REFERENCES

- Asadullah, M., Tomishige, K., and Fujimoto, K. (2001) A novel catalytic process for cellulose gasification to synthesis gas. <u>Catalysis Communications</u>, 2, 63-68.
- Baker, E.G., Mudge, L.K., and Brown, M.D. (1987) Steam gasification of biomass with nickel secondary catalysts. <u>Industrial and Engineering Chemistry</u> Research, 26, 1335–1339.
- Bilbao, R., García, L., Salvador, M.L., and Arauzo, J. (1998) Steam gasification of biomass in a fluidized bed. Effect of a Ni–Al catalyst. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL, (Eds.) Proceedings of the Tenth European Conference and Technology Exhibition on Biomass for Energy and Industry, Wurzburg, Germany, 1708–11.
- Chembukulam, S.K., Dandge, A.S., Kovilur, N.L., Seshagiri, R.K., and Valdyeswaran, R. (1981) Smokeless fuel from carbonized sawdust.

 <u>Industrial Engineering Chemistry Production Research Development</u>, 20, 714–719.
- Delgado, J., Aznar, M.P., and Corella, J. (1997) Biomass Gasification with Steam in Fluidized Bed: Effectiveness of CaO, MgO, and CaO-MgO for Hot Raw Gas Cleaning. <u>Industrial and Engineering Chemistry Research</u>, 36, 1535-1543.
- Devi, L., Ptasinski, K., and Janssen, F. (2003) A review of the primary measures for tar elimination in biomass gasification processes. <u>Biomass and Bioenergy</u>, 24, 125-140.
- Encinar, J.M., Beltran, F.J., Ramiro, A., and Gonzalez J.F. (1998)

 Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. <u>Fuel Processing Technology</u>, 55, 219-233.
- Garcia, L., Savador, M.L., Arauzo, J., and Bilbao, R. (2001) CO₂ as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst. Fuel Processing Technology, 69, 151-174.

- Garcia, L., Savador, M.L., Arauzo, J., and Bilbao, R. (1999) Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition. Energy and Fuels , 13, 851-859.
- Kinochita, C.M., Wang, Y., and Zhou, J. (1995) Effect of reformer condition Conditions on Catalytic Reforming of Biomass-Gasification Tars. Industrial and Engineering Chemistry Research, 34, 2949-2954.
- Minkova, V., Marinov, S.P., Zanzi, R., Bjornbom, E., Budinova, T., Stefanova, M., and Lakov, L. (2000) Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. <u>Fuel Processing Technology</u>, 62, 45-52.
- Narváez, I., Orío, A., Aznar, M.P., and Corella, J. (1996) Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of produced raw gas. <u>Industrial and Engineering Chemistry Research</u>, 35, 2110–2120.
- Olivares, A., Aznar, A.P., Caballero, M.A., Gil, J., Francés, E., and Corella, J. (1997)

 Biomass gasification: produced gas upgrading by in-bed use of dolomite.

 <u>Industrial and Engineering Chemistry Research</u>, 36, 5220–5226.
- Peter Luby, Dr. Sohif Bin Mat, and Miro R. Susta. (2003) Biomass Energy

 Utilization & Environment Protection -Commercial Reality and Outlook.

 http://www.siemenswestinghouse.com/download/pool/industrialheatpower
 02.pdf, 8-10.
- Peter McKendry. (2002) Energy production from biomass (part I): Overview of biomass. Bioresource Technology, 83, 37-46.
- Rapagná, S., Jand, N., Kiennemann, A., and Foscolo, P.U. (2000) Steam-gasification of biomass in a fluidized-bed of olivine particles. <u>Biomass and Bioenergy</u>, 19, 187–197.
- Rapagnà, S., Jand, N., and Foscolo, P.U. (1998) Utilisation of suitable catalyst for the gasification of biomass. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL, editors. <u>Proceedings of the Tenth European Conference and Technology Exhibition on Biomass for Energy and Industry</u>, Wurzburg, Germany, 1720–1723.

- Sutton, D., Kelleher, B., and Ross, J.R.H. (2001) Review of literature on catalysts for biomass gasification. <u>Fuel Processing Technology</u>, 73, 155–173.
- Yoshinori, T., Yamaguchi, T., Yamasaki, K., Ueno, A., and Kotera, Y. (1984)

 Catalyst for steam gasification of wood to methanol synthesis gas.

 Industrial Engineering Chemistry Production Research Development, 23, 225–229.

CURRICULUM VITAE

Name: Mr. Wasan Cheewasukthaworn

Date of Birth: August 26, 1980

Nationality: Thai

University Education:

1999-2003 Bachelor Degree of Chemical Engineering, Faculty of

Engineering, Thammasat University, Bangkok, Thailand