REFERENCES

- Aguilar-Rodriquez, E. and Ancheyta-Juarez, J. (1994) Oil and Gas Journal, Jan. 31. (PP 93-95).
- Ahmed S. and Sahinidis, N.V. (2000) Selection, acquisition and allocation of manufacturing technology in a multi-product environment. <u>Management Science submitted.</u>
- Allen, D.T. and Shonnard, D.R. (2002) <u>Green Engineering: Environmentally</u>

 <u>Conscious Design of Chemical Processes.</u> New Jersey: Prentice Hall PTR.
- Barbaro, A.F. and Bagajewicz, M.J. (2003) Managing financial risk in planning under uncertainty. AIChE Journal, Submitted and reviewed once.
- Beale E.M.L. (1955) "On minimizing a convex function subject to linear inequalities", Journal of Royal Statistical Society, Series B 17:173–184.
- Berman O. and Ganz Z. (1994) The capacity expansion problem in the service industry, Computers & Operations Research, 21, 557–572.
- Birge J.R. and Louveaux F. (1997) <u>Introduction to Stochastic Programming</u>. New York: Springer.
- Bouwes, N.W. and Hassur, S.M. (1997) <u>Toxic Release Inventory Relative Risk-based Environmental Indicators Methodology</u>. Washington DC: United States Environmental Protection Agency.
- Chang, C.T. and Hwang, J.P. (1996) A multiobjective programming approach to waste minimization in the utility systems of chemical processes. <u>Chemical Engineering Science</u>, 51(16), 3951-3965.
- Citric, A.R. and Huchette, S.G. (1993) Multioptimization approach to sensity analysis: wastes treatment costs in discrete process synthesis and optimization problem. <u>Industrial & Engineering Chemical Research</u>, 32, 2636-2640.
- Dantus, M.M. and High, K.A. (1999) Evaluation of waste minimization alternatives under uncertainty: a multiobjective optimization approach. <u>Computers & Chemical Engineering</u>, 23, 1493-1508.
- Dantzig, G.B. (1955) Linear programming under uncertainty. <u>Management Science</u>. 1, 197–206.

- Davis, G.A., Kincaid, L., Swanson, M., Schultz, T., Bartmess, J., Griffith, B., and Jones, S. (1994) Chemical hazard evaluation for management strategies: a method for ranking and scoring chemicals by potential human health and environmental impacts. <u>US Environmental Protection Agency</u>, EPA, 600(R-94), 177.
- Eppen, G.D, Martin, R.K., and Schrage, L. (1989) A Scenario Approach to Capacity Planning. <u>Operation Research</u>, 37, 517-527.
- Federal Register. (1990) <u>Hazard Ranking System Final Rule</u>. Federal Register 55, 241 (December 14), 51532.
- Grauer, M., Lewandoeski, A., and Wierzbicki, A. (1984) Multiobjective decision analysis applied to chemical engineering. <u>Computers & Chemical Engineering</u>, 8, 285-293.
- Henningen, H. and Bundgard-Nielson. (1970) Brit ish Chemical Engineering, 15, 1433.
- Jenkins, J.H. and Stephen, T.W. (1980) <u>Hydrocarbon Processing</u>, 59,163.
- Jones, D.S.J. (1995) <u>Element of Petroleum Processing</u> (pp. 181-205). West Sussex: Bookcraft(Bath).
- Kolluru, R.V. (1995) Minimize EHS risks and improve the bottom line. <u>Chemistry</u>
 <u>Engineering Progress</u>, 91(6), 44.
- Krane, H.G., Groth, B.A., Schulman, L.B., and Sinfeld, H.J., (1959) <u>Fifth World</u>

 <u>Petroleum Congress Section III</u> (pp. 39). New York.
- Lim, Y.I., Floquet, P., and Joulia, X. (1999) Multiobjective Optimization in Terms of Economics and Potential Environmental Impact for Process Design and Analysis in a Chemical Process Simulator. <u>Industrial & Engineering</u> <u>Chemical Research</u>, 38, 4729-4741.
- Liu, M.L. and Sahinidis, N.V. (1996) Optimization of Process Planning under Uncertainty. <u>Industrial & Engineering Chemical Research</u>, 35, 4154-4165.
- Mallick, S.K., Cabezas, H., Bare, J.C., and Sikdar, S.K. (1996) A pollution reduction methodology for chemical process simulators. <u>Industrial Engineering Chemistry Research</u>, 35, 4128.

- Murphy, F.H., Sen, S., and Soyster A.L. (1987) Electric utility expansion planning in the presence of existing capacity: a nondifferentiable, convex programming approach. Computers & Operations Research, 14,19–31.
- Peter, S.M. and Timmerhaus, D.K. (1991) <u>Plant Design and Economics for Chemical Engineers</u>. Singapore: McGraw Hill.
- Petroleum Insitute of Thailand (2004) Thailand <u>Petroleum and Petroleum Products</u>

 Markets (1997-2008). fifth edition.
- Presidential/Congressional Commission on Risk Assessment & Risk Management, Vol 1. (1997).
- Raseev, S. (2003) <u>Thermal and Catalytic Processes in Petroleum Refining</u> (pp. 749-877). New York: Marcel Dekker.
- Rodera, H., Bagajewicz, M.J., and Trafalis, T.B. (2002) Mixed-Integer Multiobjective Process Planning under Uncertainty. <u>Industrial Engineering</u> Chemistry Research, 41, 4075-4084.
- Sahinidis, N.V., Grossmann, I.E., Fornari, R.E., and Chathra, M. (1989)

 Optimization Model for long Range Planning in the Chemical Industry.

 Computers & Chemical Engineering, 13, 9, 1049-1063.
- Seider, W.D., Seader, J.D., and Lewin, D.R. (1998) <u>Process Design Principles</u>
 Synthesis, Analysis, and Evaluation. New York: Hamilton Printing.
- Self, F., Ekholm, E., and Bowers, K. (2000) <u>Refining Overview- Petroleum, Process</u>
 and Product (pp. 14.1-14.9). Texas: Omnipress.

APPENDICES

Appendix A Kinetic model reaction.

Table A1 Kinetic Model of Reaction

Overall Rate Equations	Unit
d(p10)/d(t) = ((-2.54*p10*A49*p10*B63*p10*B-1.09*p10*B89*p10*B99*p	
1.24*p10*B)+1.34*n10*C+.16*a10*C)*.01	(gmol)/s
d(n10)/d(t) = (2.54*p10*A + (54*n10*C - 1.34*n10*C - 1.34*n10*B8*n10*B - 24.5*n10*D))*.01	(gmol)/s
d(a10)/d(t) = (24.5*n10*D+(16*a10*C06*a10*C06*a10*C))*.01	(gmol)/s
d(p9)/d(t) = (.49*p10*B+(-1.81*p9*A3*p9*B39*p9*B68*p0*B68*p0*B6	
.55*p9*B)+.54*n9*C+.16*a9*C)*.01	(gmol)/s
d(n9)/d(t) = (.54*n10*C+1.81*p9*A+(54*n9*C-1.27*n9*C-1.27*n9*C-24.50*n9*D))*.01	(gmol)/s
d(a9)/d(t) = (.06*a10*C+24.50*n9*D+(16*a9*C05*a9*C05*a9*C))*.01	(gmol)/s
d(p8)/d(t) = (.63*p10*B+(19*p8*B25*p8*B43*p8*B-	
.35*p8*B)+.47*n8*C+.16*a8*C+.3*p9*B-1.33*p8*A)*.01	(gmol)/s
d(n8)/d(t) = (1.34*n10*B + (47*n8*C09*n8*C - 21.5*n8*D) + 1.27*n9*C + 1.33*p8*A)*.01	(gmol)/s
d(a8)/d(t) = (.06*a10*C+21.5*n8*D+(16*a8*C01*a8*C)+.05*a9*C)*.01	(gmol)/s
d(p7)/d(t) = (1.09*p10*B+.19*p8*B+(58*p7*A14*p7*B18*p7*B	
.39*p7*B)+.39*p9*B+.2*n7*C+.16*a7*C)*.01	(gmol)/s
d(n7)/d(t) = (.8*n10*B + .09*n8*C + .58*p7*A + 1.27*n9*C + (2*n7*C - 9.03*n7*D))*.01	(gmol)/s
d(a7)/d(t) = (.01*a8*C+.05*a9*C+9.03*n7*D16*a7*C)*.01	(gmol)/s
d(p6)/d(t) = (.89*p10*B+.25*p8*B+.14*p7*B+.68*p9*B+(14*p6*B18*p6*B1	
.27*p6*B)+1.48*n6*C)*.01	(gmol)/s
d(n6)/d(t) = ((-1.48*n6*C-4.02*n6*D)+.45*a6*C)*.01	(gmol)/s
d(a6)/d(t) = (4.02*n6*D45*a6*C)*.01	(gmol)/s
d(p5)/d(t) = (2*1.24*p10*B+.43*p8*B+.18*p7*B+.55*p9*B+.14*p6*B+(12*p5*B24*p10*B+.43*p8*B+.18*p7*B+.55*p9*B+.14*p6*B+(12*p5*B24*p10*B+.43*p8*B+.18*p7*B+.55*p9*B+.14*p6*B+(12*p5*B24*p10*B+.24*p10*B+.24*p10*B+.24*p10*B+.25*p9*B+.25*p9*B+.24*p10*B+.24*p10*B+.24*p10*B+.25*p10*	
.15*p5*B))*.01	(gmol)/s
d(p4)/d(t) = (.89*p10*B+2*.35*p8*B+.39*p7*B+.55*p9*B+.18*p6*B+.12*p5*B)*.01	(gmol)/s
d(p3)/d(t) = (1.09*p10*B+.43*p8*B+.39*p7*B+.68*p9*B+2*.27*p6*B+.15*p5*B)*.01	(gmol)/s
d(p2)/d(t) = (.63*p10*B+.25*p8*B+.18*p7*B+.39*p9*B+.18*p6*B+.15*p5*B)*.01	(gmol)/s
d(p1)/d(t) = (.49*p10*B+.19*p8*B+.14*p7*B+.3*p9*B+.14*p6*B+.12*p5*B)*.01	(gmol)/s

Table A1 (Continue)

Correction Parameter	Unit
$A = (P/21)^{(7)} \exp(45/R*(1/773-1/(T+273)))$; Dehydrocyclization reaction	i e
$B = (P/21)^{433} \exp(55/R*(1/773-1/(T+273)))$; Hydrocracking reaction	0.02
$C = (P/21)^{.5} \exp(40/R*(1/773-1/(T+273)))$; Hydrodealkylation reaction	-
$D = (P/21)^0 \exp(30/R * (1/773-1/(T+273)))$; Dehydrogenation reaction	-
R = 1.987 * .001	(Kcal)/(gmol)(K)
Variable	Unit
T = Temperature	Degree Celsius
P = Pressure	bar

Appendix B Heat exchanger network design.

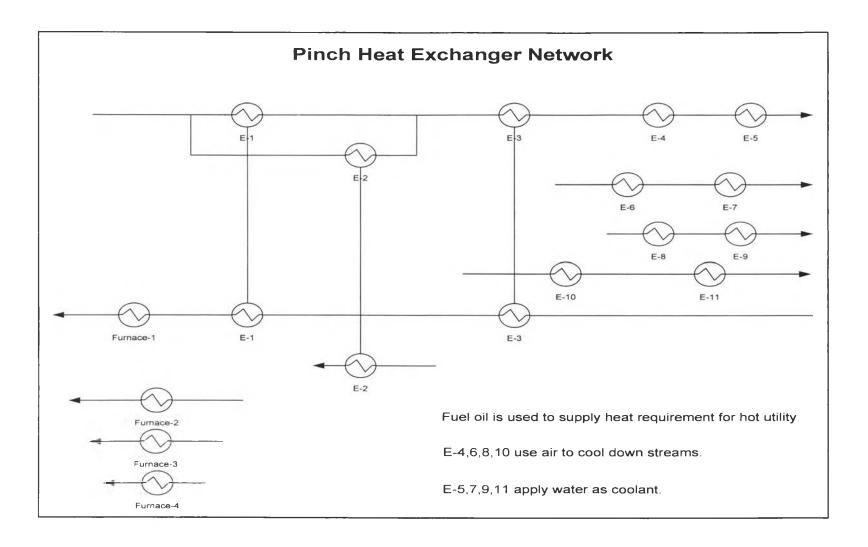


Figure B1 Pinch Heat Exchanger Network type.

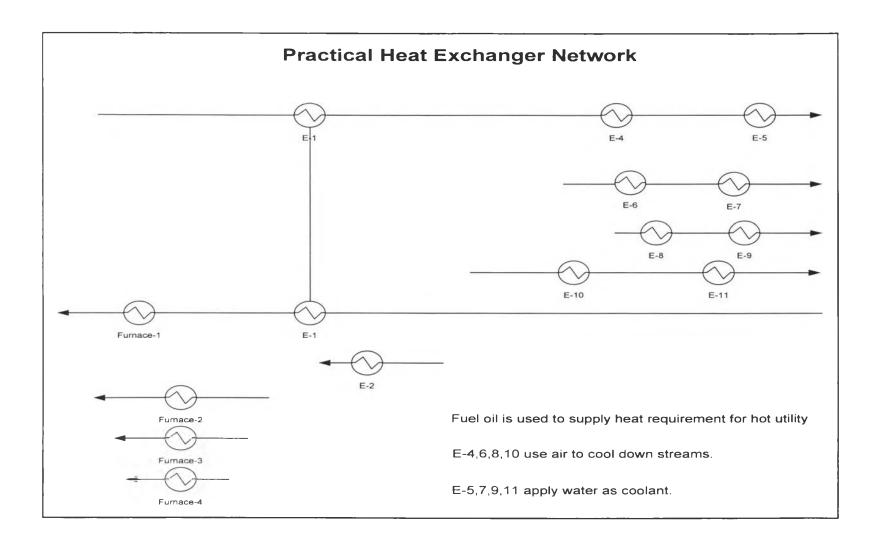


Figure B2 Practical Heat Exchanger Network type.

Appendix C Profit and environmental impact evaluation.

 Table C1
 Estimation of fixed-capital Investment cost

Direct costs	\$
Total bar-module equipment cost, (C _{tbm})	C_{tbm}
Building, process and auxiliary	13%C _{tbm}
service facilities and yard improvements	20%C _{tbm}
Land	2%C _{tbm}
Total direct cost, (C _{tdc})	135%C _{tbm}
Indirect costs	\$
Engineering and supervision	10%C _{tdc}
Construction expense and contractor fee	14%C _{tdc}
Contingency	15%C _{tdc}
Total Indirect cost	53 C _{tbm}
Fixed capital investment (C _{fix})	\$
Direct cost + indirect cost	188%C _{tbm}
Working-capital investment	\$
	18%C _{fix}
Total capital investment, (Ctci)	\$
Fixed capital + working-capital	221%C _{tbm}
investment	

Table C2 Estimation of gross earning and total production cost per year

Manufacturing cost, (Cmc)	\$/year
A. Direct production costs	
Raw materials	C_{raw}
Operating & direct supervisory labor	C_{lab}
Utilities	C_{u}
Maintenance and repairs, (C _{mr})	6%C _{fix}
operating supplies	.75%C _{fix}
Laboratory charges	15%C _{lab}
B. Fixed charges	
Depriciation	17%C _{tbm}
Local taxes	2.5%C _{fix}
Insurance	7%C _{fix}
C. Plant-overhead costs	$60\%(C_{lar}+C_{mr})$
General expenses	\$/year
Administrative costs	$15\%(C_{lar}+C_{mc})$
Distribution and selling costs	15%C _{tpc}
Research and development costs	4%C _{tpc}
Financing	3.5%C _{tci}
Total production cost	\$/year
manufacturing cost + general expenses	C_{tpc}
Gross-earnings	\$/year
Total income - total production cost	C_{g}

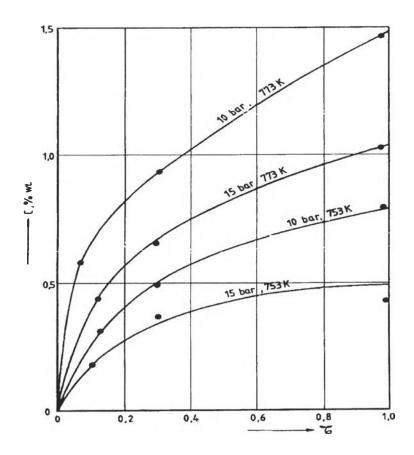
Measuring the process' s profit

There are many ways in profitability measuring step, even though the net present value, (NPV), is normally considered to be the simplest and easies understandable method. Hence, in this research, it is used to be the method in profit assessment. The concept of calculation are in the below equation.

$$P = \frac{S}{\left(1+i\right)^n} \tag{1}$$

where P is the present value, S is the future worth value, i is interest rate, n is the number of years.

To evaluate the net present (NPV) of each design, its cash flow was computed in each year of the projected life of the plant, fixed-capital Investment cost and gross-earnings. Then, by the interest rate (typically 15% for most company management), each cash flow was discounted to its present worth. The sum of all discounted cash flow was the net present values.


Measuring the process' s environmental impact

In this study, overall amount of hazardous substance, produced from each design, is regarded as environmental impact for each design.

To find overall environmental impact, amount of carbon dioxide and benzene are combined to be representative impact for each design. In this work, benzene was valued to have 3.5 times impact greater than carbon dioxide, due to higher concern in the carcinogenic hazardous effect. Hence, the formula of environmental impact evaluation could be derived as in equation 3.7.

Environmental impact =
$$3.5 * benzene amonut + carbon dioxide amount$$
 (2)

Appendix D Coke formation and octane number.

Figure D1 Coke formation (C % wt) vs. relative reaction time (τ) .

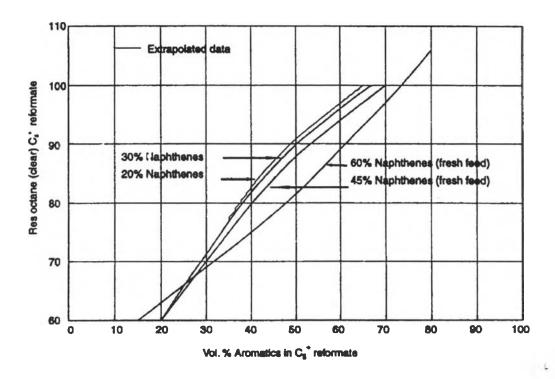


Figure D2 Octane number vs. aromatics amount of reformate.

Appendix E Chemical prices and uncertainty source.

Table E1 Raw material, Product, by-product and utilities prices in Year 1991-2003

	Raw Material	Product		By-Product		Plant Utility	
Year	Naphtha	Reformate(73%aromatic)	Reformate(77%aromatic)	Hydrogen	LPG	Fuel Oil	Water
	(\$/bbl)	(\$/bbl)	(\$/bbl)	(\$/m³)	(\$/kg)	(\$/bbl)	(\$/m³)
1991	22.83	-	-	0.09	0.25	14.04	0.49
1992	20.27	-	-	0.08	0.24	13.39	0.49
1993	17.18	-	-	0.07	0.24	11.76	0.44
1994	16.36	23.69	24.74	0.06	0.24	13.14	0.44
1995	17.54	24.43	26.04	0.07	0.24	14.92	0.44
1996	20.26	25.73	26.55	0.08	0.24	16.78	0.44
1997	21.85	26.61	27.33	0.08	0.25	15.87	0.49
1998	14.77	19.27	20.09	0.06	0.28	10.63	0.60
1999	19.54	23.28	23.87	0.08	0.23	15.75	0.60
2000	28.38	34.82	35.81	0.11	0.22	24.49	0.60
2001	19.10	29.64	30.80	0.07	0.25	20.70	0.60
2002	24.93	30.12	30.92	0.10	0.30	22.38	0.60
2003	29.71	36.85	37.73	0.11	0.32	26.22	0.60

 Table E2
 uncertain parameters

Parameter	Distribution type	Uncertainty (%)
Reformate Demand	Normal distribution	25.53
Naphtha price	Normal distribution	19.33
Reformate(73% aromatic) price	Normal distribution	21.45
Reformate(77% aromatic) price	Normal distribution	21.12
Hydrogen price	Normal distribution	19.33
LPG price	Normal distribution	10.32
Fuel Oil price	Normal distribution	18.75
Water price	Normal distribution	9.08
Financial evaluation	Uniform random distribution	25.00
Environmental impact	Uniform random distribution	20.00

CURRICULUM VITAE

Name: Mr. Saran Janjira

Date of Birth: December 18, 1980

Nationality: Thai

University Education:

1998-2002 Bachelor Degree of Engineering in Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.