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APPENDIX A

EXPERIMENTAL DATA FOR ANALYSIS
A-| Standard calibration curve for HPLC analysis of HMF and furfural
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Figure A 1.2 Standard curve of furfural



A-2 Standard calibration curve for HPLC analysis of glucose fructose xylose
and AHG

Table A-2.1 Standard calibration curve data for glucose

Peak area Concentration of glucose
(UV detector at 270 nm) (mg/ml)
109 01
508 0.3
987 05
1570 0.7
2128 1.0

0 0.2 0.4 0.6 0.8 1 1.2

Concentration of glucose (mg/ml)

Figure A 2.1 Standard curve ofglucose



Table A-2.2 Standard calibration curve data for fructose

Peak area Concentration of fructose
(UV detector at 270 nm) (mg/ml)
83.36 01
457.332 0.3
945,716 05
1457735 0.7
2212.2 1.0
| 2500 1‘
’ 2000 -
i 1500 -
g
1000 - >
| 500 1 ° y = 2092.9x
| R2=0.9753
| Pt ,
‘ 0 0.2 0.4 0.6 0.8 1 1.2

Concentration of fructose (mg/ml)

Figure A 2.2 Standard curve of fructose



Table A-2.3 Standard calibration curve data for xylose

Peak area Concentration of xylose
(UV detector at 270 nm) (mg/ml)
89.177 01
23171 0.3
411.40 0.5
668.51 0.7
100157 10
1200
1000 - *
800 1
g 600
400 ¢
200 - ) y = 953.18x
R? =0.9818
0+ - . — r )
0 0.2 0.4 0.6 0.8 1 1.2

Concentration of xylose (mg/ml)

Figure A 2.2 Standard curve ofxylose



Table A-2.3 Standard calibration curve data for 1,6 anhydroglucose (AHG)

Concentration of xylose (mg/ml)

Concentration of AHG
Peak area
(mg/ml)
89.177 0.1
23171 03
411.40 05
668.51 0.7
100157 1.0
1200 4
1000 &
800 l
2 600
400 L4
| 200 . y =953.18x
5 R2 =0.9818
0 . r . ;
0 0.2 0.4 0.6 0.8 1 1.2

Figure A 2.2 Standard curve ofxylose




APPENDIX B
EXPERIMENTAL DATA

B-I Calculation of % conversion and concentration of 1,3-PDO and 2-MD

Product yield (%) gram of HMF or furfural in product X 100

gram of feedstock

(initial sugar mass - last sugarmass) X 100

Conversion ofsugar (%)

initial sugar mass



B-2 Experimental data of HMF and furfural from biomass.
Table B-l Effect ofthe composition of medium (Acetone/DM SO (70/30% / )to
water) on HMF and furfural yield at 250°c

Composition of medium
(Acetone:DM SO) [ water

Table B-2 Effect of the composition of medium (Acetone/DM SO (70/30 %

100/0
90/10
80/20
70/30
60/40
50/50
40/60
30/70
20/80
10790
0/100

HMF
0.07
0.13
0.08
0.06
0.06
0.1
0.1
0.6
1.4
2.8
4.6

Yielc (%)

Furfural

0

O o O o o o

0.2
0.3
0.32

water) on HMF and furfural yield at 250°c with carbon based catalyst

Composition of medium
(Acetone:DMSQ) [ water

100/0
90/10
80/20
70/30
60/40

Exp 1
95
10.8
10.3
10.2
9.68

HMF
Exp 2
9.6
10.3
10
10.7
8.6

Yiele (%)

Sd Exp 1
0.0565 1.8
0.0707 2.1
0.2121 1.9
0.0707 2
0.6363 1.6

Furfural
Exp 2

1.6
1.9
1.8
1.9
1.6
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[ ) to

Sd
0
0.0707
0.0707
0.1414
0.1414
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Tabhle B-3 Effect of temperature on HMF and furfural yield at 10/90

(Acetone/DM SO (70/30 % [ )to water) with carbon based catalyst

Yield (%)
Temperature (°C) HMF Furfural

Expl Exp?2 Sd Expl Exp?2 Sd
220 3.21 3.55 0.2404 0.5 07 0.1414
230 6.44 6.32  0.0848 1 098 0.0141
240 9 9.1 0.0707 1.4 1.4 0
250 10.8 10.7  0.2645 2.1 1.9 0.1527
260 10 9.8 0.1414 2.1 1.8 0.2121
270 8.26 g.11  0.1060 13 1.2 0.0707

Tahle B-4 Effect oftime on HMF and furfural yield at 10/90 (Acetone/DM SO (70/30

%w/w) to water), reaction temperature 250°c with carbon based catalyst

Yiele (%)
Time (min) HMF Furfural
Expl Exp?2 Sd Exp 1 Exp?2 Sd
0 10.8 10.7  0.0707 2.1 1.9 0.1414
1 11.2 11 0.1414 2.2 2 0.1414
2 10.2 10.3  0.0707 ' 2.2 2.1 0.0707
5 8.48 8 0.3394 2.2 2 0.1414
I 5.91 587  0.0282 2.3 2 0.1414
10 3.56 4 0.3111 1.8 1.9 0.0707

Table B-5 Effect of dose of catalyst on HMF and furfural yield at 250°c, I min and
10/90 (Acetone/DM SO (70/30 % [/ )to water as medium.

Yiele (9%
Dosecoaftacla;rsbto(r;)based HME (%) curfural
Exp 1l Exp?2 Sd Exp 1l Exp?2 Sd
0.05 12.1 11.4 0.4949 2 16 0.2828
0.1 1 112 0.1154 2 2.2 0.1414

0.15 9.8 11 0.4242 2.1 2.2 0.0707
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Tahle B-6 Production yield from fructose at 230°c, 10/90 (Acetone/DM SO (70/30

% [ )to water as medium, with and without carbon based catalyst, range of time at

0to 12 minute.

Time % Yield
. . . .
(min) % conversion of fructose Without catalyst W ith cata yst
Without cat With cat ~ Glucose HMF furfural Glucose HMF furfural

0 10 78 0 4.8 0.1 0 22.5 0.6
2 30 87 0 1.2 0.3 0 23 0.6
5 50 93 0 14 0.4 0.1 26.6 0.8
7 63 94 0 16.7 0.5 125 275 0.9
10 72 94.7 0 202 0.7 0.9 28.5 0.9
12 82 95 0 26.2 1 0 28.5 1

Table B-7 Production yield from glucose at 230°c, 10/90 (Acetone/DM SO (70/30

% [ ) to water as medium, with and without catalyst, range of time at o to 12

minute.
_ % conversion of % Yield

Time ' glucose Without catalyst With catalyst

(min) chtgtout With cat  Fructose = AHG  HMF furfural Fructose AHG HMF furfural
0 5 15 1 2.3 1.3 0 0 0 0.8 0
2 10 15 ' 2 4 2.1 0 0 0 1.8 0.1
5 12 16 4 0 3.3 0.1 0 0 2.5 0.1
7 22 19 5 0 4 0.1 0 0 3.3 0.1
10 29 27 6 0 il 0.1 0 0 3.6 0.1
12 33 30 4 0 58 0.2 0 0 4 0.2

Tahle B-8 Production yield from xylose at 230°c, 10/90 (Acetone/DM SO (70/30

% | ) to water as medium, with and without catalyst, range of time at o to 12

minute.
Time % conversion of glucose % yield furfural
(min) Without catalyst ~ With catalyst  Without catalyst W ith catalyst
0 5.7 13 2.4 2.4
2 1.2 18 3.1 3.9
5 10 22 5 1
1 28 35 5.7 1.6
10 30 45 1.1 9.4
12 35 45 1.7 117
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Table B-9 Production yield from cellulose at 230°c, 10/90 (Acetone/DM SO (70/30

% [ ) to water as medium, with and without catalyst, range of time at o to 12

minute.
- % Yield

(Tn:r?e) W ithout catalyst W ith catalyst

glucose xylose AHG HMF furfural glucose xylose AHG HMF furfural

0 3.75 0 0 03 0.1 17 0.45 0 12 0.3
2 6.5 0.5 0 07 0.2 23 0.4 0 2 0.3
5 7 0.4 0 11 0.2 25 0.1 10 39 0.5
7 1.2 0 0 12 0.2 43 0.08 15 59 0.8
10 10 0 4 2 0.3 40 0 14 7 1
12 15 0 3 a7 0.8 40 0 13 76 14

Table B-10 Production yield from xylan at 230°c, 10/90 (Acetone/DM SO (70/30

% [ ) to water as medium, with and without catalyst, range of time at o to 12

minute.

Time , P .

(min) Without catalyst Wit 1 catalyst

glucose xylose AHG HMF furfural glucose xylose AHG HMF furfural

0 175 2.25 0 0 0.9 0 3.5 75 01 7.4
2 1.75 3.5 18 0" 15 0 75 25 01 8
5 0 2 15 0 0 2 14 01 10.3
7 0 005 75 0 3 0 05 141 01 9.1
10 0 0 0 0 33 0 0 0 0.1 9
12 0 0 0 0.1 4 0 0 0 0.1 7.9
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Abstract
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In this study, the production of 5-hydroxymethylfurfural (HMF) from cassava
waste was investigated in a batch type hot compressed water system. First,
experiments were conducted to examine the optimum condition (temperature between
473 K and 523 K and reaction time between 0 to 12 min) without added catalyst. The
optimum condition was found to be at 498 K for 10 min, and the production yield was
found to be 6.3 wt %. Atthis temperature, catalysts (TiZro4, fl2So »and a new carbon
based catalyst) were then used and their effects on the production yield were
investigated. The results showed that the novel carbon based catalyst could promote
the production of HMF giving the maximum production HMF yield of 8.46 wt% at
498 K and reduced reaction time of 5 min. This result was similar to those obtained
using conventional catalysts (TiZr04and H2So4). However, the lower cost of carbon

based catalyst makes it attractive.

1. Introduction

In the view of declining petroleum
resources and rising oil prices, it is
necessary to develop alternative ways
to fulfill the energy needs of our
industrialized society. To meet the
growing demand for energy, 5-
Hydroxymethylfurfural ~ (HMF) s
alternative ways because it is a
particularly suitable starting material
for the preparation hydrocarbons (Cg-
C1s) which have the same property as
petroleum fuels and can be derived
from biomass. One of the most
promising approaches for converting
biomass to HMF is by hydrothermal
means, which employs hot compressed
water (HCW) as a reaction medium.
HCW offers the potential of high
degree of conversion within short
residence time, minimizes formation of
toxic products during pretreatment and
neither acid nor base is wused. In
general, biomass is converted to HMF
in HCW, through homogeneous acid-
catalyzed reaction [1], The
homogeneous catalyst cannot be
separated easily from the system of
reaction, and  therefore,  several
attempts have been made to develop
new catalytic processes, mainly hased
on heterogeneous catalysis, for the
transformation of biomass to HMF.
Recently, Gao et al. (2007) reported a
use of anew type of sulfonated catalyst
for acid catalyzed acetalization

reaction. The advantages of this
catalyst include low cost, simple
preparation, high acid density and
stability. Therefore in this work, this
new type of catalyst was tested for the
production of HMF from Cassava
waste feedstock in HCW.

2. M aterials and Methods

2.1 Chemicals

Sulfilric acid and naphthalene were
purchased from Fluka and Merck,
Singapore.

2.2 Preparation of catalyst

Naphthalene (20 g) was heated in
concentrated sulfuric acid (>96%, 200
ml) at 523 K under a flow of N2. After
heating for 15 h, excess sulfuric acid
was removed from the dark brown tar
by vacuum distillation at 523 K for 5 h,
which resulted in a black solid. The
solid was then ground to a powder and
was washed repeatedly in boiling water
until impurities such as sulfate ions
were no longer detected in the washing
water [2],

2.3 Catalystcharacterization

The total surface area, pore volume
and pore size of catalysts were
determined using a Micromeritrics
model ASAP 2020. The sulfur content
of sulfonated carbon hased catalysts
was  determined by Inductively
Coupled Plasma-Mass Spectrometry
(ICP-MS) using 7500a ICP-MS (from
Agilent, Japan).



2.4 Conversion of Cassava waste
in HCW

2.4.1 Without catalyst

The reaction was earned out in a SS
316 stainless steel 8.5 ml reactor. For
the preliminary conditions, 0.1 g of the
dry powder of cassava waste and 1 ml
of water Were chargeded into the
reactor. The reaction system was
heated to the set temperature (473, 523,
573,623, and 673 K). After a specified
reaction time (o-12 min) was reached,
the reaction was quenched in a water
bath and the reaction product was then
removed for analysis.

2.4.2 W ith catalyst
0.1 g ofcassava waste powder, 1 mlof
water, and o.01 g of the novel carbon
based catalyst were charged into the
reactor. The reaction was then carried
out at the optimal temperature
determined  without  catalyst  as
described in the previous section. The
result was compared with the reaction
catalyzed by conventional catalysts
(TiZroa and H2S504), whose the
reactions were carried out using 0.1 g
of TiZroaand 0.14 ml of 0.1 M H2504
respectively for the same o1 ¢ of
cassava waste powder.

25 HPLC Analysis of HMF

The quantification and identification
of HMF was conducted by High
Performance Liquid Chromatography
equipped with a Shodex RSpak KC-
811 (8.0mmIDx300mm) column.

3. Results and Discussion

3.1 Catalyst characterize

The physical properties of the novel
carbon based catalyst are shown in
Table 3.1. The BET measurement
indicates that the catalyst shows low
specific surface area with insignificant
pore volume, while the acid site
densities calculated in the form of
sulfonic acid site  (estimated by
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elemental analysis) was found to be
146 mmollg.

Table 3.1 Physical properties of

catalyst
BET surface Pore Sulfur
area volume content
) (cmsg-9) (mmollg)
1.1 0.07 1.46

3.2 Effect of temperature and
reaction time on the formation of
HMF and furfural from cassava
waste

-+ - 473K —*— 498K —A— 523K

yield (Wt %)
o - N w 'S (4] o -~

Reactiontime (min)

Figure 1 Effectoftemperature and
reaction time on the yield of HMF

Figure 1 shows that the relationship
between HMF yield and reaction time
is different for different reaction
temperatures.  The  yields were
increased from 473 K to 498 K at
which point, the highest yields of HMF
were obtained before it decreased at
higher temperatures. Considering the
effect of reaction time, the HMF yield
first rose with increasing reaction time
to a certain point where it started to
decrease. This was perhaps due to the
decomposition of HMF at high
temperature and long reaction time.
The result shows that maximum HMF
yield (6.3 t%) was obtained at 495 K
and 1o min.



3.3 Effect of novel carbon based
catalyst on HMF production from
cassava waste

— o™ without catalyst —1— novel carbon base catalyst

Reaction time (min)

Figure 2 Effect of the novel carbon
base catalyst on the yield of HMF at
495K

At 495 K, the synthesis of HMF in
the presence of novel carbon base was
compared with that without the
catalyst. The result in Figure 2 shows
that with the catalyst, the maximum
production yield of HMF was found to
he 8.46 wt% at 498 K for 5 min,
indicating that the novel carbon based
catalyst reduced the reaction time and
promoted the HMF production.

-
o

yleld (wt %)
b ~ w » w o ~ o w

0 s ISR RN

Novel carbon base H,SO, TiZrO,

catalyst

Figure 3 Effect of catalysts on HMF yield (at 495K and 5

As shown in Figure 3, the HMF
yield for the reaction catalyzed by the
novel carbon was comparable with
those catalyzed with TiZr04 and
H2S0 acatalyst.4

4. Conclusions

The maximum vyield of HMF (6.3
wt%) from cassava waste Was
obtained at 523 K for 10 min in the
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absence of catalyst and the novel
carbon Dbased catalyst reduced the
reaction time and promoted the
production HMF.
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