CHAPTERH
DIFFERENTIAL FIELDS AND
LIOUVILLE TYPE THEOREMS

2.1 Basic Definitions and Liouviile's Theorem

Let F be a differential field. Ifx and y are elements of F, withy t 0, thenx is
called a logarithm of y, or y an exponential of x. if D(x) = D(y)ly for each given
derivation D of F. We wite "X is & logarithm of y* or "y Is an exponential of X' &
x =log(y) or y=exp(x) respectively.

We say that a differential extension field K of F is an elementary extension of F
Ifthere exists a finite tower of fiels F=FocFic- ¢ Fa=K suchthat fori,
with 1<i<, H=H_i(t}) and one of the following holcs:

() 1 Isalgebraic over H i,

(1) 1) =exp(u) for some InF_I,

(i) - =log(u) for some nonzero  inFy_i.

Example. Let ¢ be the field of complex numbers and let F = C(x) be the set of
rational functions wath coefficients in ¢. Then F is a differential field under the usual
Cerivation: D =dcx.
Thus Fs=C(x, log(x), exp(-x2), exp(xlog(x)+exp(-x2)) ) Is an elementary extension
of F. hecause
F=RC ¥l:¥0(t]) ¢ k= F1(t2) ¢ Fs= Fz(t3)

where 1 = log (x)

t = explx2)

ts = expixlogx) +exx2).
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Remarks

(1) The tj might satisfy at least 2 conditions in the definition, for example,
let F= R(x) with the usual derivation : d/dx. ~Adjoining exp(x), produces the
differential field F(exp(x)). Let t = exp(x/2). Then t is both algebraic over
F(exp(x)) and is an exponential of some element in F(exp(x)).

(2) We say that y Is elementary over Fif y belongs to an elementary extension
of F having the same subfield of constants.

\We can now state Liouville's Theorem.

Theorem 211 ([4], [ |, [6]). LetF be a differential field of characteristic zero
with derivation D. Let y be an element of F. Suppose there is an element y in an
elementary extension of F having the same subfield of constants such that D(y) = V.
Then there exist constants clv...cn in F and elements 1., , VinF with 1.,

nonzero, such that
y = D)+ X CDup)/Uj.

Remarks. There are a number of variations and proofs of this theorem in the
literature, (see eq. [4], [5], [6]). [Interestingly, the proofs have become
progressively more algebraic.

Proof. Let E be an elementary extension of F having the same subfields of constants

and E contains an element y satisfying D(y) =Y. So there is a finite tower of fields
F=FOcFj c- ¢ Fm=E

such that for each 1= 1....m, Fj = F_](t}) , where tj is a logarithm or an exponential of

an element of F_! or algebraic over F_i. Thus E = F(t],...,tm). Clearly, F = FO,

FL...Fm=E have the same subfields of constants.
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The proof s by induction onm For m=0), the theorem is coviously true. Let m>0
Assume that the theorem is true for the case that the number of generators In E is less
than m We can apply the induiction hypothesis to Y GFj and the tower

F(t)=Flc 2 c- cFm=Ftl.. tm

toget Y=D(v) + I[ CiD(uj)/ui where Cx;...on areconstants andV,. ~~ n are

elements inF(tj) with 1,..., nnonzero,

Setting 11 =t Then't is algebraic over F, or is a logarithm or is an exponential of an
element of F. What we now have to do Is to find a similar expression for Y, possibly
with adifferent , but with the elements 1., 1, Vbelongingto F.

Ift is algebraic over F, there exist a finite normal extension K of F containing F(t).
Then for each UG Aut(KIF) we have Y=D(ov) + I[ CiD(auj )/ (auf ) and summing

over all a we get

- f f
[K:Fly =D Xav + ZcD TM!y ™\

with each element Eav ar fiouj InF.

Thus we may assume t transoendental over F. Without loss of generality, we assume
that c1,....cn are lingarly indepencent over Q.

Ift is a logarithm of an element of F, say D(t) = D{a)/a for some nonzero ainF, then
Itis an immediate consequence of Theorem 19that 1., nare algetraic over F and
v=Ct+ wherecisaconstantand i algebraic over F, so that

Y = cD(@)a+Dw)+ in| ODUAy

the same situtation as in the case where t IS algebraic over F we get an expression Yof
the type desired.
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It is an exponential of an element of F, say D(t)/t = D(b) for some b € F, then by

Theorem 19 we have v is algebraic over F and there are integers mo,mi,...,mn, with
mG* 0, suchthat each wotmi s algebraic over F. Thus we get

DUty = (I/mo)D(urm>mi)/(u” )t,n)-(inifmo) D).

Again we have the expression of y as inthe  gebraic case and proceeding the same
manner, we obtain the correct sumofy, B

2.2 A Recent Extension of Liouville's Theorem

The followang is one of the most generalized versions of Liowville's Theorem
It was due to MF. Singer, B.D. Saunders and BF. Caviness [ 7],
Let F be a differential field wath derivation D and subfield of constants ¢. Let
Aand B be finite indexing sets and let
= {Ga(expRa(Y))la e A},
= {Hnlleg Sp(¥) IP G B}
e sets of expressions V\here.
(1) Ga,Ra,Hp, Sp areinCY) fordl a GA Pc B
(2) for dll Pe B, ifHp(Y) = Pp(Y)/Qp(Yj with Pp, Quin Y] and Qp * 0, then
OegPp<deg Qp+1
We say that a differential extension K of Fis an ££- elementary extension of F
Ifthere exists a finite tower of fields F=Fqc Fj ¢ —c Fn=K such that for |,
with 1<i< , §=H_1 (tj) and one ofthe followng holc:
() t isalgebraic over A i,
) tJ = exp(u) for some inF_|,

(
(1)) t = log(u) for some nonzero uinFy.,
(V) for some a ¢ A thereare andnonzerov inH_i suchthat D(t]) = (D(u))Ga (v)

where v =expRa ( ),
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(for brevity, tj = jGa (& Ra( ))D( ))

(v) forsome P e B thereare ,VinH.i suchthat DYtj) = (D(u))Hp(v)
where V= logSp(u) and Sp(u) 40,
(for brevaty, ti = J Ho (logSp(u))D(u)).

Note that (1), (ir) and (Ii1) constitute the elementary extension while (iv) and (v) extend
this notion and allow U5to acjoin more special functions,

Example. Let ¢ be the field of complex numbers and let F 5 C(x) be the set of
rational functions with coefficients in ¢. Then F is a differential field under the usual
derivation D = dlidx.
Let G(Y)=Y,R(Y)=-Y2HY) = IIY, (Y)=Y.
Let (Gep(Y2)} = {op(-Y2} ax
L = (Hlogs(V)} = (loglY. |

Thus Fs = Fexp(-x2), Jexp(-x2), Jlllog(x)) isan Si -elementary extension of F,
sgnee Fo = C(X) C :Fo(t]) C F2:F1(t2) C F3:F2(t3),
where ] = exp(-x2) issuchthat D(ti)ti =D(-x),

t2 = Jexp(-x2) issuchthat D(t2) = Glexp(-x2))D(X),

ts = Jlllog(x) issuchthat  D(t3) = H{log(x))D(x).

The cefimtion of Si - elementary is broad enough to inclucke the following functions:

(1) The error function is cefined by
erf(u) = J(Du)exp(-u")

where Ga (exp Ra(Y)) =exp(-Y2 with Ga(Y)=Yand Ra(Y)=-Y2
(1) The logarithmic integral is cefined by
it) = Ja( Yog( )
with Hp(Y) = LY and Sp(Y) = Y,
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- elementary extension does not include the dilogarithm  eefined by

Li2(u) = J(Du)log(u)/(I-u)
nor the exponential integral

Ei(u) = J(Du)exp(u)lu,
since they both violate condition (1) of the definition. Of course, Ei(u) = li(exp(u)), so
the exponential integral is implicitly covered in the definition of  -elementary
extension; however, a theory that explicitly includes these functions is probably more
Useful

Singer, Saunders and Caviness's theorem is & followes.

Theorem 221 ([7]). Let F be a differential field of characteristic zero with
derivation D and algebraically closed subfield of constants ¢. Let YoeinF. Assume
that there exist an - elementary extension K of F and an element y in K slich that
D(y) =Y. Then there exist

N&!,..aninc,

IWg 1., 1 InF wthnonzero ..,
B baec, 1 and Ma algeoraicoverFfordla GAand i Gla,
)

@ Qp Ge, Yo ad Vo alggbraic over F forall P GBand i G I,
Sich tht

y = DWwO0) + z aiDw)w + Z z bia (Duia)Ga(via)
PZeBl cip(°uip)Hp(vipp>

where la and Jo are finite sets of integers for dll a and p and
D(vja) = (DRa( 0))\a ,
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D(vip) =" (DSp(uip))Sp(uip), Sp(uip)* 0,
fordll oc, pand i

The proof of the theorem IS long. e state here an outline of proof, for a
complete proofwe referto [ 7 |

An outling of proof of the theorem. First, we consider the case where F is
alogbraically closed. The proofis done by induction on the transcendence degree of
the  Z)- elementary extension of F, when the transcendence degree is zero, the result

Istrivial. Ifthe transcencence degree IS positive we apply induction and the problem is

reqluced to showing;

Let K be an algetraic extension of F(t) where t is transcencental over F and
satisfies either condlitions (if), or (i), or (Iv), or (v) in the definition of the
ZI- elementary extension. Let ye Fand assume that K has no new constants and that
there exist W, Ua,, Up, Vfa, vip inK and constants &}, bja, Gp such tht

(21 vy - (0)+ ZaDWwwj+ZZ bia(Du,a)Ga(via)

+ 1 Zcjp (Dujp) H(vjp),
Where
D(via) — (DRa(uia))via an
D(vip) = (DSplujp))/Sp(uip), Splup) * 0
Then there exist W, Ula, Uip, Via, Vip InF and constants ai, bia : Gp inF such

that
Y = D(w0) + L aiD(wi)wi + zz hiaD(uia)Ga (via)

+ ZZcipD(uip)Hp(vip),
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where  D(via) = D(Ra(uia))via and

D(vip) = D(Sp(lip))/Sp(tip), Sp(lip) * 0
Next we consider each of the cases (if) - (v), the main idea is to take the trace ofboth
sides of (2.1) to force everything down F(t), and equate terms in the partial fraction
decomposition (with respect to t) and then show that the term not depending on t on
the right - hand side can be put in the prescribed form,
Finally, we remove the assumption that F is algebraically closed. The above

arguments show that the shape of v obtained in  the conclusion of the theorem holds
with & bja,gp in ¢ ad W, Ua, ujp, ia, Vip gebraic over F. Taking

automorphisms of a finite normal extension of F containing W, Ua , Ujp, Ma, Vjp on

both sides of the equation of . Then summing over all the automorphisms and this
shows that Y has the correct form. f

Remarks.  The complete proof of Theorem 2.2.1 given by Singer, Saunders and
Caviness requires the subfield of constants of the I - elementary extension of F to
be the same as that of F.  The proof of this fact is not simple because it involves the
notion of constrained extension and other concepts from differential algebra. In most
practical applications, it is not difficult to verify directly that the field of constants is
the same.  Thus in what follows it seems more convenient to adopt this requirement as
a given hypothesis.
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