
CHAPTER II

THE GOVERNING EQUATIONS

The motions o f the atmosphere are governed by the fundamental physical laws o f 
mass, momentum, and energy and equation of state. In this chapter we will show how  
these principles can be applied to the atmosphere, in order to obtain the governing 
equations.

Momentum Equation

Newton's second law of motion states that the rate o f change o f momentum of an 
object referred to inertial fame in space equals the sum o f all the forces acting. For 
atmospheric motions o f meteorological interest, the forces which are o f primary concern 
are the pressure gradient force, the gravitational force, and friction. If the motion is 
referred to a coordinate system rotating with the earth, Newton's second law may still be 
applied provided that certain apparent forces, the centrifugal force and the Coriolis force, 
are included among the forces acting. We can write Newton's second law in rotating 
coordinate as

where
V ร  The velocity relative to the rotating earth



5

Q = The angular speed o f rotation of the earth 
p =  The density of an air parcel on the rotating earth 
p =  The air pressure 
"ga = The gravitational force
Fr =  The friction force'
7  ร  The position vector of the particle as measured from 

the origin at the earth's center.

and the right-hand side are the centrifugal force, the Coriolis force, the pressure gradient 
force, the gravitational force, and friction force respectively.

A. Component Equation in Spherical Coordinates
It is convenient to expand eq.(2.I) in spherical coordinates so that the (level ) 

surface o f the earth corresponds to a coordinate surface. The coordinate axes are then 
( X, <เ), z ) where X is longitude, <}) is latitude, and z is the vertical distance above the 
surface o f the earth. If the unit vector i, j, k are now taken to direct eastward, northward, 
and upward, respectively (see Fig. 2.1), the relative velocity becomes

Figure 2.1 Spherical coordinates with Cartesian tangent plane.
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Sphere Cartesian tangent plane

r = a + z dz w = dz 
dt

X dx = acos(j)dX i

4> dy ะ= ad(j) d(j)V = a - 1- dt

If we define

d_
dt

a a= ^- + น ^ -at dx + v | -  + w | -  dy dz

and friction Fr is expanded in components as

Fr = 1 Fx + j Fy + k Fz

Then the eastward, northward, and vertical component momentum equations
become

du uv tan <J) + นพ _ _L ap
dt a a p dx

dv น2 tan (J) + vw _ dp
dt a a p dy

dw , น2 + V2 _ dP
dt a p dz

(2.2)

(2.3)

(2-4)

The terms proportional to 1/a on the left-hand sides in eq.(2.2)-eq.(2.4) are called 
the curvature terms because they arise due to the curvature of the earth.
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B. Scale Analysis o f the Equation o f Motion.
In order to simplify eq.(2.2)-eq.(2.4) for synoptic scale motions we define the 

following characteristic scales o f the field variables based on observed values for 
midlatitude synoptic systems.

บ  - 10 m / s horizontal velocity scale
พ  - 1 cm /  ร vertical velocity scale
L - 106 m length scale
D - 104 m depth scale

A P /P - 103 m2/  ร2 horizontal pressure fluctuation scale
L / U  - 105 ร time scale

It is convenient to consider disturbances centered at latitude <j)0 = 45° 5 and 
introduce the notation f0 = 2 Q sin <j)0 «  10-4 ร-1 then we can now estimate the 
characteristic magnitude o f each term in eq.(2 .2) and eq.(2.3) based on the scaling 
considerations as shown in Table 2.1.

Table 2.1 Scale analysis o f the horizontal momentum equations

A B c D E F

X- Component du
dt -2  f i v  sin <|) + 2 Ü W  cos <)) |UWa

uv tan <}> 
a 1 dp

P dx
y- Component dv

dt +2 Q น sin <J) -1-Vพ a
น2 tan 6+— -— — a

1 3P 
P dy

Scales foU f0W uw 1ç. AP
pL

Magnitudes 10-2 10 '1 10-4 10'6 10-3 10-1
( cm /  sec2 )
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From Table 2.1, the Coriolis force (term B) and the pressure gradient force (term F) 
are in approximate balance. Therefore, retaining only these two terms, we obtain as a first 
approximation the geostrophic relationship.

1 § P
p dx- f v  =  1 fu  ร 1 § Pp d y

(2 .5 )

Where f  = 2 Q sin <() is called the Coriolis parameter, by analogy to the geostrophic 
approximation eq .(2 .5) it is possible to define a horizontal velocity  field, 
Vg ร i Ug + j Vg, call the geostrophic wind, which satisfies eq.(2.5) identically. Thus 

in vectorial form

= k x - l - V Pp f (2.6)

And, so as to obtain prediction equations it is necessary to retain the acceleration 
(term A), then the horizontal momentum equations are

d R . f v  = _ ± d P  dt p dx (2.7)

d^ + fu  = - ± ^ .  dt p dy (2.8)

A similar analysis can be applied to the vertical component o f the momentum 
eq.(2.4), as shown in Table 2.2.
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Table 2.2 Scale analysis of the vertical momentum equation

A B c D E

z- Component dw -2 Ü U cos (j) น2 + V2 _ 1 ÔP - gdt a p dz

Scales uw foU บ 2 Po gL a pH
Magnitudes lO-5 10-1 10-3 103 103

( cm /  sec2 )

The scaling indicates that to a high degree of accuracy the gravity force must be 
exactly balance by the vertical component o f the pressure gradient force .

i - - p «  (2 , )

This condition o f hydrostatic balance provides an excellence approximation for the 
vertical dependence o f the pressure field in the real atmosphere. It is often useful to 
express the hydrostatic equation in terms o f the geopotential [0 (z) ] which is defined as 
the work required to raise a unit mass to height z from mean sea level.

If g is assumed to be a constant, then we obtain

(2. 10)

<S(z) = g z (2.11)
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The second fundamental law is the conservation of mass which may be expressed 
in mathematical form as follows.

The Continuity Equation

Where p is the density , and V is the velocity. Alternate forms are obtainable by 

combining local derivatives and using specific volume ( a  = 4 - )

Equation of State

The thermodynamic state of the atmosphere at any point is determined by the values 
o f pressure, temperature, and density (or specific volume) at that point. These field  
variables are related to each other by the equation of state for an ideal gas. Letting P, T, p, 
and a  denote pressure, temperature, density, and specific volume, respectively, we can 
express the equation o f state for dry air as

= - p v.v - v.vp (2. 12)

= ±çkx = v Vp dt a  dt (2.13)

P a  = R T  or p = p R T (2.14)

Where R is the gas constant for dry air ( R ะ= 287 J k g'l K 'l ) .
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Equation of Energy

The third fundamental conservation principle is the conservation of thermodynamic 
energy. For such a system the first law. states that the change in internal energy o f the 
system is equal to the difference between the heat added to the system and the work done 
by the system. Which can be written as

d[p (e + l ^ v  • v * )s v
dt -V.(p V) Sv + P g.v* 5v  + p q 8v (2.15)

Where
-V.(p V*) sv = 

p g. V* SV ร
q
g
e =

SV ร

The total rate of working by the pressure force.
The rate at which body forces do work on the mass element. 
The rate o f heating per unit mass 
The gravity.
The internal energy per unit mass 
The volume element.

With the aid o f the chain rule o f differentiation, we can rewrite eq.(2.15) as.

p f + p
d (l V .  V )
dt = - V .VP - PV. V - p g w  + p q (2 .1 6 )

This equation can be further simplified by noting that if we take the dot product o f  
V with the momentum eq.(2.1) we obtain (neglecting friction)

4  V
dt ะ= - V .V P - p g w (2.17)
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Subtracting eq.(2.17) from eq.(2.16) we obtain

pd£ = -P V . v* + p q  (2.18)

The term in eq.(2.16) which were eliminated by subtracting. Eq.(2.17) represents the 
balance of mechanical energy due to the motions of the fluid element; the remaining terms 
represent the thermal energy balance. Using the definition of geopotential we have

a พ = p = d o  s  6 dt dt

So that eq.(2.17) can be rewritten as

d ( l  V .  V + ๗  p --------------- L = - V .VP (2.19)

Which is referred to as the mechanical energy equation. Thus eq.(2.19) states that 
following the motion, the rate o f change o f mechanical energy per unit volume equals the 
rate at which work is done by the pressure gradient force. The thermal energy eq.(2.18) 
can be written in more familiar form as

JLv V* = = df*p p2 dt dt

And that for dry air the internal energy per unit mass is given by e = Cy T, where cv 
[=717 J k g 'l K“l] is the specific heat at constant volume. We then obtain

C v dT + p£dT = 4 (2 .20)

Which is the นsuai form of the energy equation.
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A. The Thermodynamic Energy Equation
The first law o f thermodynamics expresses the principle o f conservation of energy, 

which may be written in the simple form as eq.(2.20). After taking the total derivative 
o f the equation o f state eq.(2.14), substituting for in  eq.(2 .20) and using

Cp = Cv + R, where Cp [= 1004 J kg^K'1] is the specific heat at constant pressure, we 
can rewrite the first law of thermodynamics as.

Dividing through by T and again using the equation of state we obtain the entropy form of 
the first law of thermodynamics:

Eq.(2.22) gives the rate o f change o f entropy per unit mass following the motion for a 
thermodynamically reversible process.

B. Potential Temperature
For an idea gas undergoing an adiabatic process the first law o f thermodynamics 

can be written in the form

Integrating this expression from a state at pressure p and temperature T to a state in 
which the pressure is Ps [=1000 hPa] and the temperature is 0 , we obtain

(2.21)

r  din T R din p = q = ds
pdt dt T dt (2.22)

Cp din T - R din p = 0
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e  = T ( - y - ) 1R/Cp (2.23)

This relationship is referred to as Poisson's equation, and the temperature defined by 
eq.(2.23) is called the potential temperature. Taking the logarithm o f eq.(2.23) and 
differentiating, we find that

Cp^JL0 = . R dM P (2.24)

comparing eq.(2.22) and eq.(2.24), we obtain

^  -  £  ( 2 -2 5 )

Thus, for reversible dry adiabatic processes, fractional potential temperature changes are 
indeed proportional to entropy changes.

The Complete System of Equations 
#

For dry air, eq.(2.1), eq.(2.13), eq.(2.14), and eq.(2.21) comprise a complete 
system of six scalar equations and six unknowns P, a , T, น, V, and พ. The friction 
force Fr and diabatic heating q are assumed to be either known functions or expressible 
in terms of the other variable; hence, in principle, all future states can be determined by 
solution o f this system.

When moisture is included, modifications are necessary in the equation o f state 
and the first law o f thermodynamics; in addition, an equation is needed to express the 
conservation o f the water substance. For the present, only dry air will be considered.
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The Vorticity Equation

Vorticity is a vector field defined as the curl o f velocity. The absolute vorticity ๓3 
is given by the curl of the absolute velocity, while the relative vorticity ๓ is given by the 
curl o f the relative velocity.

ffla = V X Va , ๓ = V X V

However, in dynamic meteorology we are in general concerned only with the vertical 
components of absolute and relative vorticity.

Ti = k . ( V x V a |  5 C = k . ( V x V )  (2.26)

The difference between absolute and relative vorticity is given by the vertical 
component of the vorticity of the earth due to its rotation; or k . (v X Ve) = 2 Q sin <() 
= f . Thus we have T| = Ç + f, or using Cartesian coordinates.

Y _  d \  ฮน _ dV 3u
dx dy ’ ^ dx dy (2 .2 7 )

For motions o f synoptic scale, the vorticity equation can be derived using the 
approximate horizontal momentum eq.(2.7) and eq.(2.8). We differentiate the X 
component equation with respect to y and the y component equation with respect to X

d_
dy

du du 3u 3u -- ~  + u^-— + V“ - + W - ~ - f v  = - at ax ay dz P dx I (2.28)

d I dv dv dv dv . 1 0P•̂ — -ะ—+ u-^— + v-^— + พ-ะ— - fu  = -dx \ dt dx dy dz p dy (2.29)

019096
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Subtracting eq.(2.28) from eq.(2.29) and recall that t  = ^ - - ^ - ,  we obtain thedx dy
vorticity equation

dç aç ac d ç  .ฝ 3u dv \
a +uifc + vi*+wk  + tç + fHik+ay )

1 dw dv dw du + v df _  1 dp dp dp dp
\ dx dz dy dz dy p2| dx dy dy dx (2 .3 0 )

Using the fact that the Coriolis parameter depends only on y so that = V ^

and eq.(2.30) may be rewritten in the form

d( c + f) _  ( r  , f  ) I au 5v \  I d  พ 3v dw  du \ 
dt 1 3x + dy I \ 3x dz dy dz )

+ 1 [ap 9P
P2Ldx dy

dp dp 
dy dx (2 .3 1 )

Eq.(2.31) states that the rate o f change o f the absolute vorticity following the
motion is given by the sum of the three terms on the right, called the divergence term, the 
tilting or twisting term and the solenoidal term, respectively.
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