CHAPTZR V

GENERALIZED QUOTIENT SEMIFIELDS

In [11it was show that if S is a O=M.Ce semiring then
S can be embedded in a O-semifield and, in fact there exists a
smallest O-semifield K (up to isomorphism) containing Se

X is called the quotient O-semifield of Se

In (21 the concept of semifield was genéralized and in
Chapter IV we generalized the concept of O=M.Ce to AeM.Ce
Je now study the problem of whether or not an A.MeCe. semiring
can be embedded in a generalized semifield and if so we would
1ike to know whether or not a smallest such semifield exists up
to isomorphisme. In some CasSES, in order to find a smallest
generalized semifield containing a certain A.M.C. semiring,
we shall have to generalized the concept of a quotient semifield

by restricting the category of semirings under consideration.

In this Chapter every semiring is assumed to have order

greater than two.

Theorem S.1. Let 3 be a Classification I semiring.

Then we can embed 3 in a type I semifield and not in any other

type of semifield.

Proof. Let a €3 be such that (3={a},*) is a cancellative

semigroup. Then ax = a for all x € S. Claim that S is O-M.C.

Let x,y,2€ S be such that xy =xz and x#%a. ToO show ¥ = Ze
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If y = a, then 2 = a. Similarly if z = a then y = 2.
Suppose ¥,z € S={al. Hence y = Z, so we have the claim.

By Theorem 1.27, S can be embed in a type I semifield.

To show that S camnot De embedded in any other type
of semifield, suppose not. Let f:S—>K be a monomorphism where

K is a type II semifield Werete a' or K is a type IIT semifield

WeTele a'e

Case 1. K is a type II semifield Werete a'e Let xeS={ale
Then aa = ax =a. Hence f(a)-;é a's If f(x)#a' then f(a)f(a) =
£(a)f(x) which implies that £(a) = f(x). Thus X = a,
contradiction. Suppose that £(x) = a'se Let yE€ S={a,x}.
Then aa = aye Hence f(a)f(a) = £(a)f(y) which implies that

f(a) = £f(y)e Hence a =¥, & contradiction.

Case 2. K is a type III semifield weret. a's Let x € S={a} be

such that f(x) # a'. Since f(a) Z a' and aa = aX, f(a) = f(x)

which implies that a = X, & contradiction. #

Theorem 5.2. Let S be a classification II semiring We.ret. ae
Assume that 1+x # 1 for all x # 1. Then we can embed S in a

type II semifield and not in any other type of semifield.

Proof. First we shall show that S cannot  be embedded
in a type I semifield or a type III semifielde. To prove this,
suﬁpose not. Then there is a monomorphism f:S—K where K is
a type I semifieid were.te. a' or K is a type III semifield

WeTate a'e



Case 1« K is a type I semifield weret. a'. Let x e S={1,a}l,
so 1x = ax = x. Hence f(a) # a' and £(1) # a'. Since la= aa,
£(1)f(a) =£f(a)f(a) which implies that £(1)=£(a). Hence 1=a,

a contradictioq.

Case 2. K is a type III semifield wer.t. a'e. Since 1M1 =1
and aa = a, clearly £(1) # a' and f(a) £ a'. Since la = aa,

£(1)f(a) = £(a)f(a) which implies that 1=a, a contradiction.

Next to show that S can be embedded in a type II
semifield. By Proposition 4,18, (S=-{1},+,*) is an M.C. semiring.

By Theorem 1.12. s-{1\ has a quotient ratio semiring say (Dy+y*)

where D==(S-i1k):fs-{1ﬁ). Let £:S={11—>D be the natural
embedding. Let e' = [(aya)l € D be the multiplicative identity.
Let a' be a symbol not representing any element of D.

Then we can extend the binary operations of D to K = Dv{a'}

by defining a'e = aa'=a for.alldeK and a'+a = G+a' =e'+d
for all & De In order to define a'+a we consider two cases.

If 141 = 1 then a+a=a. Hence e'+e' = e' so define a'+a' = a'.
If 141 Z 1 then a+a=a-or a+a # a. Hence e'+e' = e' or e'+e' £e',
so define a'+a' = e'+e'. Then K is a type II semifield weret. a'
(by Theorem 1.39). Extend f:8-{11—D to f:5-—K by defining
£(1) = a's Clearly f.is 1-1. To show that f is a homomorphism,
let x,y € S. We shall show that

(a) f(x+y)=f(x)+f(y) and

(b) .flxy)=£(x)E(y)e.

To show (a) we shall consider the following cases:
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Case 1« X =y = Te
a' if 1+1 = 1,
fx+y) = £(141) = {
f(a+a) if 1+1 # 1 by Theorem 4.22 {(3).
a' ' % if 1+1 = 1’
Hence f(1+1) = { '
f(a)+f(a) = e'+ef if 1+1 £ 1.
' a' if 1+1 = 1,
£(1)+£(1) = at+a' = {
et+e' if 1+1#1. Thus f(x+y) = f(x)+f(y).
Case. 2. X = 1'- Y £ 1e
f(x+y) = £(1+y) = f(a+y) = £(a)+£(y) = e'+f(y) = a'+f(y) =

£(1)+£(y) = £(x)+£(y).

Case 3« x #Z 1, ¥y = 1 (same proof as Case 2).

Case 4o x £ 1, y # 1. Done.

To show (b), if x = 1 or y=1 then f(xy)=£(x)f(y).

Suppose that x # 1 and ¥y # 1 then clearly f(xy) = f(x)f(y). 4

Theorem 5.3. Let S be a classification II semiring w.r.t. a.
Assume that 1+a = 1 (hence IS-Z1\(1) = Is_i1§a)).
Then we can embed 3 in a type II semifield and not in any other

type of semifield.

Proof. Clearly, by Theorem 5.2, S cannot. be embedded
in a type I or type III semifield. Since 1+a = 1, X+x = X
for all x e3-11}. By Proposition 4.18, (S={1},+,+) is an M.C.
semiring so QR(5-{1}) exists. Let D=QR(3-{1}).
Let e' = [(a,a)] € D« Then e' is the multiplicative identity
of Do Let f:3={1}—> D be the natural embeddinz. By
Proposition 1.21, ID(gf) = 4 or ID(e') is additive subsemigroup
of D. Claim that D-ID(e') is an ideal of (D,+), Let de DeID(e!)

and[ae D. Choose (x,y)&a , (z,w)eP .
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Case 1. FeID(e'). Then(0‘+|3)+e' = d+(|3+e')= of +e' £ e'.

Hence d +F ¢ D-ID(e').

Case 2. P%ID(e'). Then o' £ p+e' = [(z,w)]+[(a,a)] = [(z+w,u)].
Hence z+w £ w. 3imilarly x+y # y. Claim that yz+xw+yw £ yw.

To prove this, suppose not. Then YyzZ+yw = YZ+YZ+XW+YW = YZ+XW+yW =
yw. Hence y(z+w) = yw which implies that z+w = w, a contradiction.
Therefore ([(z,w)]+[(x,¥)])+[(ay2)] = [(yz+xw,yw)]+[(a,a)] =

Uyz+xwsyw,yw)] £ [(aya)].

Hence D—ID(e') is an ideal of (D,+) so we have the claim.
Let a' be a symbol not representing any element of D. We can

extend the binary operation of D to K = Du{a'}( by defining

(1) a'e = da' = o\ for all & ¢ K,
(2) a'+p = o+a' = al for all & € ID(e')
a'+a = a+a' = e'+0 for all o € D-ID(E' )s
(3) s at ittt =1,
a'ra' = {
e! if 11‘1 £ 1.

Then X is a type II semifield w.r.t. a'(by Theorem 1.39).
Extend f:S={1}—D to f:S—K by defining £(1) = a',
Clearly f is 1-1. We must show that f is a homomorphism.
Let x,y€éS. We must show that

(a) f(x+y) = £(x)+£(y),

(b) fi(xy) f(x)E(y).

The proof of (b) is similar to the proof of (b) in Theorem 5.2.

To show (a), we shall consider the following cases:



1. Then f(1+1) = £(1) = a' = a'+a'=

Subcase 1e1. 1+1

Subcase 1.2, 1+1 # 1. Then £(1+1) =f(a+a)=£(a) = e' =

at+a' = £(1)+£(1).
Case 2. x =1, 7 # 1a

f(1) = a' and

Subcase 2.1e 1+y = 1. Then f(1+y)

£(1)+£(y) = a'+[(yya)). Since 1+y = 1, a+y = a. Hence

Uy,a + [(a,a)] = [y+a,all = [(a,a)] therefore a'+ [(y,a)l =a'.

Subcase 2.2 14y # 1. Then £(1+y) =f(a+y) = £(a)+£(y) =

e'+ f(y,a)l « Since 1+y #1, a+y #a. Hence Ky a)l + [(a,a)] # [(a,a)]

therefore £(1)+f(y) = a'+f(y) = a'+ (y,a)] = e'+ Ky,a)] «
Case 3. x Z1, ¥ = 1. The proof is the same as Case 2e
Case 4. x £ 1, y # 1. Done. 4

Theorem 5.4. Let S be a Classification III semirinz w.re.t. a
of form 1. Assume that a+x#a for all x#a. ( Hence IS-{a3 (a)=26)
or a+e = a (Hence IS- {a,](a) = IS_“,‘ (e))s Then we can embed 3

in a type II semifield and not in any other type of a semifield.

proof. Suppose that a+x=a for all x#%a
i.e. IS_{a}(a) = . Using a proof similar to the proof of
Theorem 5.2 (substitute a for 1 and e for a) we carn show that

we can embed 3 in a type II semifield and not in any other type

of semifield.
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Suppo e = a. By Propositi L.32 (2 =
ppose a+ a y Proposition 4.32 (2) IS—{a}(a)
Is—iak(e)' Using a proof similar to the proof of Theorem 5.3
(substitute a for 1 and e for a) we can show that we can embed

S in a type II semifield and not inany other type of semifield.
o

Theorem 5.5. Let S be a Classification III semiring of form 2.

Then S can be embedded in any type of semifield.

Proof. ..Since .S.. is a Classification III semiring of
form 2 S is an M.C. semiring. By Corollary 1.45, Propostion 1.46
and Proposition 1.47. S can be embedded in all type of

semifield. #

Theorem S5.6. Let 3 be a Classification IV semiring we.r.t. a.

If a is not M.C. in S then we cannot embbed S in any semifield.

Proof. Suppose not. Then there exists a monomorphism
f:35—K where K is a semifield. Let a'e€ K be such that ..-
(K-{a'} 4¢) is a group. Let e' be the identity of (K={a'} y¢).
Since a is not M.C. in S, there exist x,y € S such that x#y
and ax = ay. Therefore x = a or y = a (since if x # a and y#Aa
then a°x = aay which implies that x = y, a contradiction).
Assume that x = a. Hence ye 5-{a} and we have that aa = ay.

Claim that f(a) £ a'e. To prove this, suppose not.

Case 1. K is a type I ro type II semifield. Then

f(aa) =f(a)f(a)=a'a'=a'=f(a). Hence a.2 =a, a contradiction.

Case 2. K is a type III semifield. Then a'=f(a)=£f(1a) =
f(1)f(a) = £(1)a' contradiction Proposition 1.36 (xy #Z a!'

for all x,ye K).
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Hence we have the claim. Since aa = ay, aaay = ayay =
ayya = aayy which implies that ay = y¥y (since y # 1). Thus
aa = ay = yy. Clearly yy # y. Thus f(y) # a' (the proof is
similar to the above proof). Hence f(a)f(a) = £(a)f(y) which

implies that £(a) = £(y) so a = y, a contradiction. 4

o

Theorem 5.7. Let 3 be a Classification IV semiring we.Tete ae
i\ssume a is MeCe. in 3 but S is not M.C. Then we cannot embed

S in any type of semifield.

Proof. Since S is not M.C. there exists an x & S-{af}
such that x is not M.C.. Then tnere exist distinct y,d €S

such that xy = xd. Clearly y a or d = a. Assume that y = a.

1}

Hence d € S-{a} and we have xa = xd. Claim that d= 7. To prove
this, suppose not. Then ad # a (if ad = a then azd = a21 which
implies that d = 1, a contradiction). Hence xaa = xda which
implies that aa = da. Therefore a = d (since a is M.C. in 5)y
a contradiction. Hence we have the claim,. Therefore Xa = X
and a°x = ax = x = 1x so we have a> = 1. Since for all
yes-{1,a}, ay # a, we zet that ayx = axy = xy = yx, which
implies that ay = y. Suppose that 3 can be embedded in a
semifield. Then there exists a monomorphism f:S—X where X

is 2 semifield. Let a'e K be such that (K-{a'l,+) is a group.
Let e' be the identity of (X-{a'},*)s Claim that £(1) £ a'

and f(a) £ a'e

Case 1. K is a type I semifield. Clearly f(a) # a'.

If £(1) a' then f£(a) = £(1a) = £(1)f(a) = a'f(a) = a' =£(1).

Hence a 1, a contradiction.
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Case 2. K is a type II semifield. Clearly f(a) £ a'.
If £(1) = a' then f(a)f(a) = f(aa) = £(1) = a', contradiction

the fact that (K-{a'},¢) is a group.

Case 3. K is a type III semifield. Clearly f(1) £ a'.
If f(a) = a' then a' = f(a) = £(1a) = £(1)f(a) = £(1)a’,

a contradiction.

Hence we have the Claim. Let ze S-[1,ai be such that
f(z) Z a'se Then az = 1z = z so f(a)f(z) = £(1)f(z).

Therefore f(a) = £f(1). Thus 1 = a, a contradiction. 4

Theorem 5.8. Let S be a Classification IV semiring w.r.te. a.

If S is M.C. then S can be embedded in all type of semifield.

Proof. Use Corollary 1.45, Proposition 1.46 and

Proposition 1.47. #

Theorem 5.9. Let S be a Classification V semiring wer.t. ae.
If a is MeC. in S then S can be embedded in all type of

semifield.

Proof. Since a is M.C. in S, S is M.Ce.. Using
Corollary 1,45, Proposition 1.46 and Proposition 1.47 we see

that 3 can be embedded in all type of semifield. 4

Theorem 5.70. Let S be a ClassificationV semiring we.r.t. a.

If a is not M.C. in S then S cannot be embedded in a type I

semifield and 3 cannot embedded in a type II semifield.

Proof. Since a is not M.C. in S, there exists de S-faj}

such that ax=dx for all x &€ S. Suppose that S can be embedded
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in a type I semifield or a type II semifield. Then there exists
a monomorphism f:S—>K where K is a type I or type II semifield.
Let a'e K be such that (K-{a'l,¢) is a group. Clearly f(a)#a'.
Claim that £(d) # a'. If £(d) = a' then a' = a';' = £(d)f(d) =
£(dd) = f(aa) = £(a)f(a) contradicting the fact that (K={a'} 4¢)
is a group. Hence we have the claim. 3ince aa = ad,

£(a)f(a) = £(a)f(d). Therefore f(a) = f(d). Thus a = d,

a contradiction. 4

Theorem 5.11. Let S be a Classification V semiring we.r.t. ae.

o

If a is not M.C. in S and x+y # a for all x,y€ S. Then 5 can

be embedded in a type III semifield.

Proof. Jince a is not M.C. in S, there exists -

dx for all x€S. Since for all X,y ¢S,

d € 3=-{a} such that ax
x+y £ a, (S={al,+,*) is an M.C. semiring. Hence QR(S={al)
exists. Let D = QR(S-{at)s Let f:S-{a}—D be the natural
embedding i.e. £(x) = [(xd,d)] for all x ¢ S=-{al . Let a' be a
symbol not representing any element of D. We can extend the
binary operation of D to K = Du{a'f by defining a'? = dal-=
f(d)d for allatkK and a'+ad = a+a':= f(d)+a for alld € Ke
Then (K,+,s) is a type III semifield wer.t. a' (by Theorem 1.42).
ixtend f:S={aj— D to f:S—>K by defining f(a) = a'.

Clearly f is 1=1. To show that f is a homomorphism.

Since x+y £ a for all x,y €S, a+x = d+x for all x €3 (by

Theorem 4.44 (1)). Let x,y € S. To show that fx+y) =f(x)+£{y)

and f(xy) = £(x)£(y).
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Case 1. X =Yy = ae
f(x+y) = f(a+a) = £(d+d) = £(d)+f(d) = a'+a' =f(a)+f(a) = £(x)+f(y).

.f(xy) = f(aa) = f(dd) = £(d)f(d) = a'a' = f(al)f(a) = £(x)f(y)e.

Case 2. X = a, ¥ £ ae.
f(x+y) = fla+y) = £(d+y) = £(A)+£(y) = a'+£f(y) = f(a)+f(y) =
f(x)+£(y).

f(xy)=f(ay) =£(dy) =£(d)f(y) =a'f(y) = £(a)f(y) =£(x)f(y).
Case 3« Xx £# a, ¥y = a. Same proof as Case 2.
Case 4. x # 4, y # a. Done. #

Theorem 5.12. Let S be a Classification V semiring wer.t. ae.

Assume that a is not M.C. in S. Let d € S-{a} be such that
ax = dx for all xe€S. If there exist x,y ¢ S={al suca that
x+y = a and there exist u,v &€ S={d} such that u+v = d then S

cannot be embedded in a type III semifield.

Proof. Suppése not. Then there exists a monomorphism
f:S—>K where K is a type III semifield. Let a'e X bde such that
(K-{a't 4+) is a group. Let e be the identity of (K-{a'} ,«).
Claim that f(a) # a' and f(d) # a'. Suppose f(a) = a'.

Since there exist x,y € S={a} such that x+y = a, so a' = f(a) =
f(x+y) = £(x)+f(y) = £(x)e+f(yle = (£(x)+f(y))e = a's,

a contradiction. Similary f£(d) £ a'. Hence we have the claim.
But f(a)f(d) = £(ad) = £(dd) = £(d)f(d). Therefore f(a)=£(4d)

so a = dy a contradiction. 4

Theorem 5.1%. Let S be a Classification V semiring w.r.t. a.

issume that a is not M.Ce. in Se. Let d € S={al be such that
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ax = dx for all x € 3. If there exist x,y ¢ S-{al such that
x+y = a and for all u,v & s u+v # d but there exist z,we 3
such that zw = d then S cannot be embedded in a type III

semifield.

Proof. Suppose not. Then there exists a monomorphism
f:S—sK where K is a type III semifield w.r.t. a'. Using a
similar proof to the proof of Theorem 5.12 we can show that
f(a) Z a'. Since there exist z,w ¢S such that zw=4d,.f(d) £a'.
Again, using a similar proof to the one in Theorem 5.12,

f(a) = f(d) which implies that a = d, a contradiction. 4

Theorem S5.14. Let S be a Classification V semiring WeTete ai

Assume that a is not M.Ce. in S. Let de S-{al be such that
ax = dx for all x € S. If there exist x,y¢ S-{a} such that
x+y = a and for all u,v &S, u+v # d and uv # d then S can be

embedded in a type III semifield.

Proof. Claim that (S-{d},+,¢) is an M.C. semiring.
Clearly (3-{d},+) and (3={d},*) are commutative semigroups
and 3-{d} is distributive. To show that S={d} is MeC..
Let x,y,2 € S={d} be such that xy = xz. To show that y = z.

WJe shall consider the following cases:
Case 1« x = a then ay = az.

Subcase 1.1« ¥ = ae. Claim that z = a. If 2z £ a

then dd = aa = az = dz which implies that d = z,
a contradiction. Hence we have the claim. Similarly if z = a

then ¥y = a. Hence Yy = Ze.
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Subcase 1.2. y,ze»s-{d,a}. Then dy = ay = az = 4z

which implies that y = 2.
Case 2. X £ a.

Subcase 2.1. ¥ = a. Claim that z = a. If z £ a,
xd = xz which implies that d= 2z, a contradiction. Hence we have

the claim. Similarly if z = a then y = a. Hence y = Z.

Subcase 2.2. Y2 € S={a,d}. Clearly y = Z.

Thus we have (S={d},+,*) is an M.C. semiring.

Then QR(S-{d}) exists. Let D QR(3-{d}). Let f:S-{a}—>D

be the natural embedding f£(x) = [(xa,a)] for all xé€ D={d}e

Let a' be a symbol not representing any element of D. We can
extend the binary operation of D to K =D v{a'l by defining

a'q = daa' = f(a)s for allo € K and a'+a = a+a' = £(al)+a

for all a ¢ Ko Then (K,+,+) is a type III semifield. Extend
f:5-{d}—D to f:S—>K by defining £(d) = a'. Clearly f is 1-1.
Note that a+x = d+x for all x &3 since d2(3+x) = d2a+d2x =
e = @ (arD WA SRINIEISHAL ARE = dox (since &7,

a+x, d+x € S={d}). Using a proof similar to the one in

Theorem 5.11 (substitute a for d and d for a) we get that f is

a homonorphism. #

Definition 5.15. Let K be 2 semifield were.te. a. If for all

x € K-{a}, a+x # a then K is called almost full. If for all

x e K, a+x # a thwn K is called full.

Definition 5.16. Let 3 be a semiring and a €3. Then (S,a) is

called a pointed semiring.
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Definition 5.17. Let (3,a) and (T,b) be pointed semirings.

Then £:(S,a)—T,b) is called a pointed homomorphism

if and only if
1) f(x+y) =f(x)+f(:;.), f(xy) = £(x)f(y) for all x,y €3,
2) f(a) = b.

Definition 5.18. Let t be a category whose objects are semirings

and whose morphisms are semiring homomorphisms. Let S be

an object of E . A quotient semifield of S we.re.te. the category

ﬁ is a triple (S,f,K) where K is a semifield in € and-
£ & Mor(S,K) is 1-1 such that for each semifield object K' in§
and for each i€ Mor(S,K') there exists a unique g € Mor(X,K')

such that gof = i.

Theorem 5.19. Let S be a Classification I semiring. Let K be

the semifield of type I given by the construction and f:S—K
the embedding given by the construction. Let K' be any type I
semifield and i:S—>K' 2 monomorphism. Then there exists a

unique monomorphism g:K—>K' such that gof = i.

proof. Define g:K—>K' as follows: for d4¢ X, choose
. : i(x)
(x,y) € & define g(d) = iy By Theorem 1.29.we have that

g is a well defined monomorphism. We must show that gof = i.

Let x ¢ S« Then (gof)(x)=g(f(x))=g(l(xu,u)]) (whers u €3 is

not a multiplicative zero) = ij_((xuu)) = i(zgigw = AL%)

Hence gof = i. To show uniquness, suppose that there exists

a monomorphism h:K—>K' such that hof = 1 must show that h=g.

Let de XK. Choose (x,y)ea . Then g(a) = iE;; = %;2?%%;% =

;—‘{1127(%% - h([(xu,w)]) h((yu,wI)™" = h(CCxu,w)d. [(u,yw)]) =

h([{xuu,yuu)]) = h([(x,y)]) = h(a ) Thus g = h. #
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Corollary 5.20. Let S be a Classification I semiring, K the

type I semifield given by the comstruction and £:S—K the
embedding given by the construction. Let t€1 be the category
whose objects are either Classification I semirings or type I
semifields and whose morphiams are semiring homomorphisms.

Then (5,f,K) is a quotient semifield w.r.t. §..

We shall give an example to show that there exists
a Classification II semiring S such that 1+x # 1 for all x#1
and the type II semifield K given by the comnstructiom in

Theorem 5.2 is not the smallest type II semifield comtaining S.

Example 5.21. Consider (z+,nax,'). Then (Z',max,*) is an M.C.

semiring. Let a be a symbol not representing any element of Z+.
Let S = Z'u{a} define ax = xa = x for all x e =11}

1a = al = aa = a, a+x = x+a = x for all x €z -{1} and

1+4a = a+1 = a+a = a. Then 8 is a Classification II semiring
WeTete a and 1+x # 1 for all x # 1. By Theorem 5.2 we can embed
3 in a type II semifield K werete a'e Let f:5S—K be the natural
embedding. (Q+,max,-) is a ratio semiring. IQ+(1) = {xe Q+fxé 1} .
Let T = {xe Q+]x(_% | Let a-be a symbol not representing any
element of @ . Define (1) ax=xa=x for all ke K=q'u {a},

(2) a+x = x+a = a for all xeT, a+x = x+3 = 1+x for all x €@ -T
and 3+3 = 3. Hence (K,+,+) is a type II semifield wer.t. a

(by Theorem 1.39). Define i:S—K by i(1) = a, i(a) = 1 and

i(x) = x for a1l xeZ'. Clearly i is 1-1. To show that i is

a homomorphism we shall consider the following cases:

Let x,y € S.
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Case 1. x =y = 1.

i(x+y) = 1(1+1) = i(1) = 2 = ara = 1(1)+1i(1) = i(x)+i(y).

i(xy) = i(1) = a = aa = i(1)i(1) = i(x)i(y).

Case 2. x =1, ¥ # 1.

a+i(y) = i(1)+i(y)

i(x+y) = i(1+y) = i(y) = 1+i(y)

i(x)i(y).

i(xy) = i(y) = ai(y) = i(1)i(y)
Case 3. x £ 1, y = 1. (the proof similar to Case 2).

Case 4. x £ 1, 7 £ 1.

-1 if X =3y J = ay 1 if X=ay Y=3y

y if x=a, y#Aa, 1+y =y if x=a, Y7 a,
i(x+y) = 4 and i(x)+i(y) =

x if x#Aa, Y= a, x+1=x if x:£a, y=a,

U x+y if x#£a, Y# a, X+y if x£a, Y#a.

= | if x=a, y=a, 1 if Xx=a, ¥= 2,

y if x=a, }"143-1 y ifx:a,_y;éa,
i(xy) = and i(x)i(y) =i

x if x£ay, ¥=12, r x if x#a, y=a

\xy if x#£a, ¥ £ 2, C xy if x#a, YA 2.

Claim that there is not 2 monomorphism h:K—K such that hof = i.
To prove this, suppose not. 3ince (hof)(1) = i(1) = a,

n(a') = a and 1 = i(a) = hof(a) = h([(a,a)]). Since 2=1(2) =
hof (2)=h([(2,2)]) and 5=h([(5,a)]), §=g7(%%§§3?}=h(£(a.sm.
Since h is homomorphism, h(a'+[(2,5)])=h([(a,a)]+[(2,5)]) =
h([(5,5)]) = 1. But h(a')+h(1(2,5)1) = a+§ = 3. Hence a=1,

a contradiction. i
e

Theorem 5.22. Let S be a Classification II semiring Wer.t. ae.

such that 14x £ 1 for all x £ 1. Let K be the type II semifield

Wers.te. a' given by the construction and let f:S—K the natural
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embedding given by the construction. Let K be any type II
semifield Werete a and i:S—>K a monomorphism.

Then the following hold:

(1) if there exist x,y € S={1} such that 54-;(;) = a
i

then there is no monomorphism g:K— K such that gof =

(2) if R is almost full then there exists a unique

monomorphism g:K—3K such that gof = i.

Proof. (1) Suppose not. Then there exists a
monomorphism. g:K—>K such that gof = i. Claim that i(1) = a.
To prove this, suppose not. Then i(1) £ a. If i(a) = a then

i(a) = i(1a) = i(1)i(a) = i(1)a = i(1) so 1 = a, a contradiction.

Hence i(a) £ 3. Thus i(1)i(a) = i(a) = i(aa) = i(ali(a),

S0 i(1)l= i(a) which implices that 1 = a, a contradiction.

Thus i(1) = a, so we have the claim. Since i(a)=1i(aa)= i(a)i(a),
i(a) = e where e is the identity of (K-{aly*)e Since gof =i,
gla') = a and g({(a,al)]) = . Since there exist x,y € S={1}

such that 5-+%%§% = a, i(y)+i(x) = i(y) which implies that

x+y = yo Since g([(x,y)]) = g([(x,a)I0(ayy)]) = g%fgz,zgg% =

Eg.'(z_(_ﬁg(:)) = Th(x) y wWe get that 5. = a'bi—%)y = g(a')q-g( [(x‘y)])

g(at+[(x,7)]) = g([(a,a)]+[(x,5)]) = g( [(x+y,¥y))=g{[(a,a)]) ="¢.

Hence a = e, a contradiction.

(2) Using a proof similar to the proof of (1) we get

that i(1) = a and i(a) =e. Let aeK-{a'l. Choose (x,7) €0 o

i(x)

73] and g(a')=as To show that g is well-defined,

Define g(d3 =

suppose that (x',y')€9 also. Then xy' = x'y which implies

that i(x)i(y') = i(x")i(y). Hence i%;; = ig;:; . Hence g is
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well-defineds To show that g is 1-1, let @& ,FE K be such that
g(a) = g(l’.ﬂ. If d = a' then P = a' suppose 4 # a' and P£are
i(x) . i(2z)

Choose (x,y)€0 and (z,w)€ » . Then 3

G = TG 8° i(xw)=1i(yz)

which implies that xw = yz2 i.e. O = F. Thus g is 1-1. To show
that 3 is a homomorphism, we shall show
ta) ‘g( d\PJ = g(0)g( p) and

(b) g(mp) = g(a)+z(p) for all a,p € K.
To show (a) we shall consider the following cases:

Case 1. Q =P = a's.

g(np ) = g(a'a') = gla')=3=2aa = g(a')g(a') = g(d)g(P).
Case 2. o= a', F;é a'.
g(d«F) = g(a'F): g(F): a g(P): gla') g(FJ-—- g(u\)g(r}:).

Case 3. o # a', [b = a'e Using a proof similar to the proof

in Case 2 we zet that g( d\]'.*) = g(a)g( P)-

Case 4a 0o £ a', P,aé a'e Choose (x,y)ea, (z,w)GF "

i(xz) i(x)i(=z)
g(d\F\) = g([(xz,yw)]) = TGw) S TGt = g(r}\)g([ﬁ).

To show (b) we shall consider the following casese.
Case 1a G:Fs = a'.

Subcase 1e1e 1+1=1. Then a+a=a so g(a+P)=g(a'+a') =

g(a') = a = a+a = g(a')+g(a') = g(ad) +g(['-")-

Subcase 1.2 1+1#1. Then a+aZa so by Theorem 1437,

a+a = e+e. g(o+ P) =g(at+a') =g([(a,a)I+[(a,a)]) =g([(a+a,al)]) =

i(a+a) i(a)  i(a) e+e = a+a = gla')+z(a') = 3(d)+g(r’)‘

i) - i(a) iGa)
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Case 2. 4 =a'y p Z a'e Choose (z,w)EP .

i(w+z)
i(w -

g(dwp) = g(a'+|'3)= z( E(a,a)J+E(Z,WJ]) =g([(w+z,w)]) =

e i8E - 3o H2 - gan)es(p) = 5(8) + s(p) (since F is -

i(w)

in almost full, a+u = e+u for all ue€ K-{a| by Theorem 1.37).

Case 3« O £ a', F: a'se The proof is similar to the proof of

Case.Z2.

Case 4o d& £ a', P,-é a's Choose (x,y)€0 and (z,w)eP

g(+P) = g(Llxwryz,yw)]) = li’%ﬁ‘?‘) = i((:g * 1%:3 = gla)+ g(ph

Hence g is a homomorphism. Let x €S be arbitrary.

If x = 1 then (gof)(1) =g(£(1)) = g(a') = a = i(1) and for all
x € 5={1} (gof)(x) = g(f(x)) = g((x,a)]) = %%%— = i(x).
Hence gof = i. To show uniguness, let h:K—K be a monomorphism

such that hof = i. Let & € K be arbitrarye If 0= a' then

g(a') = a = i(1) = hof(1) = h(a') and for deK-{a'l choose

i(x) (hof)(x) h([(x,a)l) _ _
(x,y)€0 « Then g(Q)= s dratt) h(l:(y'a)])-h(f(x“y)]_)_.

h(d) Hence g is unique.

Corollary 5e.23%. Let 3 be a Classification II semiring w.r.te. a

such that 1+x Z 1 for all x#1. Let K be the type II semifield
given by the construction and f:S—>K the embedding given by
the construction. Let (52 be the category whose objects are
either Classification II semirings st weret. a+ such that

1 4x £ 17 for all x £ 1% (where 17€ S+-{a+ﬁ is such that 1"x=x
for all xe S”) or type II almost full semifields and whose
morphisms are smiring homomorphisms. Then (8,f,K) is a

quotient semifield Werete (62'
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Theorem 5.24. Let S be a Classification II semiring wer.t. a

such that 1+a = 1. Let K be the type II semifield given by the
construction and let f:S—3K be the embedding given by the
construction. Let K be any type II semifield and i:S—K a
monomorphism. Then there exists a unique monomorphism g;K——+K

such that gof = i,

Proof. Let a'e K, be such that (K-{a'l,*) is a group
and let e' be the identity of (K-{a'l,*). Let a€X be such that
(ﬁ-{é%,e) is a group and let & be the identity of (K-{al,*).
Using the same proof as in Theorem 5.22 we can show that

(2).

i(1) = a and i(a) = e« Since 1+a=1, a+e =a.. Hence e €Iz 134

Thus Iﬁ_{ak(i) = IK-tiﬁ(g) by Theorem 1.38 (2). Let g:K—K
be defined as follows: for && K-{a'f,,choose (x,y)é6d .

i(x)
ity)
Theorem 5.22 shows that g is well-defined, 1-1 and -

Define g(a) = and z(a') = a. Then the same proof used in

g(o\P) = .g(d)g(F') for all d,Fe Ke

To show that z(d+p) = g(m)+g(F) for all o ,p € X,

we shall consider the following cases:

Case 1« O= at', P = a'a

Jubcase 1,7. 1+1 1. Then a+a = ae g(d+F}

glat+a') = g(a')=a = a+a = g(a')+s(a') = g(d)+g(F}.

Subcase 1.2« 1+1 Z 1. Then a+a = e+e i(a)+(a) =

i(a+a) = i(a) = e. g(d-kF) = glat+a') = g(e') = g([{a,a)]) =
i—((:j)- = € = a+a = g(d)+g(F).

Case 2o Q £ a', F): a'. Choose (x,y)ed .
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Subcase 2.7e chEID(e'). Then O +a' = a'e Since

de I (e’), ((x,y)] +[(aya)] = [(a,a)] hence x+y ='y. Therefore

i(x)+i(y) = i(y). -Therefore %%;%1-3 = es Thus %%;%1-5 = a.

2(d+ )-g(d+a"}=g(a")=5. %(x)+5=g(d)+g(a')=g(d)+g( )e
i(y) P

Subcase 2.2. d §¢Ip(e'). Then a'+d = e'+d . Claim

that ;(3)-+5 Z a. To prove this, suppose not. Then
i(x)+i(y) = i(y) which implies that x+y = y so [(x,¥7)]+a,a)] =
[(x+y,y)] = [(a,a)]. Hence dE€ ID(e'), a contradiction. Thus

i_((;c_r%+a=%-%%+g- g(d+F)=g(d+a')=g(c\+e')=

i(x+y)  i(x) = i(x)

g([(x,7)]+[(aya)]) = 3([(x+y,¥)]) = 5 STt s ET?T*'5=
g(a) + g(FL

g(0)+z(ar)

Case 3« O

a', F £ a'. Using the same proof as used in Case 2

we get tgat g(0+[5) = g(d) + g(P).

Case 4e d £ a', F Z a'. Choose (x,y)é6d and (z,w)GF .

i(xw+yz) i(x) i(z)
et Tewy - 809 )+l Pl

g(d+ F) =g([(xw,yz,yw)l) =

Yence g is a monomorphism. Usinj; the same proof as in
Theorem 5.22 we can show that g is the unique monomorphism from

K to K such that gof = i. 4

Corollary 5e25. Let S be a Classification II semirinz weret. a

such that 1+a = 1. Let K be the type II semifield given by the
construction and let f:S—> K be the embedding given by the
construction. Let %; be the catezory whose objects are either
Classification II semirings S* WeTate a' such that 1‘+a* 5;1*
(where 1¢ S‘-{a‘ﬁ is such that 1 x = x for all x:eS‘) or type II
semifields and whose morphisms are semiring homomorphisms.

*
Then (S,f,K) is a quotient semifield w.r.t. ?2 .
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Theorem 5.26. Let S be a Classification III semiring weret. a

of form 1 such that a+x # a for all x Z a. Let X be the type II
semifield ziven by the construction and let f:S—>K be the
embedding 3ziven by the construction. Let X be any type II
semifield weret. a and i:S—>K a monomorvhism. Then the following

heold:

. 1 ( - -
(1) If there exist x,y € S-{a} such that %%;%i-a = a

then there is not monomorphism g:K—>K such that gof = i.

(2) If K is almost full then there exists a unique

monomorphism  g:K—K such that gof = i.

Proof. Let e be the identity of (S={a},*) use a proof
similar to the one used in Theorem 5.22 (substitute a for 1 and

e for a). 4

Corollary 5.27. Let S be a Classification III semiring w.r.t. a

of form 1 such that a+x Z a for all x#a. Let K be the type II
semifield ziven by the construction and let f:S—>K be the

embeddinz siven by the construction. Let %} be the catezory

* *
al

whose objects are either Classification IIlsemirings 3 wer.t.2
* * * *

of form 1 such that a +x £ a for a1l x€ S -{a}t or type II

almost full semifields and whose morphisms are semiring

homomorphisms. Then (S,f,K) is a quotient semifield wa.r.t. ?3.

Theorem 5.28. Let S be a Classification III semiring w.r.t. a

of form 1. Let e be the identity of (S—{a},'). Assume that

a+e = 1. Let K be the type II semifield given by the construction
and let f:3S—>X be the embedding given by the construction .

Let K be any type II semifield and i:S—>K a monomorphism.

Then there exists a unique monomorphism g:K—>K such that gof = i.



114

Proof. Similar to the proof of Theorem 5.24.

#

Cordllary 5.29. Let S be a Classification III semiring w.r.t. a

of Torm 1« Let e be the identity of (S-{al,*) and assume that

e+a = a. Let K be the tyve II semifield given by the construction
and let £f:S— K be the embedding ziven by the construction.

Let fB‘ be the category whose objects are either B
Classification III semirings 3* werete a* such that a*+e* = a*.
(e* is the identity of (S*={a},+)) or type II semifields and

whose morphisms are semiring homomorphisms. Then (S4f,K) is

a quotient semifield w.r.t. fs .

Theorem 5.30. Let S be a Classification III (IV,V) semiring

wers.te a such that S5 is M«Cees Let K be the O-semifield

[90 -semifield ] given by the construction and let f:S—K be the
embedding given by the construction. Let K be any O-semifield
[cm -semifield] and i:S—>K a monomorphism. Then there exists a

unigque monomorphism g:K-—*K such that gof = i.

Proof. We shall prove the O-semifield case (the

oo -semifield is proven similarly). By the construction of K,
K = QR(S)u {d} where a' is a zero element of K and the natrual
embedding f:S— K is given by f:3S—QR(S). Let a be a zero
element of K. Claim i(x) #Z a for all xe S. To prove this,
suppose not. Let x&§ be such that i(x) = a. Let yes-{x{.
Then i{xx) = i(x)i(x) = aa = a = ai(y) = i(xy) which implies
that xx = xy. Thus x = y, a contradiction. Hence we have the
¢laim. Define g:K—>K as follows: for de&K- a' , choose ..

(x,7y)€08 . Define g(ad ) = —}E—;—% and g(a')

a. To show that

g is 1-1, let ¢ ,p € K be such that g(d ) g(F;x
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If & = a' then r' = a', Suppose that G,Fv £ a'. Choose (x,y)éd

and (z,w)eF- . Then %; = % . Hence i(xw) = i(yz)

which implies that xw = yz. Hence & =\5 . Let d, P € K

n

We shall show that g(d+,‘b) g(d)+g(F) and g( 0‘}5 ) = g(d)g(F).

Case 1. d:P:a'.

|
I

g(a +P) = g(a'+a') = g(a') = a = a+a = g(a')+g(a') = g(0)+g(F) i

{oh]
"

1}

g( dF- ) = gata') = g(a') = ai = glat)g(a') = g(c‘hﬁg(P).

Case 2. O =:a', P;é a's

g(d+p) = g(a'+f>) = g( P)
g( ap ) = g(a']&)

a+g( [3) = gla')+g( P ) g(d)+g(F ).

||
i
I

glat) = =§g(F)=g(a')g(F) g(O‘)g(F).

Case 3. o £ a', P.—. a'e The proof is similar to the proof of

Case. 2,

Case 4. o £ a', P)é a'. Choose (x,y)€0 and (z,w)e‘-ﬁ .

g( & )+g(F5).

i(xweyz)  i(x)  i(z) _
iyw) T i(y) T Iw T

g(d+ [b) = g{[(xw+yz,yw)]) =

g( dF ) = g( [(xzyyw)]) = ‘;“E;f,; iE;giE% = g(9)g( F e

e must show that gof = i. Let x &3 be arbitrary.

i(xa) i(x)i(a)

gof(x) = g(f({x)) = g(l(xaa)]) = AIERSTN D = i(x).

Hence gof = i. To show the uniqueness, suppose that there exists
a monomorphism h:K—K such that hof = i.

Then h(a') = 3 = g(a'). Let d & K-[a'l and choose (x,y)ed .

= i(x) hof(x) _ h(f(xa,a)l) _ _
Then g(a ) = i(y) - hof(y) -~ h([(ya,a)i) ~ h([(xa,a)]L(a,ya)]) =

I

h(d ). Thus g = h.
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Corollary 5.31. Let S be a Classification III (IV, V) semiring

such that S is M.C., let K be the O-semifield (c-semifield)

given by the comstruction and let f:S—K be the embedding given
by the construction. Let <€o( %:n) be the category whose objects
are either M.C. Classification III semiring or

M.C. Classification IV semirings: or M.C.Classification V semirings
or O-semifields (o -semifields) and whose morphisms are

semiring homomorphisms.

Then (S,f,K) is a quotient semifield werete %; ( g;ﬂ

We shall give some example that there exists a
Classification III (IV) semiring S such that S is M.C. and the
type II semifield given by the construction in Theorem 5.5
(Theorem 5.8) is not the smallest type II semifield containing S.
(i.e. there exists a Classification III (IV) semiring S such that
S is M.C. and there exists a monomorphism i:S—>K' where K'!' is a
type II semifield but there does not a monomorphism g:K—>K!
such that gof = i where f£f:S— K is the embedding given by the

construction and K is the type II semifield given by the constrution.

Zxample 5.32. Z' with the usual addition and multiplication is

an M.C. Classification III semiring w.r.t. 1 and also an M.Ce.

Classification IV semiring w.r.t. 2. Let a' be a'symbol not

representing any element of QR(Z').

Define a'+a' = [(2,1)], a'+a = d+a' = [(1,1)]+ 0 for alloéQR(Z")
a'a'! = a' and a'@ = da' = O for all &€& QR(Z").

Then K = QR(Z' Ju{al is a type II semifield given by the

construction and f:Z'— K define by f£(x) = [(x,1)] for all xexh

is the embedding given by the construction.
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Q" with the usual addition and multiplication is a ratio semiring
Let a be a symbol not representing any element of Q+.
Define ax = xa = x for all xe Q+u{a‘| and
a+x = x+a = 1+x for all x eQ'u{aj.
Then K = Q+U{a\ is a type II semifield.
Define i:Z—>K by i(x) = x for all x ¢Z'={1} and i(1) = a.

Clearly i is 1-1 and i(xy) = i(x)i(y) for all x,y €Z* and

1+1 = a+a = 1(1)+i(1) iftx=y3 =1,
i(x+y) = x4y = 14y = a+y = 1i(1)+i(y) ifx=1,34#%1,

x+1 = x+a = i(x)+i(1) ifx£1,5y=1,

x+y = i(x)+i(y) if x=1,y5y=1.

Hence i is a homomorphism, Claim that there does not exist a
monomorphism g:K—>K such that gof = i. To prove this,

g(£(1)) = g(L(1,1)]).
gla'[(1,1)]) = g([(1,1)]).

suppose not. Hence a = i(1) = gof(1)

Thus g(a') = g(a')a = g(a')g({(1,1)])

1}

Therefore .a' = [(1,1)], a contradiction. 4

Example 5.33. (Z',max,s) is an M.C. Classification IIT semiring

wer.t. 7 and an M.C. Classification IV semiring w.r.t. 2.

Let a' be a symbol not represeﬁting any element of QR(Z').

Define a'+a' = [(1,1)], a'+8 = o+a' = [(1,1)]+0 for all de QrR(Z")
a'a' = a' and a'o = da' =0 for all & ¢ QR(Z').

Then K = QR(Z")v{a'} is a type II semifield given by the

construction and f:Z—>K define by f(x) = [(x41)] for all xez™*

is the embedding given by the construction.

(%, max,*) is a ratio semiring. Let S = {xEQ+[ x<%t.

Clearly S is an additive subsemigroup of IQ+(‘T) and Q'-35 is an

ideal of (Q%,+). Let a be a symbol not representing any element

in Q"'. Extend + and *» from Q+ to K = Q+u{a‘| by defining
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(1) ax =xa = x for all x &K,
(2) a+x = x+a = a for all xé€S,

a+x = x+a = 1+x for all er+—S
(3) a+a = 1.

By Theorem 1.39, K is a type II semifield.

Define i:Z*—K by i(x) = x for all x 3 A Clearly i is a
monomorphism and i(1) £ a. But there does not exist a
monomorphism g:K—>K such that gof = i. To prove this,

suppose not. Claim that g(a') = a. If g(a') £ a, then

g(a') = g(a')g(a'), Hence g(a') =1 = i(1) = g(£(1)) = g([(1,1)])
[(1,1)], a contradiction. Hence we have the claim.

g(£(1)) = g([(1,1)]) and & = i(4) = g([(1,4)1),

Thus a'

Since 1 = i(1)

1. gL, 1))
L= sfffﬁ;q)l)

Therefore a = a.+-;_|: = g(a)+g([(1,4)]) = gla'+{(1,4)]) =

g([(1,1)1L0,%)]) = g(L(1,4)]).

1]

gCC(1,1)]+[(1,4)]) = g([(4,4)]).- Thus a = [(4,4)], = co;ltradiction.#

Theorem 5.34. Let S be a Classification III semiring w.r.t. a

such that S is M.C., K be the type II semifield given by the
construction and let f:S—>K be the embedding given by the
construction. Let K be any type II semifield w.r.t. a and
i:S— K a monomorphism. Then the following hold:

1) if i(a) = a then there is no monomorphism g:K—K

such that gof = i.

2) if i(a) £ 3 and K is a full then there is a unique

monomorphism g:K—>K such that gof = i.
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Proof. Let a'¢ K be such that (K-{a'l,*) is a group.

1) Suppose not.
Hence 3 = i(a) = gof(a) = g(£(a)) = g([(a,al)l).
g( [(a;&)])-

Thus g(a') = g(a')a = gla')g([(ayal)]) = gla'[(a,a)])

Therefore a' = [(aja)], a contradiction.

2) If i(x) = 3 for some x ¢S-{a} then

3 = i(x) = i(xa) = i(x)i(a) = ai(a) = i(a). Hence x

n
s

a contradiction. Then i(x) £ a for all xeS.

Define g:K—H-{_ as follows: forae K—{&H, choose (x,y)€0 .
Define g(d ) = 14(;—; and g(a') = a. Using a similar proof to
the one used in the proof of Theorem 5.22, we get that

g is well-define, 1-1 and g( ap ) = g( o )g( F) for all d,PEK.
We must show that g(cn-p) = g(d )+g(,’b ). for all d,P € K,

Let & be the identity of (K-{al,*).

Case 1. 04 = P = a'.

]
®
+
(]

g(d+ F) = g(a'+a') = g( [(a,a)]+[(a,a)]).= g([(a+ayal])

= a+3 (since K is full , a+a = e+e) = g(d )+g( F’ )e

Case 2. d =a'y P # a'. Choose (z,w)ep .

n

g( :JHF) = g(a'+F ) = g([(asa)]l+[(z,w)]) = g([(w+zyw)])

i(w) i(=z) = i(z) _i(=z) _
i(:) * 1_((?) - e*j_'i(ﬂ = &7 T g(a )+g( F).

Case 3. & £ a', ]:L: a'. Use the same proof as in Case 2.

Case 4. & £ a'y P = a'. Choose (x,7)€0 (z,w)eP .

g(0+ P) = g(Llxwsyz,w)]) = i—%; » 2 gaea(p).

Using a proof similar to the one used in Theorem 5.22,we get -

that g is the unique monomorphism such that gof = 1i. 4
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Corollary 5.35. Let S be an M.C. Classification III semiring
Weret. a. Then (S,a) is a pointed semiring.

Let K be the type II semifield‘given by the construction.

Let a' € K be such that (K-{a'},*) is a group.

Let e' €K be the identity of (K-{a't,*). Then (K,e') is a pointed
semifield. Lét £:5—>K be the embedding given by the construction,
Let %;'2 be the category whose objects are either pointed semirings
(s*,a*) where S* is an M.C. Classification III semiring w.r.t. a*
or a pointed semifields (K,&) where X is a type II full Semifields
we.r.t. T and & ié the identity of (K-{3},*) and whose morphism

are pointed semiring homomorphisms.

Then ((S,a),fy(K,e’)) is a quotient semifield w.r.t. Z} r
9

Theorem 5.36. Let S be an M.C. Classification IV semiring w.r.t. a

and let 1 be the identity of (Sy+).

Let K be the type II semifield given by the construction and
let f:S—K be the embedding given by the construction.

Let K be any type II semifield w.r.t. a, and

i:5—X a homomorphism. Then the following hold:

1) if i(1) = I then there is no monomorphism g:K—K

such that gof = i.

2) if i€1) # 3 and K is full then there exists a unique

monomorphism g:K—>K such that gof = i.

Proof. Similar to the proof of Theorem 5.3%.
2E00L #
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Corollary 5.37. Let S be an M.C. Classification IV semiring.

Let 1 be the identity of (S,*). Then (S,1) is a pointed semiring.
Let K be the type II semifield w.r.t. a' given by the construction.
Let e' be the identity of (K-{a'ly*) then (K,e') is a pointed
semifield. Let f:3S—>K be the embedding given by the construction.
Let f4'2 be the category whose objects are either pointed
semirings (S*,1*) where S* is an M.C. Classification IV semiring
and 1* is the identity of (S*,+) or a pointed semifields (K,e)
where K is a type II full semifields w.r.t. a and € is the
identity of (K-{al,+) and whose morphisms are pointed semiring
homomorphisms.

Then ((S,1),fy(Kye?)) is a quotient semifield w.r.t. tL >
?

Theorem 5.38. Let K be any type III semifield w.r.t. a.

Let d€ K-{a} be such that ax = dx for all x ¢ K.
Let K be any type III semifield w.r.t. a.
Let d € K-{a} be suchithat ax = dx for all xe K.

If there exists a monomorphism g:K—K then g(a) = a and g(d) = d.

Proof. Let e,e be the identities of (K-{af,*) and
(K-{aly+) respectively. Suppose that g(a) £ a.
Then g(a)g(a) = g(aa) = g(ad) = g(a)g(d) which implies that
g(a) = eg(d). Since g(d) £ a so a = d, a contradiction.
Thus g(a) = a. Since g(d)g(d) = g(a)g(d) so

g(d) = g(a)e = ae = a- #

Theorem 5.39. Let S be an M.C. Classification III (IV) semiring

W.r.t. a and let K be the type III semifield w.r.t. a' given
by the construction. Let [(d1,d2I]e.K-{a'k be such that
a'd = [(d,l,da)]ck and a'+0 = [(d ,d )]+0 for alld€e K and

let £:5—>K be the embedding given by the constructicn.
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Let & be ant type III semifield w.r.t. a. Let deR-[al ve
such that ax = dx for all x éK and let i:S—K be a monomorphism

Then the following hold:

1) if there exists a ye S such that i(y) = d but
£(x) = [(d1,d2)j for all x €3, then there doés.not exist a

monomorphism g:K—3K such that gof = i.

2) if there exist y,ueS such that y # u and i(y) = d,
f(u) = [Id1,d2)]then there does not exist a monomorphism

g:Kk—>K such that gof = i.

%) if there exists a u &S such that f(u) = [Id1,d2H
but i(y) £ d for all yeS then there does not exist a

monomorphism g:k—>K such that gof = i.

) 4) if i(x) # @ and £(x) # [(d,,d,)] for all x&S and
1(d])
i(d,)

such that gof = 1i.

£ d then there does not exist a monomorphism g:Kk—K

5) if i(x) # d and f(x) # f(d1,d2)] for all xe3 and
i(a,)
i(dz)
monomorphism g:kK—>K such that gof = i.

- d and K is a full then there exists a unique

6) if there exists a y¢ S such that i(y) = d and
£(y) = [(d,,d,)] and K is a full then there exists a unique

monomorphism g:Kk—>K such that gof = i.

Proof. Note that i(x) # a for all x ¢S since if there
exists an x¢ S such that i(x) = a2 then a = i(x) = i(xa) = I =
i(x)i(a) = 3i(a), a contradiction. Similarly, if S is a

Classification IV semiring then i(x) # a for all x €S.
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We shall prove the Classification III semiring case the

Classification IV semiring is proven similarly.

1) Suppose not. Then gof(y) = i(y) =4d = g([(d1,d2}])

By Theorem 5.38, we have that £(y) = [(d1|d2)], a contradiction,

2) Suppose not. Then i(u) = gof(u) = g([(d1:d2)]) =

d = i(y). Hence u = y, a contradiction.

3) Suppose not.

Then i(u) = g(f(u)) = 8([(d1,d2)]) = d, a contradiction.

4) Suppose not. Then i(d,) = g(£(d;))= g([(d),a)])

sk i(d,) &(L(d;,a)])
and i(dy) = g(£(d;)) = g([(dyy2)]). Hemce Ty = TrTrag o))

% g([(d1,a)j[(a,d2)j) = g([(d1,d2)]) = d, a contradiection,

5) Define g:K—> K as follows: for da¢ K-{a'},
Choose (x,y)éd . Define g(d ) =%§§% and g(a') = a.
Using the same proof as in Theorem 5.22, we can show that g is
well-defined and 1-1., To show that g is a homomorphism,

let & ,pe K. Since K is full, a+x = d+x for all x € KX.

Case 1. g = P = a',

g(o+ P) = glat+a') = g([(d1,d2)_'j+ [(d_l,da)]) = g([(d1d2+d1d2,d2d2)])

i(ay)  i(d,)
"i(a,) T i)

g( CLF‘ ) - g(a'a') = 3([(d1,d2)3[(d1gd2):1) = g(f(d1d1|d2d2)_]) =

= d+d = a+a = g(dn)«l-g(?).

i(dl) i(d])

- 3 - 33 - (d (P
1(a,) (ay) i
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Case 2. @ = a', F: £ a'. Choose (z,w)eF) ~
g(d+p) = g(a'+F) = g( [ (dqyd,)]+ [(z,w)]) = g([(d wed,z,dw)]) =

i(d,) i(z) i(z) - i(2)
Ty V500 < Wiy =gy = SR

g([(d1.d2-)JL(Z,WJ]) = s([(d.lz,daw)]) =

g( dF) = g(a'[(z,w)])

i(d,)i(a) )
I, i) = Fel ) = BaCp) =.atd Jel

Case 3. 0 £ a', F) = a'. The proof is similar to Case 2.

Case 4. & £ a', r Z a'. Choose (x,y)€d , (z,w)eP "

g(d+p) = g(L(xw+yz,yw)l) =;i£§%§%§) = %%§%+%%§% g(<3)+g(P ).

g( 8p) = g(Llxz,yw)l) = %; 12 - g(ae(p).

To show that gof = i, let xe€S.

Then g(£(x)) = g(l(x,a)]l) = ijég = i(x). Thus gof

I
-
L]

Using a similar to the one used before, we have a unique

_ monomorphism g:K—K such that gof = i.
6) since £(y) = [(d5,d,)], [(73a)] = [(45,8,)].
Hence yd, = d; so i(y)i(da) - i(d1) which implies that

i(d1)
i(dz)

i(y) = d. By Case 5, there exists a unique monomorphism

g:k—>K such that gof = i.

Theorem 5.40., Let S be an M.C. Classification V semiring,

let K be the type II semifield given by the construction and
let £:S—>K be the embedding given by the construction.

Let K be any full type II semifield w.r.t. a and

i:S—% K a monomorphism. Then there exists a unique monomorphism

g:Xk—K such that gof = i.
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Proof. Claim that i(x) # a for all x&S. To prove this,
suppose not. Let xe¢S be such that i(x) = a.
Then i(x) = a = aa = i(x)i(x). Hence x = xx. Since 3 is M.C.,
for all yeS,.xxy = xy which implies that xy = y.
Thus x is the identity of (3,°¢), a contradiction.
Let a'e K be such that (K-{a'{,*) is a group.
Define g:Kk—> K as follows, for d e K-{a'l, choose (x,y)e% .
Define g(d ) = %%;% and g(a') = a. Using a proof similar to
the one used in Theorem 5.34 (2), we get that g is the unique

monomorphism such that gof = i. 4

Corollary 5.41. Let S be an M.C. Classification V semiring,
let K be the type II semifield given by the construction and

let f:3S—>K embedding given by the comstruction. ~.°  _

Let ‘€5 2 be the category whose objects are either M.C.

9
Classification V semirings or full type II semifields and whose
mophisms are semiring homomorphisms. Then (Syf4K) is a quotient

semifield WeTete t;’z.

Theorem S5.42. Let S be an M.C. Classification V semiring were.t.

a and let K be the type III semifield weret. a' given by the
construction. Let [(d1,d2)]€K- [a'ﬁ be such that a'd = E(d1!d2)]d
and a'+8 = [(d,,d,)]+4 for all A €K and let £:S—3K be the
embedding given by the construction. Let K be any type III
semifield weret. a, let d € K-{a} be such that ax = dx for all

x ek and let i:S—> K be a monomorphism. Then the fcllowing hold:

1) if there exists an x € S such that i(x) = a then =
there does not exist a monomorphism g:K-—*E such that gof = i.

Assume that i(x) Z a for all x €S.
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2) if there exists a y €S such that i(y) = d and
f(x) £ [(d1'd2)] for all xeS then there does not exists a

monomorphism g:K—>K such that gof = i.

3) 1if there exists a y €S such that i(y) = d and there
exists a uesS such that f(u) = [(d 4,d )] and u £ y then there

does not «xist a monomorphism g:K—> K such that gof = i.

4) if i(y) #Z d for all ye S and there exists a ues
such that f(u) = [(d1,d2)] then there does not exists a

monomorphism g:K—K such that gof = i.

5) if i(y) # d for all yeS and £(y) £ [(d,,d,)]

: i(d,)
for all ye S and I(d% Z d then there does not exists a
2

monomorphism g:K—K such that gof = i.

6) if i(y) # d for all yeS and £(y) £ [(d,,d,)] -

i(d,)
for all ye S and I“T‘I)_ = d then there exists a unique
2

monomorphism g:K—3>K such that gof = i.

+?) if there exists a y €S such that i(y) = d and
f(y) = [(d‘l'dz)] and K is full then there exists a unique

monomorphism g:K-—)K ‘'such that gof = i.

Proof. 1) .Suppose note. Then g(f(x))=1i(x)=a=g(a')

(by Theorem 5.38). Hence f(x) = a'y, a contradiction.

2)93)44)45),6),7) are proven in a similar way

to the proofs in Theorem 5.39. #
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Theorem 5.43, Let S be a Classification V semiring we.r.t. a

such that a is not M«Ce. in S. If there exists a monomorphism
i:S—K where K is a type III semifield weret. a and d € K-{a}

is such that ax=dx for all x €K then either i(a)=4d or i(a) = a.

Proof. Let d €S-{a| be such that ax=dx for all x¢ S.

Suppose i(a)#a and i(a) #d. Let e be the identity of (K-{af,¢).

Case 1. There exists an x € S-{a} such that i(x) = a.

Then di(a)=ai(a) =i(x)i(a) =i(xa)=i(xd)=i(x)i(d)=3ai(d) =3di(d).
Hence i(a) = ei(d). If i(d) # a then i(a) = i(d) which implies
that a=d, a contradiction. If i(d) =a then i(a) =d,

a contradiction.

Case 2. 1i(x) # & for all x€S. Then i(al)i(a) = i(a)i(d).

Hence a = d, a contradiction. #
We shall give an example of Theorem 5.43.

Example 5.44. By Bxample 4.38, S-{1} is a Classification V

semiring were.t. a. Consider Q+ with .-the usual addition and
multiplication. Let a be a symbol not representing any

element of @ . Extend + and * from Q" to K= Qu{a} by

23X = xa = 2x for all x€X and a+x = x+a = 2+X for all xe Ke

x for all x eS-{1,al.

Define h:S-{1}— K by h(a) = a and h(x)
Clearly h is a monomorphism. Define i:S-{'Iﬁ-—)K by i(a) = 2,
i(2) = a and i(x) = x for all x€ 5-{1,2,a} clearly i is 1-1.

We must show that i is a homomorphism. Let x,y¢ I R

Case 1« X =Y =-a.
i(x+y) = i(a+a) = i(2+2) = 2+2=i(a)+i(a) = i(x)+i(y).

e o Alaad w ALEET = BB, = CalEla)s
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Case 2« X= a, ¥ £ ae

Subcase 2.1. 7 = 2. i(x+y) = i(a+2) = i(2+42) = 2+2 =
2+a = i(a)+i(2) = i(x)+i(y)e.
i(xy) =i(a2) =i(2%2) =2+2=2a = i(a)i(2) = i(x)i(y)e

Subcase 2e2. ¥ £ 2. i(x+y) = i(a+y) = i(2+y) = 2+y =

i(a)+i(y) = i(x)+i(y).

i(xy) = i(2y) = 2y = i(a)i(y) = i(x)i(y).
Case 3. x#a, y=ae. The proof is similar to the proof of Case 2.
Case bhe x £ ay, y # ae

Subcase bele x =y = 2. i(x+y) = i(242) = 242 =
ata = 1(2)+i(2) = i(x)+i(y)

i(xy) = i(22) = 2¢2 = aa = i(2)i(2) = i(x)i(y).

a+y = i(2)+i(y) = i(x)+i(y).

i(xy) = i(y) = 2y = ay = i(2)i(y) = i(x)i(y).

Subégse Lo3, x £2, ¥y = 2. The proof is similar to

the proof of Subcase 4e2.

Subcase 4ete x £ 2, ¥ # 2. Done.

Hence i is a monomorphisme. 4

we shall give an example showing that there exists a
Classification V semiring S we.re.t. a such that a is not M.C.
in S and for all x,ye S, x+y £ a and the type III semifield X

given by the construction in Theorem 5.71 is not the smallest
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type III semifield containing S (i.e. it is possible that there
exists a monomorphism i:S—K' where K' is a type III semifield
but there does not exist a monomorphism g:K—>K' such that _ '

gof - i)-

Example 5.45. Since (z*-{1) ,max,*) is an M.C. semiring.

Let a be a symbol not representing any element of Z+—{15.
Extend + and * from Z¥-{1} to s = (@'-{11)uia} by ax = 2x

for all x € S and a+x = 2+x for all x €S. Then (S,+,*) is a
Classification V semiring w.r.t. a such that a is not M.C. in
S and for all x,y €S x+y # a. Let K = QR(5-{aj)u {a'} where
d+a' = a'+0 = ((4,2))+04 for all ¢ ¢ K and a'@& =aa'=[(4,2))4
for all @ ¢ K. Then K is the type III semifield given by the ..
construction. Since (Q+,max,~) is a ratio semiring.

Let 3 be a symbol not representing any element of Q+.

Let T=]xeQ"x¢1|. Extend + andsfrom @ to K = Qv { ajoy

(1) xa = ax = 2x for all x ek

(2) a+x = x+a = a for all xeT
A+X = X+a = 24X for all er+-T
£+5 = 2

Then K is a type III semifield. Define i:s—K by i(x) = x
for all x € 3-{a} and i(a) = 3. Clearly i is 1-1. -

To show that i is a homomorphism, let x,¥y € S.

Case 1. X =y=a. Then i(a+a)=1i(2+2)=1(2)=2=a+a=1i(a)+i(a).

iaa) = i(2+2) = 2+2 = aa = i(a)i(a).

Case 2. x=a, y#a. -Then i(a+y) =1i(2+y) =2+y = a+y = i(a)+i(y).

i(ay) = i(ay) = 2Y = Ey = i(a)i(y).
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Case 3« x # a, ¥ = a. The proof is similar to the proof of

Case 2.

Case 4o x £ a, y £ a. i(x+y) = x+y = i(x)+i(y) and

i(xy) = xy = i(x)i(y)e-. Hence i is a homomorphism claim that
there is not a monomorphism g:K—2K such that gof = i.

To prove this suppose not. Then a = i(a) = gof(a) = g(a')

5 = i(5) = g(£(5)) = g(L(10,2))). 2 = g([(4,2)]) so

am 5f§-= g(a)+g( (2,5 =g(a'+[(2,5)]) = g( [(4,2))+[(2,5)] ) =
g([(#,2)]1). Hence a'= [(4,2)],a contradiction. 4

Theorem S.46. Let S be a Classification V semiring wer.t. a

such that a is not M.Ce in S and for all x,y€ S x+y £ a.

Let K be the type III semifield given by the construction and
let £f:3—>K be the embedding given by the construction.

Let K be any type III semifield w.r.t. a and let d€ K-{a} be
such that ax = dx for all x €K and let i:S—K be a

monomorphism. Then the following hold:

1) if i(a) = d then there is no monomorphism g:K—>K

I

such that gof = i.

2) if i(a) a and K is full then there exists a unique

monomorphism g:K—K such that gof = i.

a (if i(d) # a then

Proof. 1) Since i(a) = d, i(d)
i(a)i(a) = i(a)i(d) which implies that a = d, a contradiction).
Suppose that there exists a monomorphism g:K—>K such that
gof = i. Then g(f(d)) = i(d) = a = g(a') (by Theorem 5.38).

Hence we have that f(d) = a', a contradiction.
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2) Since i(a) = a,.i(d)i(d) = i(d)i(a) which

implies that i(d) = ei(a) = ea = d. Define g:K—K as follows:

for o ¢ k-{a'} , choose (x,y)€éd . Define g(a) = i—%?(— and |
4

g(a') = a. Using a proof similar to the one used in .
Theorem 5039 (5) (substitute f(d) for [(d1,d2)] we get that g

is the unique monomorphism such that gof = i. 4

Corollary 5.47. Let S be a Classification V semiring wer.te a

such that a is not M.C. in S and for all x,y €S, X+y # a.

Let K be the type III semifield wa.r.t. a' given by the =
construction and let £:S—>K be the embedding given by the
construction. Let (€5'3 be the category whose objects are
either pointed semirings (S*,a*) where S* is a Classification V
semiring wer.te. a* and a* is not M.C. in S* and for all x,y € S*,
x+y Z a* or pointed semifields (K,a) where K is a full type III
semifield were.te a and whose morphisms are pointed semiring

homomorphisms. Then ((8,a),f,(K,a')) is a quotient semifield

WeTele f

593°

Theorem S.48. Let S be a Classification V semiring w.r.t. a

such that a is not M.C. in S. Let d eS-{a} be such that ax=dx
for all x € S¢ Assume that for all u,ve s, u+v Z d and uv # d.
If there exists a monomorphism i:S—3 K where K is a type III
semifield Werete & then i(d) = a or i(d) = d where deK-{a} is

such that ax = dx for all x & X.

Proof. Let & be the identity of (K-{a},¢). Suppose

i(d) Z @ and i(d) # a.
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Case 1. There exists an x ¢ S-|d} such that i(x) = a.

Then di(d) = ai(d) = i(xd) = i(xa) = i(x)i(a) = ai(a) = di(a)e

1]

Hence i(d) = si(a). If i(a) # a then i(d) = i(a), so a = d,

a contradiction. If i(a) = a then i(d) = ei(a) = ea = d,

a contradiction.

Case 2, i(x) £ a for all x€ S. Then i(a)i(a) = i(a)i(d)e.

Hence a. = d, a contradiction. #

Theorem S5.49. Let S be a Classification V semiring we.r.t. a

such that a is not M.C. in S and there exist x,y e S-{a}

such that x+y = a. Let d€ S-{a} be such that ax = dx for all
x €S and assume that for all u,ve S, u+v # d and uv # d.

Let K be the type III semifield given by the construction and
let f:S—>K be the embedding given by the construction. .

Let K be any type III semifield w.r.t. a and i:S—K a

monomorphism. Then the following nold:

(1) if i(d) = d then there is not monomorphism g:K—%E-

1}

such that gof = i.

(2) if i(d) = a and K is full then there exists a

1}

unique monomorphism g:K—>K such that gof = i.

Proof. 1) Since i(d) = d then i(a) = a (if i(a)#a
then i(a)i(a) = i(a)i(d) which implies that a = d,
a2 contradiction). Suppose there exists a monomorphism g:K—K
such that gof = i. Then g(f(a)):= i(a) = a = g(a')
(by Theorem 5¢38). Hence f(a) = a' = £(d), so a = d,

a contradictione.
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2) Since i(d) = a, i(a)i(a) = i(a)i(d) ..
which implies that i(a) = ei(d) = ea = d. Define g:K—>K
E . i(x)
. - " . o ==
a3 follows: fordé K-{a'l. choose (x,y)é€ Define g( o) 16D)
and g(a') = Ae Using a proof similar to the one in Theorem 5.39

(5) (substitute f(a) for [(d.,d,)] J).we get that g is the unique
1*72

monomorphism such that gof = i. #

Corollary 5.50. Let S be a Classification V semiring wer.t. a

such that a is not M.C. in S and there exist x,y € S-{al such that
X+y = a. Let d € S-{a}| be such that ax = dx for all x €3 and
assume that for all u,ve S, u+v Z d and uv # d. Iet K be the
~type III semifield wer.te. a' given by the construction and let
f:S—>K be the embedding given by the construction.

Let %;5’3 be the category whose objects are either pointed
semirings (S*,d*) where S* is_a Classification V semiring werete
a* such that a* is not M.Ce. in S and there exist x,y¢§S‘-{a‘}
such that x+y = a* and for all u,veS* u+v £ d* and uv £ 4*

where d*e S*-[a*| is such that a*x = d*x for all x € S* or pointed
semifields (K,a) where K is a full type III semifield Weret. a
and whose morphisms are pointed semiring homomorphisms.

*
Then ((S,d),f,(K,a')) is a quotient semifield w.r.ts t 5. 3°
?
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