INTRODUCTION

The problem of expressing certain entities “in finite terms", such &s, the
computation of roots of polynomials in terms of radicals, the solving of differential
equations in terms of elementary functions, arises frequently in Mathemetics. One
such problem known & "“integration in finite ters” is cealt wath in this thesis.
Roughly speaking, the problem of integration in finite terms is that given a 'y in a
differential field F wath cerivation D, we ask when a solution of D(y) = Y can be
expressed in certain special forms.  Historically, Joseph Liowille (see e g Ritt [1])
first systemetically worked on the question of when an algebraic function has an
aloebraic integral and he later gave conditions relating to when an algebraic function
has an integral of a special form called "elementary” , this particular result is generally
known as Liouville's theorem on integration in finite terms.  In its simplified form, it
reads : i y(x) is an algebraic function whose Integral is elementary, then

[y(xJax = vofod +Cllogv(x) + - +crlogunl),

where s a positive integer, each VA(x) an algebraic function, and each G a constant.
The works of Liouville were subsequently extended by a numoer of other peoole such
as D.D. Morduknai-Boltovskoi [2], A Ostrowski [3], JF. Ritt [L], and MRosenlicht
[4], [, [6], A proof of Liouville's theorem can be found in Ritt's classic exposition
[1]; the proof ISa combination of clever observations and is analytic in nature,  In
1946, Ostrowski gave for the first time in [3] a proof of Liowmlle's theorem in the
context of differential fields of complex meromorphic functions.  In 1968, M
Rosenlicht found a completely - gebraic proof of Liouville's theorem as described in
his series of papers [4], [B], and [o],

To date, one of the most generalized forms of Lioumlle's theorem is due to
MF. Singer, BD. Saunders and BF. Caviness [7], Singer, Saunders and Caviness
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generalized Liouville's theorem by enlarging the class of fields from elementary to a
special class of fields, called zi - elementary, which includes elementary functions as
well as special functions such as error function and logarithmic integral.

A natural question arises whether extensions to other classes of fields
containing functions not previously covered are possible.

The first dbjective of this thesis is to affimmetively answer this question by
establishing two more classes, namely, Ei and Gamma extensions,

Elementary functions not only enjoy some interesting properties but among
them there appear some useful intrinsic - gebraic relations, as witnessed through the
structure theorem of Risch [8], which shows that if an algebraic relation holds among
a set of elementary functions, then such functions must satisfy an algebraic relation of
aspecial kind. In 1979, M Rothstein and B.F. Caviness [9] generalized the structure
theorem by enlarging the class of fields from elementary to a special class of fields,
calledl generalized log-explicit extension,

The work of Rothstein and Caviness is not a straightforward generalization of
Risch's result. In fact, it improves upon Rischis result sUloject to certain additional
restrictions.

The second objective of this thesis IS to re-consider and extend Risch's
structure theorem to ather class of fielcs.

The thesis is organized as follows:

Chapter | contains besic cefinitions and theorems relating to diifferential fielos
and their extensions. Al resuits, except for Theorem L6 that involves the module of
differentials, are given with proofs either complete or sketches. This is indeed done
throughout the thesis so as to make the exposition as self-contained as possible.
Emphases are called upon Theorems 17, 18 and 19 for they provide mein artillery
for the proofs of principl theorems inthe last two chipters.
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Chapter II deals with classical Liouville's theorem about integration in terms of
elementary functions, and its recent generalization to the class of  -elementary
functions, due to Singer, Sauncers and Caviress.  The proof of Liowville's
theorem(Theorem 2.1.1) given here is that of Rosenlicht [4], [],6] mentioned above,
and it is entirely algeraic. The proof is by induction on the number of generators and
It recuces to consicering just one simple extension of each kind, exponential,
logarithmic or algetraic separately.  The main ideas of the proof are to apply
appropriate automorphisms to the inductively proposed form inan extended field and
then sumup in orcler to get the form of desiredl shape inthe lower field.

The proof of . -elementary extension of Liouville's theorem (Theorem 2.2.1)
given here is that of Singer, Saunders and Caviness [7], It follows the same line as
that of Theorem 2.1.1 mentioned above, with much more complicated analysis arising
fromthe wicr class of functions adjoined. This line of attack is what we adopt for the
proof of our main resits in Chapter IV,

In Chapter 11, we review a result, called structure theorem of Risch, which
exhibits two close algebraic relations, one among exponentials, and the other among
logarithms in elementary extersion.  The proof of the main theorem (Theorem 32.1)
given here is due to Rothstein and Caviness [9], It is done via induction on the
numoer of transcendental extensions. By re-arranging transcendental elements
appropriately, and analyzing linear dependence of dirfferentials via Theorems 17 and
1.8, desired relations can be obtained in extended field and then can be pulled down to
lower field by applying relevant automorphisms,

In Chapter rv, e give two mein results extending those in Crapter 11, First,
we establish a Liowille type theorem (Theorem 4.1.2) by enlarging the class of
function to an extension; called Ei-extension, which encompasses the — -elementary

extension of Singer, Sauncers and Caviness. This generalization s natural inthe sense
that two more exponential and logarithmic like elements are adjoined to — -elementary
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extension. The proof is along the same ling as that of Theorem 2.2.1, but of course
with more analysis.

Second, we establish another Liouville type theorem (Theorem 4.14) by
enlarging the class of function to an extension; called Gamma extension, which
encompasses the Gamma function not previously considered anywhere. The proof is
also along the same line as that of Theorem 22.1 but with different analysis which
Involves rational power ofthe element adjoined

The details of hath proofs are cisplayed in steps so that one can ezsily see the
logical flows and their inter-connections.

In the last chapter, we give a generalization of Risch's structure theorem to
general elementary extension enlarging the elementary extension by adjoining
nonelementary integral to it. This is perhaps the broadest one can hope for. The ideas
of the proof resemble that given in Chapter 1.

Notation. The following notation will be fixed throughout the entire exposition.
2+ Isthe set of positive integers,
2 Isthering of integers.
Q isthefieldof rational numbers,
R isthefield of real numbers.
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