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Chapter 1
Introduction

1.1 Research Motivation and Problem Statement

Nowadays, video distribution for various purposes is proliferating over the Internet with
the aids of handy communication networks and smart mobile devices. Besides, video con-
sumers increasingly demand high definition (HD) and ultra-high definition (UHD) videos
to experience better visual quality. As a result, the delivery of HD/UHD videos to the
mobile devices’ users over the Internet is becoming a popular trend. However, the data
quantity for HD/UHD videos is huge due to the higher video resolution and frame rate.
The data size of a 10-second video with 3840 x 2160 resolution at a frame rate of 60 frames
per second reaches nearly 15 GB. Due to this, the delivery of HD/UHD videos demands
a more substantial amount of network bandwidth and data storage compared to the lower
resolution standard definition (SD) videos. To achieve the saving on network resources and
storage requirement, an efficient compression technique is crucially important.

Joint Collaborative Team on video coding (JCT-VC), a collaborative project group
of ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Ex-
pert Group (MPEG), has implemented a highly efficient video coding standard called High
Efficiency Video Coding (HEVC)/H.265[1] as a solution to the issue of increased video res-
olution. HEVC delivers a twofold coding efficiency as compared to its preceding coding
standard, namely, H.264/Advance Video Coding (AVC)[2]. Accurately, HEVC achieves the
bit-rate saving of nearly 50% under the same visual quality compared to the H.264/AVC.
As a result, HEVC becomes a popular video codec. HEVC brings such a significant coding
efficiency thanks to its innovation coding features such as hierarchical quadtree-based parti-
tioning, 33 directional modes for intra-picture prediction and simplified in-loop deblocking
filtering, etc.

On the other hand, these coding features are highly expensive in terms of computa-
tional complexity and hardware requirements. Due to this, HEVC struggles to realize
HD/UHD video delivery in real-time applications, for example, real-time video chat and

remote surveillance, etc. Many solutions on mitigating computational complexity of HEVC



have been proposed in the literature since the last few years. Most of these solutions focus
on a hierarchical quadtree-based coding unit (CU) partitioning because of the heaviest load
of recursive CU partitioning in the HEVC encoder. In a hierarchically exhaustive CU par-
titioning of HEVC, the encoder firstly starts trial encoding which includes two processes:
top-down rate distortion (RD) cost calculation and bottom-up RD cost comparison to find
an optimal quadtree splitting pattern based on RD performance gain for each coding tree
unit (CTU). To get an optimal CU partitioning pattern, every possible combination of CU
size, prediction unit (PU) modes and transform unit (TU) sizes are exhaustively examined.
Due to this, trial encoding especially the RD cost calculation is the most time-consuming
module of HEVC, over 80% in the HEVC test model (HM) [3]. To tackle this problem, most
of the studies aim to achieve the fast algorithm by replacing an exhaustive CU partitioning
with a simple operation under the negligible RD loss.

In order to efficiently save the computational time, two main researches are focusing on
complexity reduction in HEVC: intra-coding and inter-coding. Based on the new features
of HEVC intra-coding such as two partitioning modes in quadtree-based partitioning and
35 intra prediction modes, the previous solutions for intra-coding [4]-[7] focus on intra-
mode decision and CTU size prediction. For inter-coding, several time-consuming modules
such as quadtree-based CU partitioning[8]-[20], CU mode estimation[21], motion estimation
(ME)[22] have been improved to achieve a low complexity encoder. In specific, there are
two groups on the fast inter-coding algorithms for quadtree-based CU partitioning. One is a
statistical-based fast algorithm, and the other is a learning-based fast algorithm. The early
statistical-based approaches have statistically decided CU size by observing the nature of
original block partitioning in HEVC such as in [§]-[12]. These approaches determine some
CU-related features and spatiotemporal-based hard threshold to decide CU size without
looping RD optimization (RDO) process exhaustively. Starting a few years ago, most
researches reported in[I3]-[20] have focused on learning approach for fast algorithm due to
the learning property from the largely complicated amount of data to the best decision.
Among these learning-based fast inter-coding algorithms, CU size decision based on online
SVM training (denoted by FuzzySVM)[17] is one of the best approaches in which the first

group of picture (GOP) encoded with original HM was using as the training data for three



SVM classifiers. For feature selection, misclassification-based feature selection approach
was utilized to get three different feature sets for depth 0, 1, and 2. The misclassification
costs of all feature combinations were energetically calculated and the minimum one for
each depth level (Depth 0 to Depth 2) was selected. The best feature set can make to get
a better RD performance because feature selection is one of the most important part of a
classifier and there is a relationship between features and estimation accuracy. As shown in
Table there are three categories for thirteen features: the temporal domain (Index 1),
by-product feature of the current CU (Index 2 - 8) and the spatial domain (Index 9 - 13).
The misclassfication-based optimal feature sets for three level classifiers of [17] are shown in
Table[I.2] But there may have some redundant features according to their relationships. For
example, distortion, bits, and RD cost are the RD performance related features according

to the Eq. (L.1)).

Jrpo =D+ XX R (1.1)

where, Jrpo, D , R and A are the RDO cost, distortion, bits and Lagrangian multiplier,
respectively. Because of some correlations between three of them, some redundant features
can be eliminated from the feature set to save the time consumed by that features with
a negligible quality degradation. Therefore, for the first part of this thesis, we propose a
redundant feature reduction for FuzzySVM [17] to reduce the amount of time for wasting

some redundant features.

Table 1.1: Three categories for thirteen features.

‘ Category ‘ Index ‘ Candidates ‘ Description ‘
‘ Temporal Domain ‘ 1 ‘ TsAD ‘ Sum Absolute Difference of the current CU and co-located CU ‘
2 T RDCost RD performance
3 T SkipFlag The skip flag PU level
PO : 4 T Distortion RD performance
By-product information 5 v RD performance
6 TCtaSkipFlag The flag of skipping in neighboring blocks
7 TQp The regulating element between distortion and bits
8 TOBF.SKIP The important flag representing coded block
9 T MergeFlag The flag of merge mode
10 Tay The moving information
Spatial domain 11 T Partition Selected PU size from possible modes
12 T Depth The block size
13 TOBF.NB The coded block flags from neighboring block




Table 1.2: Selected Features of different classifiers.
‘ Index ‘ Candidates ‘ Classifier CO ‘ Classifier C1 ‘ Classifier C2 ‘
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=

= =
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However, the training data of SVM classifiers of FuzzySVM is only from the first GOP,
causing the classifier to confuse on the depth decision and make a misclassification. False
positive (FP) is the misclassification when SVM classifier incorrectly decides the splitting
(4) decision for the current CU instead of the non-splitting (—) decision. Due to this, the
RD costs for unnecessary CUs are calculated and FuzzySVM may take a certain amount of
time for unnecessary depth levels and may not effectively save the computational burden of
the quadtree-based CU partitioning. Another critical situation is the risk area. If a sample
is located in the risk area, the original HM is triggered that can consume the computational
complexity of HEVC and may not significantly reduce the computational burden for risk
area case. Another main factor is the target bit rate of rate control (RC) to assign the
required bits for input video sequences. If the target bit rate is higher, the chance of the
splitting decision can be higher. As a result, FuzzySVM may need to go to the high depth
level and the number of CUs which need to be calculated the RD costs may be higher.
Therefore, FuzzySVM may take a big computational time for calculating the RD costs of
CUs at the high target bit rate. Additionally, all fast algorithms mentioned above do not
consider finding a partitioning pattern of a CTU as an optimization problem. Finding an
optimal CU partition pattern from all possible outcomes can be modeled as an optimization
problem and can be solved by a simply useful optimizer instead of machine learning based
approach.

Therefore, the purpose of the second part of this thesis is to save the computational



burden for quadtree-based CU partitioning by utilizing a genetic algorithm (GA). GA is a
metaheuristic based on mechanisms of natural systems such as natural genetics and selec-
tion [23]. GA is a member of evolutionary algorithm (EA) and has been started by John
Holland at the University of Michigan in the 1960s based on the biologically evolutionary
theory called Darwinism. The aim of GA is for solving complex problems such as large-scale
combinatorial and highly constrained optimization problems. Therefore, a simple fast CU
encoding based on GA should be proposed and implemented for saving the computational

time of quadtree-based CU partitioning of HEVC.

1.2 Contribution

There are two parts in our research work: machine learning -based and optimization
method -based fast encoding. For the first part, we propose a feature reduction method by
eliminating some features which correlate with other selected features in order to save the
computational time of the exhausted RDO search.

For the second part, we present a GA-based fast CU encoding for inter-coding of HEVC
intending to save the computational complexity of HEVC. We study the CU partitioning
procedure and formulate it as an optimization problem. Then, good CU partitioning pat-
terns of each CTU are searched by utilizing a simple optimizer, called GA. Nowadays, due
to the higher frame rate of video sequences such as 50-60 frames per second (fps) and up to
120 fps for HD and UHD videos, respectively, the temporal correlation between consecutive
frames is extremely high. The temporal correlation refers to the condition that the video
data between consecutive frames of a video sequence are temporally correlated under the
same background scene with the same moving objects. In details, for 60 fps video sequence,
the time intervals between two, four, six, and eight consecutive frames are 0.03, 0.07, 0.1,
and 0.13 second, respectively. Due to these small intervals, it is possible to share partition-
ing patterns of one frame to its consecutive frames without severely affecting the quality.
Therefore, frame level partitioning pattern sharing is one of our contributions to further
lower the computational burden of HEVC under a comparable video quality. In order to be
suitable for both low to high frame rate (24 to 120 fps) and to follow a group of pictures

(GOP) structure, a small GOP size 4 is reasonably utilized as a sharing range N, i.e., N is



4. As shown in Figure the temporal correlation is relatively high between four consec-
utive frames since the motion information between them is low. Key frames usually use a
low quantization parameter (QP) value to get a higher quality compared to other frames.
Therefore, the CU partitioning patterns for the only key frame of every GOPs are searched
by GA. Then, we share the CU partitioning pattern of each CTU at the key frame fyx, to
the collocated CTU at (N — 1) consecutive frames fyxn4;, where n € {1, 2, 3, . . .} is the
GOP number, and j € {1, 2, 3} is the displacement between the key frame and consecutive

frames.

Figure 1.1: Four consecutive frames of sequence ”PartyScene” (N = 4).

Our main contribution of GA-based fast encoding approach is two-fold.

1. We design a reasonably effective fitness function for GA which defines the correlation

between CTU partitioning and RD performance.

2. Due to the possibility of a highly temporal correlation within consecutive frames, we
share the CU partitioning patterns of a key frame with other frames to further save

the computational time of the RD cost calculation.

This thesis is divided into five chapters such as introduction, background and literature
review, proposed method, experimental results, and conclusion and future works. Chapter
2 introduces HEVC, the quadtree-based CU partitioning, and GA. Chapter 3 and 4 describe
the detailed proposed method and evaluation of the proposed method, respectively. Finally,

Chapter 5 concludes our thesis.



Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Overview of HEVC

Due to the development of computing on multimedia data and the extreme distribution
of video over the Internet with several purposes, the storage space and network bandwidth
for uncompressed raw video are high. To reduce and remove redundant video informa-
tion with a negligible distortion on the visual quality, an effective video compression tech-
nique can be used so that compressed digital video can be effectively stored on computer
storage space and efficiently distributed over a network. The International Telecommu-
nications Union (ITU) and the International Standardization Organization/International
Electrotechnical Commission (ISO/IEC) are two dominant standardization organizations
to emerge video coding standards for real-time video communication and distribution or
broadcast of video content. H.261 and H. 263 were standardized by the ITU-T, MPEG-1
and MPEG-4 Visual were produced by ISO/IEC and the H.262/MPEG-2 Video was jointly
produced by two organizations.

The Joint Video Team (JVT), which consists of both the ITU-T Video Coding Experts
Group (VCEG) and the ISO/TEC Moving Picture Experts Group (MPEG), was established
to standardize the next video coding generation called H.264/MPEG-4 Advanced Video
Coding (AVC) standards. Figure depicts the block diagram of a hybrid video encoder
for H.264/AVC standard. Due to the new features of H.264/MPEG-4 AVC, half of the bit
rate of MPEG-2 can be reduced under the same perceptual quality.

For high-definition (HD) videos, prior standards and H.264/MPEG-4 AVC can be ap-
plied to store and transmit that videos. Because of the increasing demand of the HD
video and the rising attention in the UHD, ITU-T and ISO/IEC have created an advanced
joint group called the Joint Collaborative Team on Video Coding (JCT-VC) to invent a

new video coding standard called High Efficiency Video Coding (HEVC). HEVC can get



the compressed video with the half-size bit-rate reduction and the same visual quality of
H.264/MPEG-4 AVC. Figure shows a block diagram of a block-based hybrid video en-

coder with some characteristic ingredients of HEVC regarding its novel block partitioning

concept.
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Figure 2.1: Block diagram of an H.264 encoder.

ITU-T and ISO/IEC are the main standardization bodies which have standardized all
HEVC’s antecedent standards in many years. They have utilized a 16x16 macroblock as
a basic processing unit in HEVC’s antecedent. Each frame is split into macroblocks. In
the 4:2:0 chrominance subsampling formats, there are one 16x16 block of luma components
to represent brightness and two 8x8 blocks of chroma components to refer color in each
macroblock. Therefore, the macroblock is the largest block size to indicate the predicted

information of intra-frame or inter-frame prediction in previous video coding standards.
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Figure 2.2: Block diagram of an HEVC encoder with built-in decoder (gray
shaded).

However, typical HD and UHD videos have many larger frame regions than the mac-
roblock, and those regions can represent the same moving information. If the macroblock is
used as a basic processing unit for typical HD and UHD videos, a large number of bits are
required to signal the prediction information. Correspondingly, the transform block size is
bigger than the macroblock size. Therefore, HEVC supports a larger block size as a basic
processing unit called Coding Tree Block (CTB) for intra-frame or inter-frame prediction
and transform coding. For a non-monochrome video format, one luma CTB plus its two
associated chroma CTBs and the corresponding syntax are combined to form the primary
processing unit, called CTU. Figure illustrates the frame partitioning from 1280 x 720
luma samples into 16 x 16 macroblock sizes and 64 x 64 CTU sizes. It may be concluded
that 64 x 64 size of CTU covers a large region of a frame that can be characterized by
the same motion parameters so that the largest CTU size can support a more appropriate
representation. Therefore, in HEVC, the primary processing units are partitioned as large
as 64 x 64 luma samples. Although a large block size is effective for high resolution video,

it is not a good choice for low resolution video.
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Figure 2.3: Demonstration of the partitioning of a frame with 1280 x 720 luma
samples into (a) macroblocks. (b) CTU.

To be compatible with both high and low resolution videos, HEVC can flexibly partition
the video frames into several square CTUs of 2/'x2" samples, where L € {4, 5, 6}. The
encoder flexibly chooses a suitable value of L for intended application to have the best
trade-off between coding performance and cost such as memory storage, encoding time,
and delay. However, using a larger block for selecting whether intra-mode or inter-mode at
the prediction stage cannot guarantee to get a good RD performance for prediction stage.
To achieve a better coding efficiency, HEVC introduced a new basic processing unit, called
coding unit (CU) and a flexible quadtree partitioning from CTU to CU. Therefore, CU
size can be 64x64, 32x32, 16x16 and 8x8 at depth 0, depth 1, depth 2 and depth 3,

respectively.
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For each CU, a prediction mode is indicated in the bitstream. The prediction mode
represents whether the intra-frame or inter-frame prediction is selected to encode CU. If
the intra-frame prediction is selected, one of the possible 35 modes for intra-frame prediction
has to be chosen for the CU and signaled in the bitstream. If a CU is coded using inter-
picture prediction, the CUs can be further split into prediction blocks (PUs). A PU is a
block of samples which includes the same motion parameters for inter-frame prediction.
To partition from a CU into PUs, HEVC provides eight different modes. As described in
Figure a CU can either be coded as a PU or it can be partitioned into 2 or 4 rectangular
PUs. 2N x 2N mode represents to partition the whole CU into a single PU. N x N mode
represents to split a CU into four PUs and the resulting PUs are square in shape and same
in size. For every 2M x 2M CU and PU, each unit consists of one 2™ x 2™ luma coding
block (CB) and prediction block (PB) and two corresponding 2V =1 x 2M=1 chroma CBs

and PBs, respectively, if the chroma sampling format is 4:2:0.

2N x2N 2N XN Nx2N NxN

2N xnU 2N xnD nLx2N nRx2N

Figure 2.4: Available partitioning modes for partitioning a CU into 1, 2, or 4
PUs.

2.1.2 The Hierarchical Quadtree-based CU Partitioning

As we mentioned above, the CTU partitioning structure is one of the most important
coding features to the HEVC standard. The default size of a CTU is 64 x 64 samples, and
each CTU can be a solo CU or can be partition into four sub-CUs and then each sub-CU can
be additionally divided into four sub-CUs until the maximum CU depth reaches. So, the CU

size (depth level) can be in the range of 64 x 64 (Depth 0) to 8 x 8 (Depth 3). Additionally,
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each CU can be further divided into smaller PU with various eleven partition modes, i.e., a
SKIP/MERGE, eight Inter, and two Intra partition modes as shown in Figure and the
PU with the minimum RD cost will be selected. After getting the best partition mode for

each CU, the optimal CU sizes are decided based on recursive RD cost comparisons.

Figure 2.5: Eleven PU partition modes.

To define CU size or depth, HEVC starts a trial encoding which includes two main func-
tions called the RD cost calculating/checking and comparison in a top-down and bottom-up
manner, respectively, as mentioned in Section 1.1. Figure illustrates the RD cost check-

ing and comparison process between a parent/current CU and its children/sub-CUs.

Check RD cost of a parent CU Do not split, if

4 D i g
1 e JSSSS

Split, if i

B [
V7l R LRO<R™ | [RE] [&T
I ‘ Vg [T

Check RD cost of each sub-CU
(a) checking process (b} comparison process
(3
Parent CU ‘SHP-CU RD I:IE!SI RD -c:?sl
with index m checking COmMparison

Figure 2.6: Illustration of RD cost calculating and comparing between a par-
ent/current CU and its children/sub-CUs.
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Figure 2.7: The order of RD cost calculation for 85 CUs of a 64 x 64 CTU.

In the top-down RD cost calculation of a 64x64 CTU, the RD costs for all possible 85
CUs are calculated in a preorder traversal of the quadtree, as shown in Figure if the
maximum CU depth is 3. In details, there are 1, 4, 16 and 64 CUs at depth 0, depth 1,
depth 2 and depth 3, respectively, and the total number of CU is Z?:o 4" = 85 CUs. After
getting the RD costs for four children CUs of every one of parent CUs, HEVC turns to
the RD cost comparison to decide whether a parent CU is split or not by comparing the
RD cost of splitting and non-splitting conditions of parent CU. In Figure the RD cost
of a current/parent CU is denoted as RP?, and the RD costs of its children/sub-CUs are
denoted as R% | where m € {1, 2, 3, 4} is the index of each child CU. Afterward, the
RD cost of a parent CU (RP*) and the total RD cost of four sub-CUs (anzo R$"Y) are
compared to decide whether a parent CU should be partitioned. Then, HEVC switches
to the RD cost calculation or performs comparison again depending on the position of
parent CU. Therefore, there are 85 calculations and 21 comparisons in the top-down RD
cost calculation and bottom-up RD cost comparison of a 64x64 CTU, respectively. After
finally comparing a root CU at depth 0 with its four children CUs at depth 1, the best
CU quadtree structure of a CTU as shown in Figure with the lowest RD cost is chosen
among 83,522 possible quadtree structures.

Figure shows the CU partitioning pattern of frame representation of picture order
count (POC) 40 of sequence ”BlowingBubbles” searched by an exhaustive RDO search
of HM version 16.5 (HM16.5). The trial encoding of HEVC finds the best CU partition

structure of each CTU after an exhaustive RDO search. Therefore, choosing an optimal
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CU partitioning structure can be modeled as an optimization problem and can be solved
by a lightly suitable optimization tool to search through a space of possible CU partition
solutions. For the small space optimization process, traditional comprehensive techniques
are proper to find the solution [24]. However, the techniques based on artificial intelligence
(AI) are efficient for a vast search space and GA is one of Al techniques to search a good

solution efficiently .
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Figure 2.8: Quadtree partitioning from CTU to CU.

Figure 2.9: Quadtree partitioning of a CTU into CU based on recursive RD
cost comparsion. (a) Subdivision into 64x64 CTUs. (b) Coding quatdree with
CUs.
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2.1.3 Genetic Algorithm

For implementing GA for a particular problem, there are four components need to be

considered as follows:

1. A genetic data structure including genes, called chromosome, is an efficient candidate

solution to our problem.
2. A fitness function which measures how the chromosome fits to our problem.

3. Three genetic operators such as selection, crossover, and mutation to produce new

offspring.

4. Some basic parameter values such as population size, crossover, and mutation prob-

abilities.

By using these four components, GA has three major processes for creating a random initial
population of chromosomes, calculating fitness value for each chromosome in the current
population, and producing a newly better population until the optimization criteria meet, as
shown in Figure [2.10] The termination point of a GA is an important factor where it stops
GA with the best chromosome. Normally, there are three possible termination conditions

described as follow:
1. The fitness value of the best chromosome has achieved a predefined value.

2. The best chromosome of the current population and previous population are still the

same for G generations.
3. The total number of generations has reached a predefined count.

The termination criteria highly depend on the problem domain and it is defined by trying

all possible options to get the best termination criteria and point.
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Figure 2.10: Flowchart of GA.

2.2 Literature Review

To efficiently save the computational cost of HEVC, researchers explored several effi-

cient methods on the fast algorithms for HEVC. In general, the existing methods can be

categorized into two parts: intra-coding and inter-coding, as we mentioned in Chapter 1.
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2.2.1 Fast Algorithms for Intra-coding of HEVC

Cho et al. [4] applied a Bayes decision rule to decide whether CU is early split or
not and whether CU is early pruned or not based on rough RD cost and full RD cost
respectively. Min et al. [5] proposed a CU depth prediction based on global and local edge
complexities of parent CU and four children CUs. To catch up on the current trend, Li et
al. [6] utilized deep convolutional neural network (CNN) approach for the CU partitioning
procedure instead of exhaustive RDO search for HEVC intra-coding. In order to reduce
the further computational complexity of intra-coding, Zhang et al. [7] focused on quickly
deciding intra-mode and CU depth by utilizing gradient-based block direction detection
and Support Vector Machine (SVM). They presented fast intra-mode decision and CU size
decision for decreasing the computational time of intra-coding of HEVC under a comparable
RD performance. In order to get a quick decision for intra-mode, they proposed a method
based on the gradient for reducing the candidate modes for rough mode decision (RMD) and
RD optimization (RDO). In order to get a fast decision for CU size, firstly, the homogeneous
CUs was early stopped to partition. Then, two linear SVM were utilized to make the
decisions of early CU splitting and termination for the remaining CUs. These two SVM
classifiers utilized the difference of depth and ratio of Hadamard transform-based costs

(HAD costs) as their features.

2.2.2 Fast Algorithms for Inter-coding of HEVC

In order to save the computational time for inter-coding of HEVC, the researches re-
ported in [8]-[12] were statistically studied the relationship between some important features
and CU partitioning. Shen et al. [§] proposed a fast CU depth decision based on statistical
analysis and spatiotemporal correlation. After these statistical analyses, they determined
an adaptive CU depth range by skipping some uncommon depth levels of neighboring CUs
and co-located CUs of the previous frame. Then, they skipped ME at high CU depth based
on three early termination method based on motion similarity, SKIP mode, and RD thresh-
old. In [9], an adaptive threshold based on the RD distribution of the previous frame was
utilized whether the parent CU of the current frame is split or not. In [I0], the quadtree

traversal can be switched from an originally top-down order to an inversely bottom-up or-
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der. As a result, the number of mode testing of parent CU at lower depth can be reduced
by utilizing the mode information of its four children CUs at higher depth. In [11], Shen
et al. utilized Bayesian decision rule with effectively relevant feature candidates to avoid
unnecessary CU partitioning. Though these threshold-based CU size decision approaches
can significantly save high computational time, they may not be applicable for all sequences
since their statistically hard threshold and spatiotemporal distribution.

In [13]-[20], learning-based fast algorithms have utilized their efficient learning capability
for complexity reduction on the quadtree-based CU partitioning of HEVC. To save the
computational load of CU partitioning, Shen et al.[13] early terminated CU partitioning
process with the aids of SVM and feature selection based on a wrapper approach. Also,
they introduced different weights to the training of SVM in order to decrease the effect
of outliers and RD loss when a misclassification happens. To early terminate unnecessary
CUs, PUs, and TUs partition, Correa et al.[14] built decision trees by using a free open-
source data mining (DM) tool. To create a robustly superior learning model for the joint
SVM classifier, Zhang et al.[I5] originated an optimally weighted parameter determination
method and used offline training mode with CU partition-related features. They proposed
the quadtree partitioning pattern of CTU as a three-level classification process, and two
three-decision classifiers were designed to control the risk of false prediction. Mainly, the
feature extraction process should be low complexity to avoid the computation overheads
and the CU size are related with the video content’ texture, motion information, context
of spatiotemporal neighboring information, etc. According to these two principles, they
considered the nine features for deciding CU size and nine features can be categorized into
four groups: information of the SKIP/MERGE mode of current CU, motion information,
context information and a quantization parameter. Heindel et al. [16] used support vector
machine (SVM) with offline training mode to make a decision whether CU is partitioned or
not. They built several SVM models for all selected video sequences for their experiment by
utilizing the training data from all the other video sequences. Due to the usage of training
data of other video sequences, the feature values from training data and testing data are
quite different. This is one of the drawbacks of offline training mode of learning approach

that may lead to decrease the prediction accuracy significantly. Additionally, due to the
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hard threshold for classifying uncertain decision and the running of exhaustively original
RD optimization for uncertain condition, the computational time save may not achieve
significantly.

To improve the prediction accuracy, CU size decision based on online SVM training
has implemented in [I7] to firstly consider the adaptive regulation parameters due to the
difference between False Positive (FP) and False Negative (FN) rates, different weights for
training samples to deduct the negative effect of outliers, and the risk area. In order to
terminate the CU partitioning process early, Kim et al.[I8] applied Bayesian decision rule
by jointing online and offline learning to train the selected frames for each scene and get
loss matrix after training several frame sequences, respectively. In [19], Zhu et al. reduced
the computational burden of CU and PU partitions by utilizing binary SVM classifiers and
multi-class SVM classifiers with both online and off-line learning modes. However, SVM
based CU size decision approach [I7] considered feature selection based on misclassification
cost and did not consider the correlation between features.

Additionally, all mentioned learning-based approaches have considered the CU parti-
tioning problem of HEVC as a classification problem or decision problem. As a result, an
original HM will be triggered instead of the original RDO process if the prediction accuracy
is not enough to use the prediction output. Therefore, these approaches may not signif-
icantly reduce the computational burden for an inaccurate situation of prediction results.
Finding an optimal CU partition pattern from all possible outcomes can be modeled as an
optimization problem and can be solved by a simply effective optimizer. All fast algorithms
mentioned above have not formulated a CU partition as an optimization problem. There-
fore, a simple fast CU encoding based on GA is supposed to be proposed and implemented

to reduce the computational burden of quadtree-based CU partitioning.



Chapter 3

Fast Coding Algorithm for High Efficiency Video
Coding

As we mentioned above, there are two parts in our research work: machine learning

-based [25] and optimization -based fast encoding [26].

3.1 Reducing Redundant Feature from Fuzzy SVM-Based

Coding Unit Decision in HEVC

For ML-based prediction approach, choosing fruitful and proper features is the major
contribution of a classifier and using those features efficiently can reduce the training time
and the required storage. In order to achieve that goal, there are three issues as explained
in the following paragraphs.

The first issue is how to avoid the computational overhead of the feature extraction. To
avoid this, [I7] utilized some ready-made features, except one temporal domain features,
after checking with the most common modes. Therefore, the feature extraction stage does
not spend too much processing time. The second issue is how to select the representative
features that can distinguish different classes. Generally, the depth of CU can vary due to
the image texture, motion information, spatio-temporal context information, etc. Based on
this issue, [13], [15], [I7], and [I9] considered several effective features from the prediction
error of the temporal domain, spatial domain and by-product information of the current
block. The third issue is how many numbers of features will be used as small as possible to
keep a low computational time at the prediction stage. To concern the third issue, in [13],
eleven possible candidates were firstly proposed and then evaluated to get an effective
feature subset by using the wrapper approach based on F-score. And finally, five features
were selected to make a trade-off between accuracy and additional complexity introduced
by feature extraction and prediction. In [I7], they firstly considered thirteen features as

potential candidates. They exhaustively checked all possible number of feature combinations
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C and the value of C is 213 — 1 = 8191 feature combinations if the number of features is 13.
Table shows example feature combinations (feature sets) with their index and binary
patterns which represent the position of the features and whether the feature is included in
feature combination or not. Finally, an optimal feature set with minimum misclassification
cost for each depth level was selected based on empirical results shown in Figure [3.1] It can
be found that the indexes of optimal feature sets with the lowest misclassification cost are

5065, 598 and 8187 for classifier C1, C2, and C3, respectively.

Table 3.1: Example Feature Combinations of FuzzySVM [17].

‘Index‘ Feature ‘Binary Representation‘
1 TSAD 1 0000000 00000
2 TRDCost 0 1000000 00000
3 T SkipFlag 0 0100000 00000
14 TSAD, LRDCost 1 1000000 00000
598 LRDCosts LSkipFlags L Distortions L Bits 0 1111000 00000
5065 |Z5AD, TRDCost, T Distortion, LQPs *CBF_SKIP» L Depths TCBF_NB 11010011 00011
8187 TSAD; -+-y LBits; LCtxSkipFlagy -++» TCBF_NB 11101111 11111
8191 TSADy -y TOBF_NB 11111111 11111
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Figure 3.1: Finding optimal three feature sets based on misclassification. (a)

Co. (b) C1. (c) C2.

Therefore, each optimal features set shown in Table getting from empirical results,

may have some correlated features as we mentioned before. Because of this possible issue
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for some correlated features, firstly, some correlated features of the optimal feature sets
are determined in our work. In detail, according to the Eq. , there are two correlated
features ( rpcost and & pistortion), three correlated features ( rpcosts  Distortion and T Bits)
, two correlated features ( xrpcost and xpgs) for classifier CO, C1, and C2, respectively.
Therefore, there may be possible to eliminate distortion or/and bit features when the RD
cost feature is already included in the optimal feature set to save the time consumed by
one or two redundant features. In our work [25], distortion and bits features are eliminated
from three optimal feature sets. Table shows the remaining selected features of different

classifiers after eliminating two features.

Table 3.2: Selected Features for different classifiers [25] after eliminating redun-
dant features of [17].
‘ Index ‘ Candidates ‘ Classifier CO ‘ Classifier C1 ‘ Classifier C2 ‘

1 TsAD v
LTRDCost \/ \/
T SkipFlag \/

T CtaSkipFlag

rQp

TCBF_SKIP

L MergeFlag

Tyy

O 0| || O =] W| N

L Partition
T Depth
LCBF_NB

<
R NSNS A A

P
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3.2 GA-Based Fast CU Partitioning

As we mentioned in Section 2.2.2, all learning-based approaches have proposed the
CU partitioning problem of HEVC as a classification or decision question. Therfore, after
studying the procedure of CTU partition, we firstly consider quadtree-based CU partitioning
as an optimization problem and utilize GA to find a good CU partition pattern for each

CTU [26].

3.2.1 Proposed Data Structure

For the first component of GA, the CU partitioning pattern of a 64x64 CTU is consid-

ered as a chromosome of quadtree-based CU partitioning problem as shown in Figure [3.2
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Three hierarchical levels of chromosome structure are proposed to represent three CU depth
levels of CU partitioning of HEVC. Assume that the maximum CU depth is 3, our proposed

21-bit data structure C for GA is represented as follows:

C = a bobibebs cocicacgeacscpercscgCiociicl12€13€14C15
0, if CUisnotsplit
a =
1, otherwise
\
(
null, if a=0
b = 0, if CU isnot split (3.1)
1, otherwise
.
null, ifa = 0orcorresponding parentb =0
¢ = 0, if CU isnot split
1, otherwise

, where a, b and ¢ are genes to represent the splitting decisions for depth 0, depth 1 and

depth 2, respectively. The possible values for a is 0 (non-splitting) and 1 (splitting). The

bo b, by bs
Cob € C C C C C C7 C Co Cio C11Ci2 Ci3 Cis4 Cy5

AAAAAAAAANAAAA AN

Figure 3.2: Hierarchical chromosome of a 64x64 CTU.

possible values for b are null if a is 0, 0 (non-splitting) and 1 (splitting). The possible
values for ¢ are null if its corresponding parent b is 0, 0 (non-splitting) and 1 (splitting).

It should be noted that the proposed data structure is composed of a group of dependent
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11000
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Figure 3.3: Possible CU partition patterns of a 64x64 CU (Maximum CU Depth
= 2).

genes. Therefore, the total number of possible CU partitioning patterns P is calculated as

in (3.2),
P = '+ 1)UV 4 (dmod?2) (3.2)

, where d € {1, 2, 3} is the maximum CU depth and mod is the modulo operation for
finding the remainder. If the maximum CU depth is 2 and 3, the total number of possible
partitioning patterns is only 17 as shown in Figure[3.3] and 83,522 even there are five genes

and 21 genes to represent the CU partitioning pattern, respectively.
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3.2.2 Proposed Fitness Function

Considering the CU size decision of original HEVC mentioned in Section 2.1.2, RD
cost-oriented fitness function is reasonably proposed to select top parents of current pop-
ulation to create a new better population. It should be noted that the smaller the RD
cost of a chromosome, the higher the chance to become a good chromosome. To save the
computational time for the proposed fitness function, we analyze most common modes of
the original HEVC and take advantage of those modes to calculate the RD cost of CU. As
shown in Figure we can observe that the SKIP/MERGE mode is the most selected
mode for PUs with the minimum RD cost in HEVC. Therefore, the RD costs of existing
CUs encoded with the most common mode SKIP/MERGE are calculated before calculating
the fitness function of GA.

The data structure as shown in Figure[3:2]and the RD costs for existing CUs as shown in

Figure 3.5 are utilized in order to get the fitness function of each chromosome in population

using (3.3)),

F = (1—a)RDCost, + a| Y5 (1 — b;)RDCosty, + b; (2?1'_1‘";(1 — ci)RDCoste; +c; S0 RDcostdkﬂ (3.3)

, where F' is the RD cost-oriented fitness function, a, b;, and c; are the values of one
gene, four genes, and sixteen genes of each chromosome to represent the splitting decision
at depth 0, 1, 2, and 3, respectively. RDCost,, RDCosty,, RDCost.;, and RDCostg,
are the RD cost values of one CU, 4 CUs, 16 CUs, and 64 CUs at depth 0, 1, 2, and 3,
respectively. The chromosome value of the splitting pattern shown in Figure [3.6]is 0 1010
0000222210002222 which represents a bgb1babs cocicacscacscgercgcgcigeiiciacizciacis. The
gene 0, 1, and 2 means non-splitting, splitting, and null, respectively. The fitness value of the
splitting pattern shown in Figure|3.6|are Z?:o RDCost., +RDCosty, + 229:16 RDCostg, +

RDCost.,, + RDCost.,, + RDCost.,, + RDCosty,.
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Figure 3.4: Usage of MERGE/SKIP mode (in green color) for PUs with the
lowest RD cost in HEVC.(a) Traffic (Class A). (b) Kimonol (Class B). (c)
BQMall (Class C). (d) BlowingBubbles (Class D). (e) Johnny (Class E). (f)
ChinaSpeed (Class F).
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RDCost,
RDCostp, RDCosty, RDCostp,  RDCosty,
RDCost,, RDCost,,
RDCostg, RDCosty,,

Figure 3.5: Required 85 RD costs of a 64 x 64 CTU.

/4@2

6 7 8 9

Figure 3.6: Example splitting pattern of a CTU.

3.2.3 Selection, Crossover and Mutation

After calculating the fitness function for each chromosome of the current population,
individual chromosomes are selected based on their fitness function to be a good parent
for the next population until the optimization criteria meet. The chromosomes with lower
fitness values have a higher chance to become the parents. The total number of parents is
about 10% of the total number of chromosomes. After selecting top parents, each gene of a
new chromosome is created by filling a collocated gene from a randomly selected parent. To
do more adaption for each chromosome, the mutation operator is applied to alter the value
of genes. It should be noted that each generated chromosome is needed to check whether

it is a valid chromosome or not.
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3.2.4 Optimization Criteria

According to our problem domain, we use the second termination condition mentioned
above that GA will terminate if the two best chromosomes of the current population and
previous population are repetitive for X times. To save the computational time for finding
a good chromosome under an acceptable accuracy, the GA parameter, X, is assigned as 2

based on empirical results.

3.2.5 Genetic Algorithm with the Proposed Chromosome and Fitness

Function

The detailed process of GA with the effective chromosome structure and fitness function
is described as two steps in Algorithm To have a trade-off between running time and
accuracy for GA, we empirically assign 50, 5 and 2 for the value of N, M and X, respectively.
By utilizing the splitting pattern from GA, the CU depth is estimated without doing an

exhaustively recursive RDO search.
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Algorithm 1 GA with the proposed chromosome and fitness function
Input: rdcost,, rdcosty,,i € {0,1,2,3},

rdcost.;,j € {0,1,...,15},

rdcostg,, k € {0,1,...,63}
Output: SplittingPattern

a bob1babz coC1Cac3C4C5C6CTCRCYCINCIICIRC13C14C 5

Step 1: Create N Initially Random Chromosomes, '

1:n<+20

2: for each n < N do

3: initial: C,, < random_Chromosome()

4 if C,, is duplicate then

5: goto initial

6 end if

7 F, + (1 — a)rdcost, + a [ S (1= by)rdcosty, + b, <Zj§4§’(1 — ¢;)rdcost,; +

4543
Ci D hia; rdcostdk> ]

8: end for

Step 2: Select Best M Parents P from N Chromosomes and Reproduce
New Chromosomes

9: sameF'itnessCount < 0, generation < 0

10: while sameFitnessCount | = X do

11: generation + +

12: if generation > 1 then

13: previousMinFitness <— min_Fitness(C')

14: end if

15: P < select_BestParents(C, M)

16: if (generation > 1 && previousMinFitness == min_Fitness(P)) then
17: sameFitnessCount + +

18: end if

19: n <« M

20: for each n < N do

21: C,, < reproduce(P)

22: end for

23: end while

3.2.6 Overall Algorithm

Three main parts of the proposed method to find the CU partitioning patterns for every
CTUs of a key frame are RD cost calculation, CU partitioning pattern finding, and CU

size prediction. The overall procedure of the proposed algorithm [26] can be summarized
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as follows:

1. For the first GOP, the CU partition patterns of the first inter frame (in yellow color)
and fourth frame (key frame in blue color) are searched by GA and shared with
two consecutive frames of current GOP and three consecutive frames of next GOP,

respectively.

2. For the next GOP, each frame are checked whether it is a key frame or not. If it is
the key frame, the CU partitioning patterns of that key frame are searched by GA

and shared with three consecutive frames as shown in Figure [3.7]

3. For each CTU of the key frame, there are three main parts mentioned above. Firstly,
the RD costs for 85 CUs are efficiently calculated, assuming that the size of CTU is
64x64 and the maximum CU depth is 3. Secondly, the CU partitioning pattern is
quickly searched by using the efficient RD costs of 85 CUs and a simple GA. Finally,

the CU size is predicted by using the CU partitioning pattern.

4. For each CTU of the non-key frame, the CU sizes are predicted by using the CU

partitioning pattern of collocated CTU of key frame.

The quadtree CU partitioning flowchart of the original HM, FuzzySVM[IL7], and the pro-

posed method are shown in Figure Figure [3.9] and Figure |3.10} respectively.

PP PP PP

/PP / [

Intra Frame | GA GA GA GA

GOP GOP GOP

Figure 3.7: Illustration for sharing partitioning pattern.
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Figure 3.8: Flowchart for quadtree-based CU partitioning of HM16.5.
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Figure 3.9: Flowchart for quadtree-based CU partitioning of FuzzySVM[17].
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Chapter 4
Evaluation

4.1 Test Video Sequences

As shown in Table five sequences from three different resolutions ( Class B to Class
E) are encoded with 4 QPs and Low Delay P (LDP) configuration as mentioned in [17] for
the first part[25]. For second part [26], we use thirteen test video sequences of six classes
( Class A to Class F). All video sequences are from the source of common test conditions
(CTC) of JCT-VC. In order to assess the coding efficiency of HD/UHD video, class A is the
set of higher resolution video sequences than full HD and these video sequences are cropped
to get frame resolution of 2560x1600 in order to reduce the encoding time. Class B aims
to evaluate the coding efficiency of 1080p high definition television (HDTV) while class E
uses for low latency video applications such as video conferencing. In order to measure the
coding efficiency for mobile applications, class C and D video sequences can be used. In
addition, captured video sequences, there is one different class called class F which contains
video scenes which are not captured by the camera and captured by the device itself to
get the screen content. These all test video sequences have different scene behaviors such
as the scene with moving objects in the foreground and static background and scene with
moving objects in the foreground and dynamic background in a crowded area. The video

contents of class A, B, C, D, E, F, and the actual size for all classes are shown in Figure

Figure .2} Figure [£.3] Figure [£.4] Figure [{.5 Figure [£.6] and Figure [£.7] respectively.

Figure 4.1: Traffic test sequence of Class A.
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(c) (d)

Figure 4.2: Class B. (a) Kimonol. (b) ParkScene. (c) Cactus. (d) Basket-
ballDrive.
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(©)

Figure 4.3: Class C. (a) BQMall. (b) PartyScene. (c) BasketballDrillText.

Figure 4.4: Class D. (a) BQSquare. (b) BlowingBubbles.



Figure 4.6: ChinaSpeed test sequence of Class F.

38
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Class C

-

Class D

nwee

Class E Class F

Figure 4.7: Example test sequences for each test sequence class printed in with
appropriate relative size.
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Table 4.1: Testing sequences of the JCT-VC data set.

’ Class\ Resolution Name \No. of Frames \ Frame Rate
A |2560x1600 Traffic 150 30
Kimonol 240 24
ParkScene 240 24
B 19201080 Cactus 500 50
BasketballDrive 500 50
BQMall 600 60
C | 832x480 PartyScene 500 50
BasketballDrill Text 500 50
BQSquare 600 60
D A16x240° 1 g e Bubbles 500 50
Johnny 600 60
E |1280%x720| KristenAndSara 600 60
Vidyo4 600 60
F | 1024x768 ChinaSpeed 500 30

4.2 Experimental Setup

In order to measure the performance of the proposed method, the experiments are done
by using HM 16.5. All simulation are done by using the computer which are equipped with
Intel Core i7-6700 CPU @ 3.40 GHz x 8 processor, 8 GB memory, and Ubuntu 16.04 LTS
64-bit Linux operating system.

For the first part [25], all experiments are carried out under low delay P (LDP) without
RC (4 QPs) d.e., QP = 22, 27, 32 and 37 and with enabled RC and two bit rates, i.e., 256
Kbps and 512 Kbps.

For the second part [20], all experiments are carried out under low delay P (LDP) and
low delay (LD) configuration with enabled RC and four bit rates, i.e., 1 Mbps, 2 Mbps, 4

Mbps, and 8 Mbps.

4.3 Performance Metric

In this thesis, to measure the RD performance of a conventional SVM method [17]
and feature reduction on that method [25] over the original HEVC test model (HM 16.5),
Bjontegard Delta Peak Signal To Noise Ratio (BDPSNR) and Bjgntegard Delta Bit Rate
(BDBR) [28] are used. For both parts, we utilize the most important performance metric

of fast encoding, called the computational time saving (TS). For TS based on QP, TS is
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calculated as
4

1 Z Tunies(QP,) — Tp(QP,)
4 Trnnes(QPn) ’

TS = (4.1)

n=1
, where Tran65(QF,) is the encoding time of the original HM 16.5 and and Tp(QP,) is
FuzzySVM[17] or the proposed method P with QF, where QP € {22, 27, 32, 37} .

For TS based on RC, TS is searched as

Trangs — T, -
TS — HM16.5 FastAlgorithm % 100% (42)

THwmies

, where Typnes is the computational time of the HM16.5 and Trastaigorithm 1S
FuzzySVM[17] or the proposed fast CU encoding. In addition, we use an another important
factor for measuring the quality degradation of fast encoding, called the peak signal-to-noise

ratio of luminance component (Y-PSNR) for the second part.

4.4 Feature Reduction on Conventional Fuzzy SVM-based

Approach

The experiment results under LDP configuration without RC are shown in Figure 1.8
According to the experiment results, feature reduction on a conventional fuzzy SVM method
[25] is unable to reduce the computational time. One of the reasons is that LDP configura-
tion without RC may not reduce the computational time as we expected. But, according to
the Figure [4.9] it can be found that a certain amount of computational time can be reduced

by enabling RC without quality degradation.
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Figure 4.8: Performance comparison with FuzzySVM [17] under LDP Configu-
ration without RC and 4 QPs. (a) Computational time saving (%). (b) Video
quality degradation BDPSNR (dB). (c) Overhead bitrate BDBR (%).
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Figure 4.9: Performance comparison with FuzzySVM [17] under LDP Configu-
ration with RC. (a) Bitrate = 256 kbps.(b) Bitrate = 512 kbps.

4.5 GA-Based Fast CU Partitioning

4.5.1 Performance Comparison with Original HM and State-of-the-art

Approach

In this subsection, the original HM and FuzzySVM [I7] are the benchmarks to compare
with the proposed method [26]. FuzzySVM predicts the CU sizes for three depth levels by
using three modified SVM classifiers. The source code of FuzzySVM is downloaded from
the authors [17].

Table and Table describe the experimental results of HM16.5, FuzzySVM, and
the proposed method [26] under low delay P (LDP) and low delay (LD) configurations
with enabled RC, respectively. We use four target bit rates such as 1 Mbps, 2 Mbps,
4 Mbps, and 8 Mbps which are described as 1, 2, 4, and 8, respectively, in Table
and Table The larger TS indicates that the encoding time can be further reduced.
Compared with HM 16.5, the average computational time saving of FuzzySVM for all bit
rates ranges from 45.8% to 61.1% and 49% to 60.8%, while our proposed method can achieve
the saving for all bit rates ranges from 62.5% to 66.6% and 64.1% to 67.4% under LDP and
LD configurations, respectively. The average computational time savings of our proposed

method over FuzzySVM are thus 5.5%, 8.3%, 11%, and 16.7% for the bit rates of 1, 2,
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4, and 8 Mbps, respectively, under LDP while 6.5%, 9.3%, 10.6%, and 15.1% under LD
configuration. These trade-offs are with the negligible average PSNR loss of less than 0.5
dB. Our proposed method has a stable improvement in computational time saving and
a comparable value in video quality especially at the higher bit rate cases. In special,
our proposed method achieves better quality performance for the Class E test sequences.
Therefore, our proposed method is more effective than FuzzySVM with comparable video
quality and an improved computational time saving, especially for low latency application
such as real-time video conversational application.

For several different sequences, the proposed algorithm can save the maximum and
minimum computational complexity of 68.5% in ”ChinaSpeed” and 45.4% in ” BlowingBub-
bles” for LDP, respectively, with a comparable quality loss at 8192 Kbps compared with
HM16.5. For 1024 Kbps, the proposed method can reduce the computational complexity at
most 74.1% in ”Traffic” and at least 47.3% in ”BlowingBubbles” with a negligible quality
degradation compared with HM16.5. For one example video sequence of class A called
"Traffic”, the proposed method greatly achieves 18.5% computational complexity reduc-
tion over FuzzySVM with a comparable PSNR value at 8192 Kbps. For ”KristenAndSara”
video sequence of class E, our proposed algorithm significantly reduces 18.9% computation
burden more than FuzzySVM at 8192 Kbps under the same video quality. In specific, our
proposed method achieves a similar RD performance as the original HM under a notable
computational time saving for the test video sequences which have a highly temporal cor-
relation between consecutive frames such as ”Johnny”, ”KristenAndSara”, ”FourPeople”
of class E. The behavior of class E is a scene with only people’s faces and upper bodies
movements in the foreground and static background. Figure and Figure describe
the experimental results of HM16.5, FuzzySVM, and the proposed method [26] under low

delay P (LDP) and low delay (LD) configurations with enabled RC, respectively.
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Table 4.2: Performance comparison with HM16.5 and start-of-the-art fast al-
gorithm, FuzzySVM[17] (LDP).

Class Sequence Bit rate Y-PSNR (dB) 7 TS (%) 7
(Mbps) | HM16.5 ‘ FuzzySVMILT] ‘ Proposed[26] | FuzzySVM[17] ‘ Proposed|26]

1 33.3 33.2 32.2 66.6 741

2 35.8 35.7 35.1 56.9 71.6

A Traffic 4 38.0 37.9 37.6 59.1 69.4

8 39.9 39.8 39.6 48.6 67.1

1 36.2 36.1 35.7 61.4 69.4

Kimonol 2 38.7 38.6 38.4 54.8 68.2

4 40.8 40.8 40.6 46.8 67.2

8 42.2 42.1 42.1 45.8 65.9

1 333 33.2 32.7 61.1 69.7

ParkSeene 2 35.4 35.3 34.9 57.3 66.8

4 37.6 37.5 37.3 51.5 65.2

B 8 39.7 39.6 39.5 46.2 63.4

1 317 315 31.0 67.7 721

Cactus 9 33.8 33.7 33.4 62.1 70.6

4 35.8 35.7 35.5 61.7 69.2

8 374 37.1 37.0 54.3 67.2

1 347 345 341 60.4 65.6

2 37.3 37.2 36.9 56.8 63.9

BQMall 4 39.6 39.5 39.3 51.0 62.4

8 41,5 41.5 41.4 47.6 62.8

1 296 295 29.0 58.9 64.6

2 32.1 32.0 31.7 54.3 62.7

C PartyScene 4 34.8 34.7 34.5 48.7 61.6

8 37.7 37.6 37.5 42.6 60.4

1 34.5 344 34.0 58.0 65.4

. 2 37.4 37.3 36.9 54.1 64.3

BasketballDrill Text 4 40.3 40.2 29.9 59.0 62.9

8 43.1 43.1 42.8 47.5 61.9

i 34.7 34.6 34.4 195 183

BQSquare 2 37.2 37.1 37.0 47.3 47.8

4 40.3 40.3 40.1 42.8 47.5

b 8 44.4 44.4 44.3 34.0 47.1

1 35.0 34.9 34.8 188 i3

. 2 37.8 37.8 37.7 44.3 45.9

BlowingBubbles 4 40.9 40.9 40.8 41.1 45.4

8 45.3 45.2 45.1 34.6 45.4

1 21 12.0 41.9 69.6 727

Johuny 2 42.9 42.8 42.8 65.9 71.1

~ 4 43.6 43.6 435 58.6 69.5

8 445 445 44.4 50.7 67.6

1 a7 1.6 114 69.8 73.0

. 2 43.0 43.0 42.9 65.0 71.4

E KristenAndSara 4 44.0 43.9 43.9 60.3 69.5

8 45.0 44.9 44.9 48.6 67.5

1 a1 40.9 0.8 62.5 72.6

Vidyod 2 425 42.4 42.3 60.0 711

4 43.7 43.7 43.6 57.4 69.5

8 45.1 45.0 45.0 51.7 67.8

i 346 344 33.9 60.0 70.7

. 2 37.9 37.7 37.4 58.2 69.9

F ChinaSpeed 4 415 41.3 41.0 54.1 69.3

8 45.4 45.2 44.9 43.6 68.5

1 35.6 35.4 35.1 61.1 66.6

2 37.8 37.7 37.5 56.7 65.0

All AVERAGE 4 40.1 40.0 39.8 52.7 63.7

8 42.4 42.3 42.2 45.8 62.5
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Table 4.3: Performance comparison with HM16.5 and start-of-the-art fast al-
gorithm, FuzzySVM[17] (LD).

Class Sequence Bit rate Y-PSNR (dB) 7 TS (%) 7
(Mbps) | HM16.5 ‘ FuzzySVMILT] ‘ Proposed[26] | FuzzySVM[17] ‘ Proposed|26]

1 33.4 33.2 32.4 65.7 74.9

2 35.9 35.8 35.2 59.3 74.1

A Traffic 4 38.2 38.1 37.8 60.6 71.9

8 40.2 40.2 39.9 49.0 70.7

1 36.5 36.4 36.0 61.4 69.9

Kimonol 2 38.9 38.9 38.7 54.8 68.8

4 41.0 41.0 40.9 49.4 67.9

8 42.4 42.4 42.3 40.5 66.9

1 33.3 33.2 32.8 58.2 70.0

ParkSeene 2 35.5 35.4 35.0 59.4 68.7

4 37.7 37.7 37.4 52.8 67.5

B 8 39.9 39.9 39.7 39.6 66.4

1 31.8 317 31.2 65.9 70.0

Cactus 2 34.0 33.9 33.5 61.2 68.7

4 35.9 35.9 35.6 62.2 67.5

8 37.4 37.3 37.2 56.7 66.4

1 34.9 34.8 34.4 60.5 67.1

2 37.6 37.5 37.2 58.0 65.8

BQMall 4 40.0 39.9 39.7 54.3 64.7

8 41.9 41.8 41.8 49.9 63.5

1 29.7 29.6 29.2 59.6 66.4

2 32.4 32.3 32.0 57.9 65.1

C PartyScene 4 35.3 35.3 35.0 52.2 64.1

8 38.5 38.4 38.2 474 63.1

1 34.8 347 34.3 60.2 67.1

. 2 37.8 37.7 37.3 55.2 65.8

BasketballDrill Text 4 40.8 10.7 404 55.0 64.8

8 43.7 43.6 43.4 53.4 64.2

i 35.5 35.4 35.2 50.2 50.5

BQSquare 2 38.1 38.0 37.9 48.3 54.8

4 41.2 41.2 41.1 45.1 49.3

b 8 45.4 45.3 45.2 42.5 48.4

1 35.3 35.2 35.1 50.4 19.7

. 2 38.4 38.3 38.2 49.2 48.8

BlowingBubbles 4 41.7 41.6 415 44.0 47.7

8 46.0 46.0 45.9 42.9 47.6

1 424 123 122 69.9 72.8

Johuny 2 43.3 43.2 43.1 66.1 71.9

~ 4 44.0 44.0 43.9 62.2 70.5

8 44.8 44.8 44.7 57.0 68.7

1 1.9 7 11.6 63.9 72.9

. 2 43.3 43.2 43.1 65.1 71.7

E KristenAndSara 4 44.9 44.9 441 60.7 704

8 45.2 45.2 45.2 53.2 68.7

1 414 41.3 41 59.6 72.8

Vidyod 2 42.9 42.8 42.7 53.4 71.6

4 44.1 44.0 43.9 56.1 70.5

8 45.5 45.4 45.3 57.3 69.4

1 347 34.5 34.0 60.2 %

. 2 38.1 37.9 37.5 58.6 71.2

F ChinaSpeed 4 41.6 41.4 411 55.1 70.6

8 45.5 45.4 45.1 48.1 69.9

1 35.8 35.7 35.3 60.8 67.4

2 38.2 38.1 37.8 57.4 66.7

All AVERAGE 4 40.4 40.4 40.2 54.6 65.2

8 42.8 42.7 42.6 49.0 64.1
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Figure 4.10: Average performance comparison with FuzzySVM [17] under LDP
configuration. (a) Video quality (dB). (b) Computational time saving (%).
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Figure 4.11: Average performance comparison with FuzzySVM [17] under LD
configuration. (a) Video quality (dB). (b) Computational time saving (%).

For video quality comparison between original HM16.5, FuzzySVM and the proposed

method, Figure shows the reconstructed frames decoded by HM16.5, FuzzySVM and

the proposed method at 1024 kbps under LDP configuration. The required bit allocations

and PSNR values of that frame are 14976 and 34.6 dB for HM16.5, 13936 and 34.4 dB

for FuzzySVM, and 14280 and 34.1 dB for the proposed method. Even though the PSNR

degradation of the proposed method compared with HM16.5 and FuzzySVM are nearly 1

dB and 0.2 dB, respectively, at 1024 kbps, a similar video quality is perceived by the human
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Figure 4.12: Subjective video quality for POC 242 of BasketballDrillText video
sequence.(a) Encoded frame of HM16.5. (b) Encoded frame of FuzzySVM. (c)
Encoded frame of the proposed method [26].

visual system.

4.5.2 Stability of the Proposed Method

In order to analyze the stability of the proposed method, we use several target bit rates
such as 1, 2, 4, 8, 16, and 32 Mbps to encode two different test video sequences such as
"BQMall” from class C and ”Johnny” from class E under LDP configuration. "BQMall”
sequence has many moving objects in foreground and camera movements while ” Johnny”
has the only face and upper body movements with a stable background. Figure shows
the stability of the proposed method compared with FuzzySVM. From this figure, it can be
observed that our proposed method gives a stable reduction in the computational burden
of HEVC from the 1 Mbps to 32 Mbps target bit rate. This happens due to the consider-

ation of temporal correlation and the advantage of effective chromosome structure, fitness
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function, and negligible computation time of GA which is not greater than 1% of the total
encoding time as shown in Figure On the other hand, the computational time sav-
ing of FuzzySVM is not stable and is dramatically reducing since FuzzySVM has a higher
chance to make a splitting decision when the target bit rate is higher. In details, Figure
and Figure describe the percentage of SVM decision of each depth for "BQMall” and
”Johnny” test sequences, respectively. From Figure it can be found that the total
splitting decision percentage for all three depths is increasing while the target bit rate is
increasing. As shown in Figure FuzzySVM calculates the RD costs for only one 64 x64
CU when the target bit rate is 1 Mbps. For 4 Mbps, there are one 64x64 CU and four
32x32 CUs. The RD costs for one 64x64 CU, four 32x32 CUs, eight 16x16 CUs, and four
8x8 CUs are calculated at the high target bit rate, 8 Mbps. Therefore, the total number of
CUs that need to be calculated the RD cost may be increased when the target bit rate is
increasing. As a result, FuzzySVM may consume a larger computational complexity while

HM16.5 and the proposed method calculate the RD costs for a fixed amount of CUs.

100 ; ; ; ; ; ; 100
90 1 90 r
80 1 80 1
g 704 1 g 7o§§\o S © D
g» 60 . = D E 60 ><\\\ 1
2 50 K- 1 Z  50F X
o 40} [ {2 af
£ N3 4 £ T b
30} i = 30t
20 ¢ ] 20 ]
10 + FuzzySVM --X-- | 10 | FuzzySVM --X-- |
0 ‘ ‘ Proposed —©— : ‘ ‘ ‘ Proposed —©—
5 10 15 20 25 30 5 10 15 20 25 30
Bit rate (Mbps) Bit rate (Mbps)
(a) (b)

Figure 4.13: Stabilization of proposed method[26] over FuzzySVM[17]. (a) Time
saving of BQMall. (b) Time saving of Johnny.
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Za |£&n i

Figure 4.18: CU Partition of a CTU encoded by FuzzySVMJ[17] at 1 Mbps, 4
Mbps, and 8 Mbps.

4.6 Discussion

4.6.1 Performance Comparison with CTU Level Sharing

To compare with our frame level sharing scheme [26], another sharing scheme such as
coding tree unit (CTU) level sharing have been implemented. Firstly, the motion infor-
mation of each CTU is analyzed by utilizing the frame differencing method. Secondly, the
CTU is categorized into two groups: moving region and non-moving region. Thirdly, the
PPs from GA and key frame are utilized for CTUs which are in the moving region and
non-moving region, respectively.

As shown in Figure {.19] CTU level PP sharing can keep 0.37 dB, 0.31 dB, 0.2 dB, and
0.11 dB more than the proposed frame level at 1, 2, 4, and 8 Mbps, respectively, for class
A video sequence called ”Traffic” which is the higher resolution video sequence than full
HD and is cropped to get frame resolution of 2560x1600 in order to reduce the encoding
time. However, the proposed frame level can significantly reduce 19.7%, 19.5%, 19.1%, and
19% computational complexity more than CTU level at 1, 2, 4, and 8 Mbps, respectively.
Especially at high bit rate (8Mbps), the proposed method achieves a large time saving with

a comparable video quality compared with CTU level approach.
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Figure 4.19: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of Traffic (Class A). (b) Time saving of Traffic (Class A).

For a ”Kimonol” video sequence of class B with only a slow walking movement of a
Japanese girl in the foreground and dynamic background, the proposed approach can save
7.2%, 7.3%, 7.9%, and 7.9% computational time saving more than CTU level with the small
values of quality drop as 0.06 dB, 0.04 dB, 0.02 dB, and 0.01 dB at 1, 2, 4, and 8 Mbps,

respectively, as shown in Figure [4.20
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Figure 4.20: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of Kimonol (Class B). (b) Time saving of Kimonol (Class B).

As shown in Figure CTU level PP sharing can keep 0.11 dB, 0.09 dB, 0.05 dB,
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and 0.03 dB more than the proposed frame level at 1, 2, 4, and 8 Mbps, respectively, for
"PartyScene” video sequence from class C which has fast moving objects in the foreground
and static background. However, the proposed frame level can reduce 5.9%, 6.3%, 6.9%, and

7.5% computational complexity more than CTU level at 1, 2, 4, and 8 Mbps, respectively.
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Figure 4.21: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of PartyScene (Class C). (b) Time saving of PartyScene (Class C).

For low resolution video sequence called ”BlowingBubbles”, the proposed frame level
can save more 6.7%, 7.1%, 7.9%, and 8.5% than CTU level while CTU level scheme can
only keep 0.03 dB, 0.03 dB, 0.01 dB, and 0.01 dB more than the proposed at 1, 2, 4, and 8

Mbps, respectively, as shown in Figure
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Figure 4.22: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of BlowingBubbles (Class D). (b) Time saving of BlowingBubbles (Class D).

For a scene with only people’s faces and upper bodies movements in the foreground

and static background such as ”Johnny” from Class E, the proposed approach can save

7.2%, 7.8%, 8.5%, and 9% computational time saving more than CTU level with the small

values of quality drop as 0.05 dB, 0.02 dB, 0.01 dB, and 0.01 dB at 1, 2, 4, and 8 Mbps,

respectively, as shown in Figure [4.23
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Figure 4.23: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of Johnny (Class E). (b) Time saving of Johnny (Class E).

In addition captured video sequences, there is one different class called class F which
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contains video scenes which are not captured by camera and captured by device itself to
get the screen content such as ”ChinaSpeed”. For this video, CTU level PP sharing can
maintain a small PSNR such as 0.14 dB, 0.12 dB, 0.09 dB, and 0.07 dB more than the
proposed frame level under a large amount of time saving drop such as 8%, 8.1%, 8.4%,
and 8.6% at 1, 2, 4, and 8 Mbps, respectively, as shown in Figure Due to these
experimental results for all classes (A to F) under LDP configuration, we effectively utilized

frame level sharing scheme to significantly reduce time saving under a negligible PSNR drop.
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Figure 4.24: Performance comparison between FuzzySVM [17], CTU level and
proposed frame level partitioning pattern sharing scheme [26]. (a) Video quality
of ChinaSpeed (Class F). (b) Time saving of ChinaSpeed (Class F).

4.6.2 RD Cost Calculation with Two Most Common Modes and CU Pre-

diction without Two Most common Modes

At the previous version of our proposed method, we have calculated the approximate RD
cost after encoding with two most common modes called SKIP/MERGE and Part 2N x2N
modes in RD cost calculation part. Actually, SKIP/MERGE mode is enough to calculate
the approximate RD according to the empirical results. Additionally, we have not used
these two common modes after predicting the CU size to save the computation time of
quadtree partitioning. However, there is a small loss in RD at low bit rate. Therfore, we
revised the previous version by using only the most common mode and adding two most
common modes after CU size prediction to get a better PSNR value. The flowcharts of

our previous version and current version of the proposed method [26] are shown in Figure
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Table |4.4] shows the performance comparison of the original HM, FuzzySVM [17], the

previous version and the proposed method [26].
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Figure 4.25: Flowcharts of previous and proposed GA-based fast CU partition-
ing.
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Table 4.4: Performance comparison of HM16.5, start-of-the-art fast algorithm
[17], previous and proposed method [26]

Class Sequence Bit rate Y-PSNR (dB) TS (%)

) ) (Mbps) | HM16.5 | FuzzySVMIIT7] | Previous | Proposed[26] | FuzzySVM[IT] | Previous [ Proposed[26]

1 36.2 36.1 35.5 35.7 614 67.3 69.4

Kimonol 2 38.7 38.6 38.2 38.4 54.8 66.8 68.2

4 40.8 40.8 405 40.6 46.8 68.2 67.2

8 42.2 421 42.0 421 45.8 67.1 65.9

1 333 33.2 324 32.7 61.1 67.1 69.7

ParkSconc 2 35.4 35.3 34.7 34.9 57.3 64.2 66.8

4 37.6 375 37.1 37.3 515 64.6 65.2

B 8 39.7 39.6 39.3 39.5 46.2 65.1 63.4

i 317 315 30.9 31.0 67.7 69.8 72.1

Cactus 2 33.8 33.7 33.2 33.4 62.1 68.7 70.6

4 35.8 35.7 35.3 35.5 61.7 68.0 69.2

8 37.1 37.1 36.9 37.0 54.3 67.1 67.2

1 347 345 338 341 60.4 64.0 65.6

2 37.3 37.2 36.7 36.9 56.8 63.8 63.9

BQMall 4 39.6 39.5 39.2 39.3 51.0 64.0 62.4

8 415 415 413 41.4 47.6 66.1 62.8

i 20.6 295 283 20.0 58.9 635 64.6

c PartvSeone 2 321 32.0 314 31.7 54.3 63.6 62.7

3 4 34.8 34.7 34.3 34.5 48.7 64.5 61.6

8 377 37.6 37.4 375 42.6 65.1 60.4

1 345 344 33.7 34.0 58.0 65.5 65.4

i 2 374 37.3 36.7 36.9 54.1 64.7 64.3

BasketballDrillText | - 40.3 40.2 39.7 39.9 52.0 64.7 62.9

8 43.1 43.1 427 428 475 65.2 61.9

1 347 346 343 344 195 50.7 183

BQSquare 2 372 37.1 36.9 37.0 47.3 51.3 478

4 40.3 403 40.1 40.1 42.8 51.7 475

b 8 44.4 444 443 443 34.0 52.5 471

1 35.0 349 347 348 88 194 173

A 2 37.8 37.8 37.6 37.7 44.3 49.5 45.9

BlowingBubbles 4 40.9 40.9 40.7 40.8 411 50.4 45.4

8 45.3 45.2 45.1 45.1 34.6 51.0 454

1 21 2.0 s 1.9 69.6 708 2.7

Johomy 2 42.9 42.8 42.7 42.8 65.9 70.0 71.1

: 4 43.6 43.6 435 435 58.6 69.8 69.5

8 445 445 44.4 44.4 50.7 69.7 67.6

1 7 16 i3 14 69.8 71.0 73.0

. 2 43.0 43.0 42.9 42.9 65.0 70.2 71.4

E | KristenAndSara 4 44.0 43.9 43.9 43.9 60.3 69.2 69.5

8 45.0 44.9 44.9 44.9 48.6 69.1 67.5

i 1 409 10.7 103 625 705 72.6

Vidyod 9 425 424 423 423 60.0 69.5 71.1

- 4 43.7 43.7 435 43.6 57.4 68.9 69.5

8 45.1 45.0 45.0 45.0 51.7 68.6 67.8

1 35.9 35.7 35.3 35.4 60.7 64.5 65.5

2 38.0 37.9 37.6 37.7 56.5 63.8 64.0

All AVERAGE 4 40.1 40.1 39.8 39.9 52.0 63.9 62.7

8 42.3 42.3 42.1 42.2 45.8 64.2 61.5
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4.6.3 GA-Based Fast CU Partitioning without Utilizing Temporal Cor-

relation and with QP

In order to know the advantages of temporal correlation, we proposes a fast CU depth
estimation algorithm based on genetic algorithm (GA)without utilizing temporal correla-
tion [27]. In [27], we focus the main important metric of fast encoding, TS (4.1)), where
Trane6.5(QPF,) is the encoding time of the original HM 16.5 and Tp(QF,) is FuzzySVM[1T7]
or GA-based Fast CU partitioning without temporal correlation method P [27] under Low
Delay P (LDP) configuration with four common QPs, i.e., 22, 27, 32 and 37. As shown
in Table the experimental results show 69.2% computational time on average can be
reduced by the proposed method compared with HM16.5. Compared with start-of-the-art
fast encoding method, the proposed one can achieve 5.2% time saving on average under a

comparable BD-PSNR.

Table 4.5: Performance Analysis of the proposed method [27] with HM16.5 and
start-of-the-art fast algorithm, FuzzySVM [17].

Sequence FuzzySVM [17] Without temporal correlation [27]
BD-PSNR ‘ BD-BR ‘ TS |BD-PSNR ‘ BD-BR ‘ TS
BQMall -0.126 3.340 | 58.5 -0.412 11.235 69.42
PartyScene -0.094 2.408 |54.64 -0.405 10.664 60.47
Johnny -0.090 4.227 72,76 -0.095 10.045 74.12
KrisAndSara -0.106 3.670 | 69.9 -0.379 14.465 72.66
Average -0.104 3.411 |(63.9 -0.323 11.602 69.2

The units of BD-PSNR, BD-BR and TS are in dB, % and %, respectively.



Chapter 5

Conclusion and Future Works

HEVC is the newest video codec of the Joint Collaborative Team on Video Coding
(JCT-VC) which can save a 50% bit rate of H.264 under the same video quality because of
its advanced features such as a quadtree-based CU partition, a modified deblocking filter,
and 35 prediction modes for intra coding. However, these advanced features make the
computational complexity of HEVC to be extremely high. Among these features, quadtree-
based CU partition is the most expensive computational cost (over 80% in the HEVC test
model) due to a recursively exhaustive RDO search. Therefore, most of the fast algorithms
have focused on the CU partition by utilizing a statistical approach or learning approach
in order to save the encoding time of HEVC.

In this thesis, we propose a feature reduction approach on a fuzzy SVM method to
reduce the time consumed by some correlated features of the optimal feature sets. The
experimental results confirm that a feature reduction on a conventional method can save
the computational time with the same RD performance under LDP configuration with RC.
As we know, machine learning prediction can achieve 50% reduction for complexity and
that is a good approach to investigate more. After reduction some correlated features from
the best feature set, it subject that it is a good tendency to decrease the computational
complexity more than before. It may be possible to apply the feature reduction approach
to other conventional CU size decision algorithms.

However, according to our knowledge, all fast algorithms have not searched the whole
splitting pattern of each CTU by utilizing an optimization approach. Therefore, we utilize
a simple optimizer with a meaningful chromosome pattern and a reasonable fitness func-
tion to find a good splitting pattern for each CTU. In this thesis, we propose a CU size
decision method based on GA to reduce the computation complexity of the quadtree-based
CU partitioning. To the best of our knowledge, we are the one who firstly introduces CU
partitioning as an optimization problem which is solved by GA with an effective chromo-
some structure. In order to quickly find the fitness function of GA, the RD costs for each

CU are calculated by encoding CUs with the most common modes for PU. To further save
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the computational complexity of CU partitioning, the temporal redundancy is considered
to share CU partitioning pattern within consecutive frames. Compared with the state-of-
the-art SVM based fast algorithm, the proposed method can reduce a higher computational
complexity at higher target bit rate under a negligible quality loss. In current communi-
cation networks including 5G, the available bandwidth is going up. Apparently, we can
increase the bit rate to be high and we can consider high bit rate in video coding. Our
method can get a comparable PSNR at high target bit rate. For the calculation cost for
small equipment, the reduction for calculation cost is an important issue.

In order to further extend this work, we can measure the subjective evaluation of our
proposed method. Additionally, We can optimize GA especially for creating a better initial
population than random population and using another less time-consumption input value

than RD cost to calculate the fitness function.
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