1,3})0{a,b} by defining

(i) aa

]
N
o
)
o
1

= ba = 18 and ax = 6x for all x EZ+-{1,3].

bb xb = 3x for all xGZ+—{1,3}.

I
O
o
=]
a2
o’
~
I

(2) a+a = 12, a+b b+a = 9 and a+x = x+a = €+x for all
xEZ+-{1,3}-

b+b = a and b+x = X+b = 3+x for all x:EZ+-{1,3}.

Claim.that (S,+,+) is a semiring. We must show that
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(a) (x+y)+z = x+(y+z) for all x,y,z ¢3S,
(b) (xy)z =  x(yz) for all x,y,z €S, and
(c¢) x(y+z) = Xy+xz for all x,y,2 €S.

To show (a), we shall consider the following cases:
Case 1. X =¥ = z = a. Then (x+y)+z = x+(y+z).

Case 2. x =¥y = a, 2 £ a.

Subcase 2.1. 2z = b. Then (x+y)+z = (a+a)+b = 12+b = 15
and x+(y+z) = a+(a+b) = a+9 = 649 = 15,
Subcase 2.2. 2z Z b. Then (x+y)+z = (a+a)+z = 12+2

6+(6+z) = 12+z.

"

and a+(a+z) = a+(6+z)

y £ a, 2 = a. Done.

]
o
-

Case 3. x
Case 4. x = a, y £ ay, z £ a.

Subcase 4.1. y = .z = b, Then (x+y)+z = (a+b)+b = 9+b =

12 and x+(y+z) = a+(b+b) a+a = 12.

Subcase 4.2. y = by, 2 £ b. Then (x+y)+z = (a+b)+z

9+z and x+(y+z) = a+(b+z) = a+(3+2) = 6+(3+2) = 9+z.

Subcase 4.3. y £ b, z = b. Then (x+y)+z = (a+y)+b =
(6+y)+3 = 6+(y+3) = a+(y+3) = a+(y+b) = x+(y+z).
Subcase 4.4, y £ by 2 £ b. Then (x+y)+z = (a+y)+z =

(6+y)+z = 6+(y+z) = a+(y+z) = x+(y+z).

Ay 2 = Qe

Case 5. x # a, ¥

(x+y)+2 = (x+a)+a = a+(a+x) = (a+a)+x = x+(a+a) = x+(y+z).
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case 6. X £ @y Y =8 % £ a.
(x+y)+2 = (x+a)+2 = (a+x)+2 = a+(x+z) = a+(z+x) = (a+z)+xX =
x+(a+z) = x+(y+2) .

case 7. X £ 2 ¥ £ a, z = 2.

(x+y)+a = a+(y+x) = (a+y)+x = x+(y+2) .

case 8. x £ ay ¥ £ a, z £ a.

Subcase 8.1. x =¥ =2 = b. Then (x+y)+z = x+(y+2)
gubcase 8.2, X =§ = by z # be. Then (x+y)+z = (b+b)+2 =

a+z = 6+2 = 3+(3+2) = b+(3+2) = be(b+z) = x+(y+2z)e.

b. Then (x+y)+2

Subcase 8.3. x = by ¥ £ by, z

(b+y)+b = b+(y+b) = x+(y+2)

Subcase 8.t. x = by ¥ £ b, z £ be Then (x+¥)+2

(b+y)+2 = (3+y)+2 = 3+(y+2) = b+(y+z) x+(y+2) .

1l

111 other subcase can be proven in the same way that

subcase 8.2, Subcase 8.3 and Subcase 8.4 were proven.
To show (b) and (c), we shall consider the following cases:

Case 1. X =Y =2 = 2
(XY)Z = x(yz)-

- 36+36 = aat+aa = Xy+XZ.

I
=~J
no

x(y+2) = ala+a) = a(12)

Case 2. X =Y = 2y 2 £ a.

gubcase 2.1. 2z = Dbe Then (xy)z = (aa)b = (36)b = 108 =

6(18) = 6(ab) = a(ab) = x(yz)e

x(y+z) = a(a+b) = a(9) = shk = 36+18 = aa+ab = Xy+XZe
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x(y+z) = ala+z) = a(6+z)

Case 3.

Subcase 2.2. z £ b. Then (xy)z = (aa)z = 36z .= 6(62) =

x(yz).

X = a, ¥ £ a, z -

(xy)z = (ayla = a(ya) = x(yz).

x(y+z)

Case 4.
Case 7.

(6)(9)

x(y+2z)

6(3z)

x(y+z)

(6y)3

x(y+2)

6(yz)

x(y+2z)

Case 5

(xy)z

18+138

Xa+xa

1}

= a(y+a) = ala+y) = aa+ay = ay+aa = Xy+xz.

X =a, ¥£a 2 £ a.

Subcase 4.1. ¥y = z = b. Then (xy)z = (ab)b = 18b = 54

a(9) = a(bb) = x(yz).

a(b+b) = aa = 36 = 18+18 = ab+ab = Xy+Xz.

Subcase 4.2. y = by 2 £ b. Then (xy)z = (ab)z = 18z

a(3z) = a(bz) = x(yz).

Subcase 4.3. ¥y £ b, z = b. Then (xy)z = (ay)b = (6y)b

6(y3) = a(y3) = a(yb) = x(yz).

- a(y+b) = a(b+y) = ab+ay = ay+ab = ab+ay = XY+XZ.

Subcase 4.4. y £ by 2 £ b. Then (xy)z = (ay)z = (6y)z

a(yz) = x(yz).

6y+62

= a(y+z) = 6(y+z) ay+az = XYy+XZ.

x £ a, y=a, 2= 4ae

(xa)a = a(ax) = (aa)x = x(aa) = x(yz).

Subcase 5.1. x = b. Then x(y+z) = b(a+a) = b(12) = 36

ba+ba = Xy+XZ.

Subcase 5.2« X # b. Then x(y+z)

xy"l'xz .

6(6+z) = 36+6z = aa+az = Xy+XZ.

a(b+z) = a(3+z) = 6(3+2) = 18+ 6z = ab+az = Xy+Xz.

x(12) = xb6+x6 =:
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Case 6. X £ ay ¥ =2y 2 £ ae

(xy)z = (xa)z = (ax)z = a(xz) = a(zx) = (az)x = x(az) = x(yz)

Subcase 6.1. X = by 2z = b Then x(y+z) = b(a+b)

b(9) = a? = '18-!-9 - ba+bb = Xy+XZ.

Subcase 6.2. X = by Z £ be Then x(y+z) = b(a+z)

b(6+z) = 3(6+2) =18+3z = ba+bz = Xy+XZ.

Subcase 6.3. X £ by z = b. Then x(y+z) = x(a+b) =
x(9) = x6+x3 = Xa+Xb = Xy+XZ.
Subcase 6.4. x £ b, z £ b. Then x(y+z) = x(a+z) =

x(6+2z) = xb+xz = Xa+XzZ = XY+XZe.

Case 7. X £ a, ¥ A ay/2/2de
(xy)z = (xy)a = a(yx) = (aylx = x(ya) = x(yz).

x(y+z) = x(y+a) = x(a+y) = Xa+xXy = Xy+xa = XY+XZ.
Case 8. X £ a,y Alas% £ a.

Subcase 8.1e X =¥y =2 =D « Then (xy)z = x(y2z).

x(y+z) = b(b+b) = ba = 18 = 9+9 = bb+bb = Xy+XZ.

Subcase 8.2. X =Y = by 2 £ b. Then (xy)z = (bb)z =

9z = 3(3z) = 3(bz) = b(bz) = x(yz).

x(y+z) = b(b+z) = b(3+2) = 3(3+z) = 9+32 = bb+bz = Xy+XZe.

Subcase 8.3. X = 9y ¥ £ b, z = be Then
(xy)z = (by)b = b(yb) = x(yz).

x(y+2) = b(y+bl} = b(b+y) = bb+by = by+bb = Xy+XZe
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Subcase 8.4. x = Dby ¥ £Z b, z £ b. Then
(xy)z = (bylz = (3y)z = 3(yz ) = b(yz) = x(yz).

x(y+2) = b(y+2) = 3(yfz) = 3y+32z = by+bz = Xy+XzZ .

All other subcase can be proven in the same way that

Subcase 8.2, Subcase 8.3, and Subcase 8 .4 .were proven.

Hence S is a semiring. Clearly (s={a},*) is a semigroup,
aa £ a, é is not M.C. in S, ax = 6x for all x€S, besS={al has
the property that b+b = a, and 2,4 € 5-16} have the property
that 2+4 = 6.
Claim that (sS-{a},*) is a cancellative semigroup. Let X,¥,2 e S-{al
be such that xy = xzZ. We must show that y = Z.

Case 1. x = b.

n

Subcase 1.1. y = b. Then 9 = bz = 3z. Hence z = b = ye.

Similarly if z = b then y = b.

Subcase 1.2. ¥ #Z b. Then 3y = 32 , § = Ze

Case 2. x £ b.

xz so z = b. Similarly

b. Then x3

Subcase 2.1. ¥

if z = b then y = b.

Subcase 2.2. ¥y £ b. Then X,¥,2 € S-{ayb} SO ¥ = Ze

Hence S is a Classification V semiring W.r.t. a. 4

Example k4.48. Z+-{1,2\ with the usual addition and multiplication

is an M.C. semiring. Let a,b be symbols not representing any
element of Z'-{1,2}. We can extend the binary operation of

zt-{1,2) to S = (z*-{1,2}1)v{a,b} by defining
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(1) aa = 16, ab = ba = 8 and ax = lix for all xEB =19,21

bb = 4, bx = xb = 2x for all X e2 w{1,2}

(2) a+a = 8, a+b = b+a = 6 and a+x = x+a = b+x
sor adl xeXL =l1:2)s

b+b = a and b+x = x+b = 2+x for all x ez’ -{1,2}.

Using a proof similar to the proof in Example LA47,
we can show that (Sy+44%) is a semiring. Furthermore, S is a
Classification V semiring w.r.t. a such that b+b = a, bb== 4,

ax = Ux for all x€S and for all u,ves u+v £ b, 4

Example 4.49. Z'-{1} with the usual addition and multiplication

is an M.C. semiring. Let a be a symbol not representing any
element of z*’-{ﬂ. We can extend the binary operaticns of

zt-11} to s = (@*-111)ula| by defining
(1) ax = xa = 5x for all x ¢S5,
(2) a+x = x+a = 5+x for all xe S

Using a proof similar to the proof of Example 4,16,
we can show that S is a Classification V semiring Werete 5y
such that 5x = ax for all x€S, 2+3 = 5, xy # a, and X+¥y £ a

for all x,5¢ Se. 4
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