CHAPTER I
BACKGROUND AND LITERATURE SURVEY

2.1 Background

2.1.1 Basic Elements of Multi-objective Optimization
The basic theory of basic multi-objective optimization is briefly
discussed by classifying into each below category (Rodera, Bagajewicz and Trafails,
2002),
2.1.1.1 Formulation o fMulti-objective Optimization
When there are g objectives to be optimized simultaneously
with  constrained function, the mathematical problem can be formulated as follows

maxzi =fix)  1=1,2,....q (2.1)
subject to
gi(x)<al i=12,..n (2.2)

where z is the objective value, f(x) is the objective function, and g(x) is the
constrained function and x is a vector of nonnegative real numbers.
2.1.1.2 Optimal and Efficient Points

In the classical sense, a maximum (optimal) solution is the
one that attains the maximum value of all of the objectives concurrently. The point
x+ is optimal for the problem defined if and only if x« ¢ and fi(x*) > f|(x) for all 1
and for all x e , where s the feasible region. Thus, generally, there is no optimal
solution to a multi-objective optimization problem. Therefore, it can be satisfied with
obtaining only the efficient solutions.

An efficient solution, also called a noninferior or Pareto
optimal solution, is one in which no increase can be attained in any of the objectives
without causing a simultaneous decrease in at least one of the objectives. The
solution x~ s efficient for the problem defined if and only if there exists no x in
such that fi(x) > f](x*) for all 1and fi(x) > f|(x*) for at least one 1



2.1.1.3 Aspiration Levels
Objective function values, which are satisfactory or desirable
to the decision maker, are called aspiration levels and they are denoted by zbi= 1,

... p. The vector z o Rpconsisting of aspiration levels is called a reference point.
2.1.1.4 Ranges ofthe Pareto Set
For this step, the ranges of the set of Pareto optimal solutions
are investigated. It assumes that the objective functions are bounded over the feasible
region . An objective vector maximizing each of the objective functions is called an
ideal (or perfect) objective vector z*. The components of the ideal objective vector

z* are obtained by solving the following p problems

max fi(x) (2.3)
subject to
XG forl=1,..p (2.4)

Usually, the ideal objective vector is not feasible because
there are some conflicts among the objectives. Even though, it can be considered a
reference point. In practice, especially, in the case of nonconvex problems, the
definition of the ideal vector assumes that we know the global minima of the
individual objective functions, which is not that simple.

The lower bound vector of the Pareto optimal set is the so-
called nadir objective vector, which can be estimated from a payofftable.

2.1.1.5 Point-estimate Weighed-sums Approach

Next, we define the pAproblem and describe the so-called
point-estimate weighed-sums approach. By using this approach, it must transform the
original multi-objective optimization problem into a single-objective parametric
optimization problem. The method is as follows: each objective is multiplied by a
strictly positive scalar a; Then, the p weighed objectives are summed to form a
weighed-sums objective function. Without loss of generality, it assumes that each

weighing vector X ¢ Rpis normalized so that its components sum to 1. By solving



the following Px problem, one hopes that an optimal solution will be produced.

Thus, the p problem is

(MOP) {max (fi(x),..., fp(x)), s.t. X6 }
<>

(PX) (max (Aifip)+ A2fo(x)+ ..+ Xpfp(x)) st Xe 7 =12 =1,xi >0} (25)

2.1.1.6 TchebycheffMethod

This topic is another approach that can be used effectively in
the optimization problem effectively. The Tchebycheff method has been designed to
be user-friendly for the decision maker. Specifically, the distance from the ideal
objective vector measured by a weighed Tchebycheff metric is minimized. Different
solutions are obtained with different weighing vectors in the metric. The solution
space is reduced by working with sequences of smaller and smaller subsets of the
weighting vector spaces. The idea is to develop a sequence of progressively smaller
subsets of the Pareto optimal set until the best compromise solution is found. At each
different iteration, different objective vectors are presented to the decision maker,
and he is asked to select the most preferred solution. The feasible region is reduced,
and new alternatives from the reduced space are presented to the decision maker for
selection. However, there is a difference in the way weighting vectors are employed.
Instead of using weighting vectors X = {A, e Rp:xi >0, pZj=i*i = 1} as in the point-
estimate weighed-sums approach, weighing vectors X = {X € Rp: Xi >0, pXiziA,i = 1}
are used to define different Tchebycheff metrics. Therefore, the Tchebycheff method
has the following advantages, (a) It can converge to nonextreme optimal solutions in
linear multiobjective optimization, (b) The method can compute unsupported and
improperly nondominated criterion vectors. This makes the method generalizable to
integer and nonlinear multi-objective optimization, (c) The method uses conventional
single-objective mathematical programming software.

2.1.1. 7 Two-Stage Decision Making Stochastic Models
The two-stage stochastic programming problems (Dantzig,

1955; Beale, 1955) are characterized by two essential features: the uncertainty in the



problem data and the sequence of decisions. Some of the model parameters are
considered random variables with a certain probability distribution. In turn, some
decisions are taken at the planning stage, that is, before the uncertainty is revealed,
while a number of other decisions can only be made after the uncertain data
becomes known. The first class of decisions is called the first-stage decisions. On
the other hand, the decisions made after the uncertainty is unveiled are called
second-stage or recourse decisions. First stage decisions are structural and often
consist of capital investment, while second-stage decisions are often operational.
Planning process capacity expansions under uncertainty are one type of systems
widely studied using these techniques (Murphy et al., 1982; Eppen et al, 1989;
Sahinidis et al., 1989; Berman and Ganz, 1994; Lui and Sahinidis, 1996; Ahmed and
Sahinidis, 2000).

Any decision to buy and allocate resources or build a plant
“here and now”, that is, at the planning time, is a first stage decision. Any other
decision that is taken at a later time is a second stage decision. Yet, some structural
decisions corresponding to a future time can be considered as a second-stage, that is,
one may want to wait until some uncertainty (not necessarily all) is realized to make
additional structural decisions (handled through the so-called multi-stage models).
The general extensive form of a two-stage mixed-integer linear stochastic problem

with fixed recourse and a finite number of scenarios is (Birge and Louveaux, 1997):

Model SP: max E[profit] = psq'sys (2.6)
subject to

Ax =bh (2.7)

ctix + ctys<C (2.8)

Tsx +  ys=hs VseS (2.9)

where X represents the first-stage mixed-integer decision variables and ys are the
second-stage variables corresponding to scenario , which has probability ps. The
uncertain parameters in this model appear in the coefficients gs, the matrix Ts, the

recourse matrix , and in the independent terms hs.



However, model SP does not provide any control over the
variability of the profit over the different scenarios. For example, consider the
histogram of two feasible solutions of a project shown in Figure 2.1. The first case
has a larger expected profit (3.38) than the second one (3.35); however, one can
argue that Case Iis riskier than Case Il. Indeed, if one defines risk as the probability
of profit to be smaller than a certain number, then one can conclude that Case |
contains several scenarios where a small profit is expected. Therefore, a risk-averse
decision maker would prefer Case II. Nevertheless, all this depends on the profit
expectation level chosen. For example, if risk is now thought of as the probability of
having a profit of 7 or more, then Case Il is riskier. However, a risk-averse decision
maker will always prefer to look at the lower value of profit target than at a larger
one.

This kind of preferences cannot be taken into account by
using the straight stochastic model. Then, a proper measure of financial risk needs

to be included.
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Figure 2.1 profit histogram for two cases of resource allocation.

2.1.2 Financial Risk
The financial risk associated with a planning project under
uncertainty risk is defined as the probability of not meeting a certain target objective

function level referred to as Q. That is, the risk constituted with a design X and a

target is therefore expressed by the following probability (Figure2.2):



Risk(x, ) = P(Profitx) < ) (2.10)

where Profit(x) is the actual profit, i.e., the profit result after the uncertainty has been

unvieled and a scenario realized.
Since profit can be related to a summation over a set of independent

scenarios, we have

Risk(x, )= "]pszs(x,Q) (2.11)

where z3(x,Q) is a new binary variable that takes the value of 1, when Profits(x) < Q,
and zero otherwise.

This equation constitutes a formal definition of financial risk for two-
stage stochastic problems. When profit has a continuous probability distribution,
financial risk -defined as the probability of not meeting a target profit (Q), can be
express as:

Risk(x,Q) = Jf(x,C)dC (2.12)

where f(x,") is the profit probability distribution function.
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Figure 2.2 Definition of risk (Discrete Case).



A more straightforward way of assessing and understanding the
trade-offs between risk and profit is to use the cumulative risk curve, as depicted in
Figure 2.3 for the continuous case, which is the limit for a large number of
scenarios.
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Figure 2.3 Risk curve (Continuous case),

In order to illustrate the usefulness of the above multi-objective
formulation, consider a set of hypothetical solutions as depicted in Figure 2.4.
Solutions 2 and 3 maximize the expected profit with minimum financial risk at
targets Q2 and Qi, respectively. Thus, minimizing risk at each target independently
of others targets results in designs that perform well around the speci ic target but do
poorly in the rest of the range. When risk, on the other hand, is minimized for every
target at the same time, solutions that perform well in the entire range of interest
may be found. Barbara and Bagajewicz (2003) proposed a multiobjective
methodology to generate all these curves. This methodology uses either a
multiparametric approach, or a penalty function approach. Both guarantee pareto-
optimality.



2 Max E[Profit|
Min Risk(x,€Q1)

3 Max E|Profit|
Min Risk(x,Q:)

4 Max E|Profit|
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Figure 2.4 Spectrum of solutions.

2.1.3 Environmental Risk

Environment risk is defined as the probability that a substance or
situation will produce harm over specific conditions. Risk is a combination of two
factors: the probability that an adverse event will occur and the consequence of the
adverse effect, (Presidential/Congressional Commission, 1997).

Allen and Shonnard (2002) analyzed the various aspects of how risk
is assessed and described the environmental risk into three groups: voluntary risk,
involuntary risk and natural disaster. The voluntary risk is normally associated with
the known and quantifiable discharge of certain chemical into the air, water and
terrain, while the involuntary is related to a release resulting from uncontrollable
actions, such as system or equipment failures, and the natural disaster includes
floods, earthquakes, and other disasters that are beyond human control.

The existing way of thinking about risk is that the plant from which
emissions are analyzed is fixed, that is, the sizes of equipments are known and the
level of operations (throughput) are also known. However, plants are subject to a)
variable demand and consequently variable throughput, b) deteriorating equipment
that affect performance and efficiency, c) fouling, d) other economic conditions that
suggest a different operation, like for example, recycle a by-product more when its
price goes down. All these suggest a variety of scenarios, for which second
operational decisions (second stage decisions) are a function of the design variables
(first stage decisions).
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Using the solution from the stochastic planning problem one obtains
new values of the expected environmental impact (o) that represent the realization of
the individual scenarios. These values are smaller than the indices obtained solving
the scenario separately using the deterministic model. Therefore, the risk associated
with each scenario is defined by:

Risk(x,9) = P(0 (x) >0%) (2.13)

Where 0 = virtual environmental impact, and 0* is the environmental impact
aspiration level (minimum impact desired). As before, binary variables, similar to zs
are defined and a definition of environmental risk similar to financial risk is
constructed.

Measuring the Process 'Environmental Impact

Starting from the work by Mallick et al. (1996), the approach taken
to measure the process’ environmental impact (o) is the use of a non-monetary
valuation technique that calculates the environmental impact of each chemical
presented in the waste stream in term of environmental impact units (EIU) per
kilogram of product produced.

e=(ZZ WmjiOjp (2.14)

where
wj = flow rate of waste stream i (kg/h)
m i = mass fraction of componentj in waste stream i

Based on the work by Davis et al. (1994), the environmental impact
index (®) is given by:

® = (Human health effect + environmental effect) x (exposure potential) (2.15)

Human health effect —H v oralp50+ H V jnnalationL.c50 ~tHVGYNIEity  Hvother (2.16)
Environmental effect = HV oraips0 + H VfshLC50 +H V fishNOEL (2.17)
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Exposure potential =1 vboa+ Hvhydrolisis + H V be (2.18)

where the hazard values HVj for each end point i are calculated using toxicological
information specific to each chemical as described by Davis et al. (1994).

For chronic terms, the carcinogenity and other specific effects,
toxicological endpoints are calculated based on the classification presented in the
hazard ranking system final rule (Federal Register, 1990) and in the Bouwes and
Hassur (1997) methodology.

Subsequently, if these emissions, as well as other possible accidental
release are not taken into account, the environmental impact of the process might not
be correctly evaluated. In this context, a release factor () that accounts for the
release potential of a particular stream - including waste and non-waste stream
incorporated into later equation,

0= ( ii r,-wim.i.iCDj)/p (219)

The release factor can take values from 0to 1 For waste streams, r =
1, whereas for non-waste streams, 0<r<,. Estimate r is equivalent to calculating the
probability of obtaining a release from a specific stream. This can be done by
considering past data and experiences related to the process under study or hasing on
the categories presented by Kolluru (1995), according to expected frequency of the
release.

2.1.4 Uncertainty Sources



Table 2.1 Uncertainty sources (Dantus and High, 1999)

Type Example
Process model Kinetic constants, physical properties, transfer
uncertainty coefficients
Process uncertainty Flow rate and temperature variations, stream quality
fluctuations

Economic model and Capital costs, manufacturing costs, direct costs,
environmental impact ~ release factors, and less tangible costs
model uncertainty

External uncertainty Product demand, prices, feed stream availability,

feed composition

Regulatory uncertainty ~ Modified emission standards, and new environment
requlations

Time uncertainty Investment delays (1.e. the project might have a

better performance in the future)

2.2 Literature Survey

Grauer, Lewandowski & Wierzbiciki (1984) described methods for solving
multiple-objective optimization problems by considering at multiple-objective
decision analysis from the point of view of the type of optimization problems which
must be solved in the design, control and production planning of chemical
engineering systems as well as surveying existing methods. Moreover, they gave an
overview of the existing software, provided an overview of computer codes
(especially 11ASA software) and discussed application in engineering field. I
conclusion, they gave overview in the way of multiple-objective optimization.



During the past several decades, the use of integration techniques as a
design tool to minimize the operating and capital costs of chemical plant has matured
considerably and evolved into a common practice in the process industries. Also as a
result of serious concerns about environmental problems in recent years, the
multiple-objective programming (MOP) was applied to balance the economic and
environmental effects. Chang & Hwang (1996) showed how they developed process
integration methods for waste minimization in the utility systems of chemical process
with maximization in economic. The study was to assess the feasibility and practical
value of incorporating gas emission models into existing mathematical formulations
and solving the resulting problem with multiple-objective optimization technique.
One can conclude that the mixed-integer linear program (MILP) model is suitable for
the design of a wide variety of utility systems; furthermore, the goal programming
(GP) method is a natural and sensible design tool for establishing a compromise
among conflicting objectives,

In 1999, Dantus & High studied about multiple-objective optimization
approach under uncertainty in waste minimization. This work used two competing
objectives: maximize profit and minimize the environmental impact. The former is
measured by using the annual equivalent profit (AEP) tool and the latter using the
environmental impact index. The AEP included the usual costs associated with the
process, as well as the various waste related costs, for which a detailed discussion
was given including the different ways available to estimate them. On the other
hand, environmental impact index included toxicological characteristics of each
chemical presented in the process stream and its release potential. Furthermore, they
used stochastic programming with multiple-objective optimization technique to
evaluate the uncertainty in optimizing the two competitive objectives.  This
accomplished using the process simulator ASPEN PLUS,

Then Lim, Floquet & Joulia (1999) discussed optimization of process by
performing along an infeasible path with successive quadratic programming (SQP)
algorithm.  One of the objective functions, the global pollution index function, is
based on environmental impact index calculated by using the hazard value (HV). The
other is cost-benefit function. To analyze the bi-objective optimization, the
noninferior solution curve (Pareto curve) was formed using summation of weighed
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objective function (SWOF), GP, and parameter space investigation (PSI) methods
within a chemical process simulator. 1t can find the ideal compromise solution set
based on the Pareto curve. The multi-objective problem was then interpreted by
sensitivity and elasticity analyses of the Pareto curve that give the decision basis
between the conflicting objectives.

For the similar method for optimization of multiobjective process planning
under uncertainty, Rodera, Bagajewicz & Trafails (2002) presented that the single-
objective MILP stochastic programming model could be treated as a multi-objective
programming problem by using multi-parametric decomposition. The point estimate
weighed-sums approach is one of the possible methods that can be used to obtain the
set of efficient solution. This method makes use of the probabilities of each scenario
to weight the respective objectives. However, because of the mixed-integer linear
nature of the problem at hand, only supported efficient solutions are found by this
method. Reformulation of the problem as an augmented weighed Tchebycheff
program makes possible to computation of all efficient solutions. The objective is to
scan the efficient frontier to provide the decision maker with the freedom to select
the solution by aspiration levels. Different methods of specifying these aspiration
levels are possible. This paper represented an iterative procedure based on the use of
lower hound of the net present value that facilitates the assessment of economic risk
of a project.

For the risk management, Barbara & Begajewicz (2003) tried to develop
new mathematical formulations for problems dealing with planning and design under
uncertainty that allow management of financial risk according to the decision
maker’s preference. A major step toward this objective was the use of formal
probabilistic definition of financial risk. In addition to this, the connection between
down side risk and financial risk were discussed. Using two definitions, new two-
stage stochastic programming models that are able to manage financial risk were
developed. The advantages of the proposed approaches are that they maintain the
original MILP structure of the problem. Comparisons with the robustness approach
to risk management were made. It is shown that the probabilistic definition of the
financial risk should be used to better capture the trade-off between expectation and
variability of the objective function. Especially because the use of the upper partial
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mean may unnecessarily penalize favorable scenarios, resulting in non-optimal
solutions that provide misleading information about the variability of the objective.
The performance of these solutions obtained with the robustness approach from
standpoint of financial risk was also discussed showing how solution that are
considered “robust” may exhibit high levels of financial risk due to the non-
optimality of the second-stage decisions.
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