
CHAPTER H
DIFFERENTIAL FIELDS AND 

LIOUVILLE TYPE THEOREMS

2.1 Basic Definitions and Liouviile's Theorem

Let F be a differential field. If X and y are elements of F, with y ะt  0, then X is 
called a logarithm of y, or y an exponential of X, if D(x) = D(y)/y for each given 
derivation D of F. We write "x is a logarithm of y" or "y is an exponential of x" as 
X = log(y) or y = exp(x) respectively.

We say that a differential extension field K of F is an elementary extension of F 
if there exists a finite tower of fields F = F0 c F i  c -  c  F 11 = K such that for i, 
with 1 < i < ท, Fj = Fj_i(tj) and one of the following holds:

(i) tj is algebraic over Fj_i,
(ii) tj = exp(u) for some น in Fj_i,
(iii) = log(u) for some nonzero น in Fj_i.

Example. Let c  be the field of complex numbers and let F = C(x) be the set of 
rational functions with coefficients in c. Then F is a differential field under the usual 
derivation: D = d/dx.
Thus F3 = C( X, log(x), exp(-x2), exp(xlog(x)+exp(-x2)) ) is an elementary extension 
of F, because

F = F0 C ¥1=¥0(t1) c  F2 = F1(t2) c  F3 = F2(t3) 
where 1 1 = log (x), 

t2 = exp(-x2), 
t3 = exp(x log(x) + exp(-x2)).
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Remarks
(1) The tj might satisfy at least 2 conditions in the definition, for example, 

let F = R(x) with the usual derivation : d/dx. Adjoining exp(x), produces the 
differential field F(exp(x)). Let t = exp(x/2). Then t is both algebraic over 
F(exp(x)) and is an exponential of some element in F(exp(x)).

(2) We say that y is elementary over F if y belongs to an elementary extension 
of F having the same subfield of constants.

We can now state Liouville's Theorem.

Theorem 2.1.1 ([ 4], [ร ], [6 ]). Let F be a differential field of characteristic zero 
with derivation D. Let y be an element of F. Suppose there is an element y in an 
elementary extension of F having the same subfield of constants such that D(y) = y. 
Then there exist constants clv..,cn in F and elements น 1, . . . , นท, V in F, with น 1,...,นท 

nonzero, such that
y = D(v)+ X CjD(uj ) / Uj.

Remarks. There are a number of variations and proofs of this theorem in the 
literature, (see e g. [4 ], [5 ], [ 6 ]). Interestingly, the proofs have become 
progressively more algebraic.

Proof. Let E be an elementary extension of F having the same subfields of constants 
and E contains an element y satisfying D(y) = y. So there is a finite tower of fields

F = F0 c F j  c -  c  Fm = E
such that for each i = l,...,m, Fj = Fj_](tj) , where tj is a logarithm or an exponential of 
an element of Fj_! or algebraic over Fj_i. Thus E = F(t],...,tm). Clearly, F = F0, 
F1,...,Fm = E have the same subfields of constants.
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The proof is by induction on m. For m = 0, the theorem is obviously true. Let m > 0. 
Assume that the theorem is true for the case that the number of generators in E is less 
than m. We can apply the induction hypothesis to Y G Fj and the tower

F(ti) = F 1 c  โ 2 c -  c F m = F(t1,..,tm)

to get Y = D(v) + Y  CjD(uj)/ui where c1;...,cn are constants and V, น 11 arei=l
elements in F(tj) with น 1,...,นn nonzero.
Setting 1 1 = t. Then t is algebraic over F, or is a logarithm or is an exponential of an 
element of F. What we now have to do is to find a similar expression for Y, possibly 
with a different ท, but with the elements น 1,...,น 11, V belonging to F.
If t is algebraic over F, there exist a finite normal extension K of F containing F(t).

ทThen for each Ü G Aut(K|F) we have Y = D(ov) + Y  CjD(auj ) / (auf ) and summingi=l
over all a we get

f \ ท f ไ f ไ[K : F]y = D Xav + Z  c, D ท™! y/ ท™! \

with each element Y av ar*d f|ouj inF.a a
Thus we may assume t transcendental over F. Without loss of generality, we assume 
that c 1,...,cn are linearly independent over Q.
If t is a logarithm of an element of F, say D(t) = D(a)/a for some nonzero a in F, then 
it is an immediate consequence of Theorem 1.9 that น 1,...,นn are algebraic over F and 
V =  ct + พ  where c is a constant and พ  is algebraic over F, so that

Y = cD(a)/a + D(w) + Y  cjD(uj)/uj,
i=l

the same situtation as in the case where t is algebraic over F we get an expression Y of 
the type desired.
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If t is an exponential of an element of F, say D(t)/t = D(b) for some b € F, then by
Theorem 1.9 we have V is algebraic over F and there are integers m0,mi,...,mn, with 
mG * 0 , such that each น!110 tmi is algebraic over F. Thus we get

D(ui)/Ui = (l/m0)D(uim'>tmi)/(u” |)t,n')-(ini/mo)D(t)/t.
Again we have the expression of y as in the ฟgebraic case and proceeding the same 
manner, we obtain the correct sum of y. #

2.2 A Recent Extension of Liouville's Theorem

The following is one of the most generalized versions of Liouville's Theorem. 
It was due to M.F. Singer, B.D. Saunders and B.F. Caviness [ 7 ].

Let F be a differential field with derivation D and subfield of constants c. Let 
A and B be finite indexing sets and let

ร = { Ga (expRa (Y)) I a  e A},
£ = { Hp(lcg Sp(Y)) I P G B},

be sets of expressions where:
(1) Ga ,Ra , Hp, Sp are in C(Y) for all a G A, P c B,
(2) for all P e B, if Hp(Y) = Pp(Y)/Qp(Yj with Pp, Qp in C[Y] and Qp * 0, then 

deg Pp < deg Qp + 1
We say that a differential extension K of F is an ££ - elementary extension of F 

if there exists a finite tower of fields F = Fq c Fj c: — c  Fn = K such that for i, 
with 1 < i < ท , Fj = Fj_ 1 (tj) and one of the following holds:
(i) tj is algebraic over Fj_i,
(ii) tj = exp(u) for some น in Fj_i,
(iii) tj = log(u) for some nonzero u in Fj.j,
(iv) for some a  G A, there are น,and nonzero V in Fj_i such that D(tj) =  (D(u))Ga (v) 

where V = expRa (น),
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(for brevity, tj = jGa (exp Ra (น))D(น)),
(v) for some P e B, there are น, V in Fj_i such that D(tj) = (D(u))Hp(v) 

where V = logSp(u) and Sp(u) -*■ 0,
(for brevity, ti = J Hp (logSp(u))D(u)).

Note that (i), (ii) and (iii) constitute the elementary extension while (iv) and (v) extend 
this notion and allow US to adjoin more special functions.

Example. Let c  be the field of complex numbers and let F =5 C(x) be the set of 
rational functions with coefficients in c. Then F is a differential field under the usual 
derivation D = d/dx.
Let G(Y) = Y , R(Y) = -Y2, H(Y) = 1/Y, ร(Y) = Y.
Let ร = (G(exp(-Y2))} = {exp(-Y2)} and 

L = (H(logS(Y))} = (l/log(Y)}.
Thus F3 = F( exp(-x2), Jex p (-x 2 ), Jl/log(x)) is an Si -elementary extension of F,
since F0 = C(x) c  = F0(t 1) c  F2 = F1 (t2) c  F3 = F2(t3) ,
where t] = exp(-x2) is such that D(ti)/ti = D(-x?),

t2 = Jexp(-x2) is such that D(t2) = G(exp(-x2))D(x),
t3 = J l/log(x) is such that D(t3) = H(log(x))D(x).

The defimtion of Si - elementary is broad enough to include the following functions:
(i) The error function is defined by

erf(u) = J (D u)exp(-u^)
where Ga (exp Ra (Y)) = exp(-Y2) with Ga (Y) = Y and Ra (Y) = -Y2.

(ii) The logarithmic integral is defined by
li(u) = Jd (น)/log(น)

with Hp(Y) = 1/Y and Sp(Y) = Y.
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น  - elementary extension does not include the dilogarithm defined by
Li2(u) = J(Du)log(u)/(l-u)

nor the exponential integral
Ei(u) = J (Du)exp(u)/u,

since they both violate condition (1) of the definition. Of course, Ei(u) = li(exp(u)), so 
the exponential integral is implicitly covered in the definition of ฆ-elementary 
extension; however, a theory that explicitly includes these functions is probably more 
useful.

Singer, Saunders and Caviness's theorem is as follows:

Theorem 2.2.1 ([7]). Let F be a differential field of characteristic zero with 
derivation D and algebraically closed subfield of constants c. Let Y be in F. Assume 
that there exist an น- elementary extension K of F and an element y in K such that
D(y) = y. Then there exist 

(!)&!,...,an in c,
(2) Wq, พ 1,...,พ,1 in F, with nonzero พ 1,...,'พท,
(3) bja e c, น10, and Vja algebraic over F for all a  G A and i G Ia ,
(4) Cjp G c, Ujp and Vjp algebraic over F for all P G B and i G Ip,

such that

y = D(w0) + z  ai D(w,)/wj + Z  z  bia (Duia )Ga (via )

+ z  z  cip(°uip)Hp(vip)> .PeB ieJp

where Ia and Jp are finite sets of integers for all a and p and 
D(vja ) = (DRa (น,0,))Vja ,



24

D(vip) = (DSp(uip))/Sp(uip), Sp(ujp) * 0, 
for all oc, p and i.

The proof of the theorem is long. We state here an outline of proof, for a 
complete proof we refer to [ 7 ].

An outline of proof of the theorem. First, we consider the case where F is 
algebraically closed. The proof is done by induction on the transcendence degree of 
the Zl- elementary extension of F; when the transcendence degree is zero, the result 
is trivial. If the transcendence degree is positive we apply induction and the problem is 
reduced to showing:

Let K be an algebraic extension of F(t) where t is transcendental over F and 
satisfies either conditions (ii), or (iii), or (iv), or (v) in the definition of the 
Zl- elementary extension. Let ye F and assume that K has no new constants and that 
there exist Wj, Uja , Ujp, Vja , vjp in K and constants a}, bja , Cjp such thdt

(2.1) Y -  ง(พ0) + Z aiD(w{)/wj + Z Z  bia(Du,a)Ga (via)

+ I  Zcjp (Dujp) Hp(vjp),
where

D(via) — (DRa(uia))via. an̂
D(vjp) = (DSp(ujp))/Sp(ujp), Sp(ujp) * 0.

Then there exist Wi, Uia, Uip, Via, Vip in F and constants ai, bia : Cip in F such 
that

Y = D(w0) + L aiD(wi)/wi + z z  bia D(uia)Ga (via)

+ ZZcipD(uip)Hp(vip),



25

where D(via) = D(Ra (uia))via and
D(vip) = D(Sp(ûip))/Sp(üip), Sp(üip) * 0.

Next we consider each of the cases (ii) - (v), the main idea is to take the trace of both 
sides of (2.1) to force everything down F(t), and equate terms in the partial fraction 
decomposition (with respect to t) and then show that the term not depending on t on 
the right - hand side can be put in the prescribed form.

Finally, we remove the assumption that F is algebraically closed. The above
arguments show that the shape of Y obtained in the conclusion of the theorem holds 
with a}, bja ,qp in c  and WJ, Uja , ujp, Vja , Vip ฟgebraic over F. Taking
automorphisms of a finite normal extension of F containing Wj, Uia , Ujp, Via , Vjp on
both sides of the equation of y. Then summing over all the automorphisms and this 
shows that Y has the correct form. #

Remarks. The complete proof of Theorem 2.2.1 given by Singer, Saunders and 
Caviness requires the subfield of constants of the Zl - elementary extension of F to 
be the same as that of F. The proof of this fact is not simple because it involves the 
notion of constrained extension and other concepts from differential algebra. In most 
practical applications, it is not difficult to verify directly that the field of constants is 
the same. Thus in what follows it seems more convenient to adopt this requirement as 
a given hypothesis.
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