
BACKGROUND AND LITERATURE REVIEW
CHAPTER II

Surfactants have m any applications in various fields o f  industry, agriculture, 
and household. Som e applications are connected w ith  adsorption  abilities o f  
surfactants having am phiphilic character and the others explo it the abilities o f  
surfactants to form  m icelles (M aterna and Szym anow ki, 2002).

2.1 Introduction to Surfactants

Surfactants, a contraction  o f  the term  s u r fa c e -a c t iv e  a g e n t, are m aterials that 
tend to accum ulate at the surface or interface. T hese surfaces norm ally  refer to the 
boundary  betw een the tw o im m iscible phases, w hich  can  be solid/liquid, 
liquid/liquid , or liquid/gas (C lint, 1992). Typically , the m olecular structure o f  
surfactant is am phiphilic  consisting  o f  tw o structural groups, w hich  are hydrophilic 
group and hydrophobic group, as show n in Figure 2.1(a). The hydrophobic  group 
has very  little a ttraction  for the aqueous solvent, i. e . , w ater w hile  hydrophilic  group 
has a strong attraction  for the w ater (R osen, 1989). The hydrophobic group is 
usually  called  the “tail g roup” and com m only  a long chain  hydrocarbon. In contrast, 
hydrophilic group is usually  refered  to as “head group” . It is an  ionic or h ighly  polar 
group.

D epending on the nature o f  the hydrophilic group, surfactants are classified 
as anionic, cationic, zw itterionic, and nonionic. A nionic surfactants have a negative 
charge w hile  cationic surfactants have a positive charge in the hydrophilic  portion. 
Z w itterionic surfactants carry both  negative and positive charge in the hydrophilic 
portion. N onionic surfactants have no apparent ionic charges in the hydrophilic 
portion. M ost o f  hydrophilic portions o f  nonionic surfactants are e thylene oxide 
groups.

A t low  surfactant concentration , surfactant m olucules form  adsorbed 
m onolayer at the surface. This m onolayer can decrease surface tension  o f  media, 
w hich are d issolved in. W hen surfactant has h igher concentration , the surfactant 
m olecules w ill form  organized  aggregate, called  m icelle, at specific  concentration o f
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surfactant know n as critical m icelle concentration (C M C ). The form ation o f  m icelles 
is generally  v iew ed as a com prom ise betw een the tendency for alkyl chains to avoid 
energetically  unfavorable contacts w ith w ater and the preference for polar head 
group to m aintain  contact w ith the aqueous environm ent. Figure 2.1 show s the 
schem atic sketch o f  a surfactant m olecule and a surfactant m icelle.

H ydrophobic tail group

H ydrophilic  head group

(a) a surfactant m olecule

(b) a surfactant m icelle

F ig u re  2.1 The schem atic sketch o f  (a) a surfactan t'm olecule  and (b) a surfactant 
m icelle.
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2.2 Nonionic Surfactants

N onionic surfactants are usually prepared by addition  o f  ethylene oxide to 
the com pound that contains one or m ore active hydrogen atom s such as alkylphenols 
and fatty alcohols (M ackay, 1987). The hydrophilic parts o f  nonionic surfactant are 
norm ally  an ethylene oxide (EO ) head group or so called ethoxylate group. N onionic 
surfactants are gentler than ionic surfactants and w ill not be ionized in the aqueous 
solution. They have been used extensively  in household and industrial products such 
as low -tem perature detergents and em ulsifiers (R osen, 1989).

N onionic surfactants can be separated  into m any types such as alcohol 
e thoxylate  (A E) and alkyl phenol ethoxylate (A PE). A E is a nonionic surfactant 
used in th is work. The fundam entals o f  A E production  is an addition o f  ethylene 
oxide to hydroxyl group o f  alcohol. A E  can be easier biodegraded and has low er 
v iscosity  than  those A PE  surfactants. A s a result o f  the recent em phasis on 
biodegradable surfactants, alcohol ethoxylates have w idely  been used for both 
household  and industrial products (M ackey, 1987). They can be used  in the 
form ulation  o f  household cleaner and used as an em ulsion as w ell. T heir structures 
can be show n in the following.

R  - o  - (C H 2C H 2 O H )nOH

w here R represents hydrocarbon chain.
and ท represents num ber o f  m oles o f  ethylene oxide.

2.3 Cloud Point of Nonionic Surfactants

A n aqueous solution o f  nonionic surfactants becom es cloudy w hen it is 
heated above a w ell-defined tem perature know n as cloud point (C P) or low er 
consolute tem perature (LCT). A t tem peratures above the cloud point, nonionic 
surfactant so lu tion  separates in tw o-phase regions o f  its phase diagram  w here the two 
liquid phases are in equilibrium . Figure 2.2 show s an exam ple o f  phase diagram  o f  
nonionic surfactant C 10EO 5 in w ater. The solu tion  appears cloudy because it is an
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em ulsion o f  one phase in another com posing o f  very large m icellar aggregations. 
M oreover, th is so lu tion  can be separated into tw o isotropic aqueous phases by either 
gravity or centrifugal force due to their density  d ifferences. T hese tw o phases are 
called m icellar-rich  phase or coacervate phase and m icellar-d ilu te  phase. The 
coacervate phase contains high concentration o f  surfactant w hile  the dilute phase has 
a surfactant concentra tion  typically  equal or slightly  exceeds the critical m icelle 
concentration  (C M C ) (Scam ehom  and H arw ell, 1989). In addition , th is phase 
separation  is a reversib le  process; hence cooling the solution below  the cloud point 
causes both tw o phases com e together and form  a hom ogeneous solu tion  once again 
(C lint, 1992). F igure 2.3 show s phase partition  o f  nonionic surfactan t above the 
cloud point.

Figure 2.2 Phase d iagram  for the nonionic surfactant C 10E O 5 in  w ater show ing the 
large c losed-loop region w here two liquid phases coexist (C lint, 1992).
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D ilute Phase

C oacervate Phase

Figure 2.3 Phase partition  o f  nonionic surfactant so lu tion  at tem peratures above 
cloud po in t show ing both  dilute and coacervate phases.

2.4 Mechanism of Phase Separation

The cloudy behavior o f  nonionic surfactant so lu tion  attributes to the 
dehydration  o f  ethylene oxide polar head groups. This dehydration  process involves 
in breaking  o f  hydrogen  bond betw een hydrophilic  head groups and w ater m olecules 
(A kita  and T akeuchi, 1995). D uring the dehydration  process, both  aggregation 
num bers o f  m icelles and interm icellar a ttraction  are increased. O n the o ther hand, 
in term icellar repu lsion  is decreased as tem perature  increased. This is because 
m icelles o f  surfactan t have m ore hydrophobicity  enough to com e together and then 
form  a m icelle-rich  phase or coacervate phase at tem peratures above the c loud  point.

A s the tem perature approaches the tw o-phase boundary , the interm icellar 
a ttraction  is increased substantially  (C orkill and G oodm an, 1969). In contrary, 
decreasing  o f  the in term icellar repulsion m akes aggregation  num bers o f  micelles 
increase. T hese surfactan t aggregations are so large that the so lu tion  becom es visibly 
turbid.

In 1986, C laesson and co-w orkers stated that there w ere interm icellar 
repulsive forces at low  tem peratures but these forces becam e attractive forces at 
tem perature above the cloud point. The increase o f  in teraction  is a consequence o f  
strong entropy dom inance. The w ater that hydrates hydrophilic  chains is higher
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structured (low er entropy and enthalpy) than bulk water. W hen the hydration  layers 
o f  tw o approaching chains overlap, the partial exclusion o f  w ater from  the contacting 
zone causes increase in entropy and enthalpy o f  the system . Thus, the phase 
separation occurs in order to reduce the entropy w hich causes the increm ent o f  
surfactant concentration.

Friberg and L indm an (1992) suggested that the oxyethylene segm ents (EO) 
in the nonionic surfactants changed their conform ation i f  tem perature or 
concentration  w as changed. At low  tem peratures, the nonionic surfactants are 
relatively  m ore soluble in polar solvents such as w ater, w hile they  are m ore soluble 
in non polar solvents at high tem peratures. The change in the conform ation m akes 
the EO chains less polar, causing the phase separation to occur.

In 1995, K ato e t  a l ,  proposed that the entangled netw ork  am ong the 
m icelles was gradually  changed to the m ulti-connected netw ork as the tem perature 
w as increased. In o ther w ords, the num ber o f  cross-links o f  w orm like m icelles 
increases w ith  increasing tem perature.

2.5 Parameters Affecting Cloud Point

Since cloud point is strongly depended on the m olecular structure o f  
nonionic surfactant, it can  also be influenced by the hydrophile-lypophile  balance 
(H LB ) o f  surfactants. Several trends in cloud point w ith  surfactant m olecular 
structure are com m only  know n: cloud point increases w ith  the relative ethylene 
oxide content and decreases w ith  increasing alkyl carbon chain  length  (H uibers e t  a l . ,
1997). A t particu lar hydrophobic portion, the larger o f  ethylene oxide percentage il? 
the hydrophilic part, the h igher the cloud point. For exam ple, h ighly  hydrophilic 
chain  (% EO  > 7 5 )  often does not have a cloud point below  the boiling point o f  the 
w ater (R osen, 1989). O n the o ther hand, the cloud point is low ered by increasing the 
alkyl chain  length at specific hydrophilic head group (G u and G alera-G om ez, 1999)

The other substances added into the surfactant so lu tion  such as other 
surfactants, e lectrolyte, and o ther polar or non polar com pounds also affected the 
cloud point. The addition o f  either anionic or cationic surfactants can increase the 
cloud point due to increasing o f  repulsive force betw een the surfaces o f  m ixed
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m icelles. M oreover, the addition o f  o ther nonionic surfactants can also change the 
cloud point and the new  cloud point for this m ixed surfactant is in betw een  the cloud 
point o f  the tw o pure surfactants (R osen, 1989).

In 1997, H uibers D.T. and co-w orkers notified that cloud point o f  aqueous 
surfactants so lu tions can be strongly influenced by the p resence o f  o ther m aterials. 
For exam ple, cloud point can be decreased by the in troduction  o f  polar com pounds, 
anions that are w ater structure form er ( hard bases, F ,  O H ', S O 4 2’, c r , and P O 4 3'), 
and certain  cations (N H 4+, alkali m etal ions except for Li+). C loud point can be 
increased by  an addition o f  long chain non-polar m aterial, anions that are w ater 
structure breakers (large, polarizable anions, soft bases, SC N ', F), and certain cations 
(polyvalent cations, H +, Li+).

A ddition  o f  non-polar com pounds, e .g . saturated  aliphatic hydrocarbons, 
increases the cloud point w hile adding po lar com pounds, e .g . phenol, decreases the 
cloud point. The increm ent o f  the cloud point by  an addition  o f  non-polar 
com pounds m ay be because the non-polar solubilizate m ade a m icelle  size increase. 
A s the m icelle  size increased, the area o f  m icelle-w ater in terface increased, and then 
the dehydration  o f  hydrophilic chain w as higher. In contrary , the po lar com pounds 
can decrease the dehydration o f  hydrophilic chains as a result o f  com petition  for the 
hydration  reg ions by  polar solubilizate. M oreover, G u and G alera-G om ez (1999) 
indicated that the effect o f  added organic com pounds on the cloud point was 
depended on their solubilities in water.

In 1995, K om arom y-H iller and co-w orkers indicated  that presence o f  
electro ly tes in the nonionic surfactant so lu tion  change the cloud point, w hich  called 
salting  effect. For exam ple, addition o f  sodium  chloride (N aC l) or chloride ions (CF) 
depress the cloud  point due to the salting-out effect. Salting-out effect is the 
decreasing  o f  availability  o f  non-associated  w ater m olecules for dehydration o f  
hydrophilic  chains. In contrary, addition o f  iodide ions (F) raise the cloud point 
because iodide ion can produce m ore available w ater m olecules to interact w ith the 
head groups w hich  called salting-in effect. In 1995, G u and G alera-G om ez showed 
that the cloud point decreases dram atically  w hen the e lectro ly tes are added, in the 
o rder L aC F >  M gC F  > N aCl, w hich im plied that polyvalen t cations or counterions 
are m ore active than the univalent cation.
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2.6 Cloud Point Extraction

To apply the phase separation betw een coacervate and dilute phases, the 
cloud point extraction  (CPE) or also called liquid-coacervate extraction  has been 
studied (Frank and W illie, 1999). The cloud point ex traction  is sim ilar to an aqueous 
tw o phase partitioning system  rather than to solvent extraction. W hen a nonionic 
surfactant so lu tion  containing organic solute is heated, the phase separation  occurs 
and the solute is partitioned betw een dilute and coacervate phases. In general, non­
polar organic solute is so lubilized and concentrated  at the coacervate phase w hile the 
d ilute phase that rem ains only trace am ounts o f  organic solute can be released to the 
environm ent, as show n in Figure 2.4.

O rganic Solutes

below
C loud Poin t Tem perature

>  at and above

Figure 2.4 The schem atic illustration  o f  the cloud po in t extraction.

The used  o f  cloud point technique seem s m ore advantageous as the clouding 
is reversib le and transparent so lu tion  are ob tained  after cooling (M atem a and 
Szym anow ski, 2002). C PE technique can also be applied  to extract m any desired 
chem icals. In 1995, Saitoh and H inze studied the C PE  o f  hydrophobic protein . In
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1999, Q uina and H inze show ed that C PE m ethod for organic com pounds has been 
in teresting due to the environm ental concern.

A kita and Takeuchi (1995) suggested that adding sodium  chloride (NaCl) 
and phenol increased the efficiency  o f  CPE for rem oval o f  pyridines. They also 
found that the h igher concentration  o f  surfactant can im prove the efficiency o f  CPE, 
as a result o f  the h igher capacity. These results w ere confirm ed by K im chuw anit e t  
a l  (1995). M oreover, K im chuw anit and co-w orkers also show ed that the efficiency 
can be im proved by raising the operating tem perature.

In 2000, Sakulw ongyai et ah, exam ined the rem oval o f  chlorinated  ethanes, 
w hich are te /ra-ch lo roethane, fr/'-chloroethane, and cft-chloroethane, from 
w astew ater. T hey show ed that the surfactant aggregated in the coacervate phase are 
the m icelle-like in structure due to the equality  o f  the so lubilization  equilibrium  
constant and the coacervate equilibrium  constant. Furtherm ore, they  also concluded 
that the am ount o f  solute rem oval for h igher ethane ch lorination  is h igher than the 
low er ethane chlorination.
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