
CHAPTER in

WAVE MOTION IN THE ATMOSPHERE

There are a variety o f phenomena occurring which are extremely complex motions 
of the atmosphere. If we wish to gain physical insight into the fundamental nature o f  
atmospheric motion, it is necessary to isolate and analyze some simple type o f motion. In 
this chapter we will use a simple technique, the perturbation method, which is ideally suited 
for qualitative analysis o f the nature o f atmospheric motions to examine several types o f 
pure waves in the atmosphere.

Linearized Equations

In order to simplify the governing equation, we consider motion only in the x-z 
plane and assume uniformity in the lateral direction ( y ) and also neglect the rotation of the 
earth, friction, and diabatic heating. The Newtonian momentum equations, thermodynamic 
equation, and the continuity equation are then expressible in the form

* +cเ โ = 0

ร +° l +8 = 0

๙ ^  + P y d a  = 0 

a V . V - = 0

(3.1)
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where

a  = 1
p

Now these equations will be linearized by the so-called perturbation method. For 
simplicity assume a constant basic current นิ and basic state thermodynamic variables 
p{z) and ot(z) in hydrostatic balance ( a  dp /  dz = - g). Next, express the dependent 
variables as the sum of the basic or undisturbed value plus a perturbation.

น = นิ + น'
พ = 0 + พ’

_  1 (3.2)
P = P + P
a  = a  + a

Substitute eq.(3.2) into eq.(3.1) and neglect the products o f perturbation quantities, 
the resulting linear equations for the perturbation quantities are:

—-du' 1 — dp'
u d T ^  d 7 = 0

51 — dp + a-^r— d z

(dp1 -  dp'ๅ 1 -  fda' - d a ' 1 da)
(dt - g w + p Y(a “ + ï ï dx + w d f ) = 0

— Id น, dw 'i 5;- 
5 & + & 1' 82

da' . -  da'
dt + น dx

, d a- พ' = 0 dz

(3.3)

The symbols 81 and 82 will take on values o f either unity or zero according to
whether the terms are omitted or included.
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Sound Waves

Sound waves are compression waves that can be isolated by setting g = 0, 
51= 52 = 1, and by letting p and a  be constants. Now assume the perturbation 
quantities are harmonic in X , z, and t with constant coefficients as follows:

น' =  s e^M* + kz - vt) 5 พ , =  พ  e'(^x + kz - vt)

p' =  P e ' ( p + ๒ -vt) 5 a ’ =  A  e^px + kz-vt)
(3.4)

These are plane waves with (I and k as wave numbers in the X and z directions and with V 

as the frequency. The actual physical quantities are obtained by taking the real parts o f the 
solutions. Substituting eq.(3.4) into eq.(3.3) leads to a system of homogeneous algebraic 
equations for amplitudes ร, พ , p and A as follows:

(pu - v) ร + apP = 0

(pu - v) พ  + akP = 0 (3 5)

a (pu - v) P + Py(pu - v) A = 0 

pas + akw - (pu - v) A = 0

Which can be rewritten in matrix form as

■ (pïï-v) 0
0 (pu - v)
0 0

ap âk

i1 O ___
1

■ ร"
ak 0 พ

a(pu - v) P'tfpïï - v) P

O % 1___ _ A .
(3.6)



Nonzero values for the amplitudes ร, พ , p, and A, are possible only if the determinant o f
the set o f homogeneous equations vanishes. When the determinant is expanded the
following frequency equation is obtained.

a (p.u - v^qu - v)2 + ypa (k2 + |i2)] = 0 (3.7)

Then, we get

V = (IU (3.8a)

= (IÏÏ± (k2 + |I2)2 V y R T (3.8b)

The phase speed is the velocity o f the phase lines (qx + kz = constant) in the 
normal direction, and it is related to the frequency as follows:

Which is the well-known formula for the speed of sound.

Gravity Waves

Gravity waves are transverse oscillations which arise from the differential effect o f 
gravity on air parcels o f different density at the same level. Gravity waves can only exit in 
a medium which is stably stratified. In this section we will discuss some properties 
of atmospheric gravity waves.

(3.9)

setting นิ = 0 and using (3.8b) in (3.9) gives

= ±  V yR T (3.10)
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A. Internal Gravity Waves
To introduce the internal gravity waves, we consider a dry atmosphere which is 

governed by the hydrostatic and state equations:

0 = ไ ร | เ - 8

p a  = RT

For an isothermal atmosphere the solutions to these equations give

p = p(0)e_z/H , a = aioje2̂  (3.11)

where H = R T /  g is called the scale height. Under these conditions simple wave 
solutions o f the form:

น, = ร a 1/2ei(^x + kz - vt)
p '  =  p  a " 1 /2 e i ( n x  + k z-v t)

พ' =  พ  a 1/2e i(tix + kz - vt) 
a ' =  A  a 3/2e i(tlx + kz - vt) (3.12)

lead to the matrix equation

- V 0
0 - 8iV k + J _ ^

2 a  dz
0 1 1 'y R T d a  1. 

\ a d z ) V

M- k + J _ 3 “  
2 a  az 0

0 ' ร -
i g พ

y R T  V p
Ô2V -A -

(3.13)

With elements that are not functions o f position or time. Here นิ is omitted since it merely 
adds to the propagation in the X direction. Next substitute eq.(3.11) into eq.(3.13) and set 
the determinant equal to zero, which gives the following frequency equation:



Ô 1 Ô2V 4  - jy RT (k2 + ^ 2Ô1) + ^ [(2 ô2 - 1) Y  + 2 (l - 82)] 
+ g(y- l f e -  l)ik)v2 + p.2g2 (y -1) = 0
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The g terms in the V 2  coefficient may be dropped in comparison to y  RT k2 when the 
vertical wavelength 2ît /  k is smaller than 47tH, which is always the case. Also, the last 
term can be rewritten with the potential temperature, which gives

ô 1 ô 2v 4 -  y  R T  ( k 2  +  p i25 1) V 2  +  =  0  ( 3 .1 4 )
0

The four roots o f this equation correspond to a pair of sound waves and a pair o f 
internal gravity waves. The gravity waves can be excluded by setting g to zero, which 
give the same result as in the previous section. To isolate the gravity waves, take 82 = 0 
(  incompressibility )  and 8 1  =  1, which gives

jt2g 8 9

k2 + p2
(3.15)

Using eq.(3.9), the phase speed becomes

พ

If the depth o f the disturbance is large compared to the horizontal scale, (l2 »  k2, then, 
from eq.(3.15)

—\l/2
g d e

\ e 3 z /
V = ± (3.17)
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This is the Brunt-Vaisala frequency for essential vertical oscillations. On the other hand 
when k2 »  p2

and, the phase speed becomes

V = ±- gd9
\ 0 5 z /

\l/2

c ± JLk2
I \ l /2

le*

(3.18)

(3.19)

There are no meteorological phenomena in which sound waves play a significant 
dynamical role, and it is often desirable to eliminate them from the equations. It 
can be seen from eq.(3.14) that the sound waves are excluded if  the hydrostatic 
approximation ( 8 i = 0 ) or the incompressibility condition ( Ô2 = 0 ) is used.

B. Surface Gravity Waves
The surface gravity waves arise at the interface between two fluids of differing 

density. In order to examine the basic nature o f gravity waves, we consider the atmosphere 
which is incompressible and homogeneous, a' = 0, and an upper surface will exist that 
will be permitted to be free, the linearized equations of motion eq.(3.3) are as follows:

du -  du -=r- + u + dt dx
j_ dp'
p dx = 0 ( 3.20a )

5. /dw' — dw'\ 1 dp' _ „
5( f t +ïï& )+è l = 0 ( 3.20b )

( 3.20 c )
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The hydrostatic equation applies to the undisturbed flow

ôp
dz - p g

Integrating this equation from z = 0 to the top of the undisturbed fluid H gives

g p H  = Po (321)

Next assume the perturbation quantities to be of the harmonic form

น' = \j/(z) ev(x ' ct)
พ' = <b(z) e ^ x - ct)
—  = p(z) e‘t̂ x - ct)
p

Substituting eq.(3.22) into eq.(3.20) and simplifying leads to

(u-c)\|/{z) + p(z) = 0 

i|iô  (นิ - c) <D(z) + p'(z) = 0 

i|i\|/(z) + O' (z) = 0

(3.22)

(3.23)

Eliminating p(z) from the first two equations of eq.(3.23) and then further elimination of 
between the resulting equation and the last equation of eq.(3.23) gives

®"(*) ■ M2^ 2) = 0 (3.24)

We consider only in the hydrostatic case (ô = o) and, at the lower boundary, 
which is assumed to be horizontal, the vertical velocity vanishes, then we get

0(z) = az (3.25)
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The second boundary condition is that the total pressure o f a surface particle 
remains unchanged. Hence

d(p ±  p1) = 0
dt ‘ (3.26)

at the free surface. These may be approximated by linearizing and applying this condition 
at z = H . Thus,

¥ +ïït r +w' l  = 0 •(Z = H> <3-27>

Utilizing the solutions eq.(3.25) and eq.(3.23) gives the following results.

\|/(z) = a i / p
f X _  - i a (นิ - c)P(z) = ^ i p j

Substituting eq.(3.25) and eq.(3.28) into eq.(3.27) and simplifying gives

(3.28)

c = 'นิ ±  Vg H (3.29)

Waves traveling with the phase velocity given by eq(3.29) are generally referred to as 
Shallow-Water ". The quantity is called the shallow water wave speed. It is a valid 

approximation only for wave whose wavelengths are much greater than the depth o f the 
fluid.



Rossbv Waves

will be added to the equations of motion as follows:

The wave type which is of importance for large-scale atmospheric flow processes is
the R ossby wave. Rossby waves owe their existence to the variation o f the Coriolis force
with latitude, the so-called p effect. In,this subsection the effects o f the earth's rotation

! + u ! + v | - f v + ร ! = °  <3 -30a>

! + u ! + v ! + f u + ร ! = 0  (330b)

with the incompressibility assumption, the continuity equation is expressible in the form

3u 9v 9w _ „ 
dx + 3y + dz (3.31)

Integrating eq.(3.31) with respect to z gives

/9u 9 v \ ,  _  n
\ร ’+ 3y ) h + Wh ' w° = 0 (3.32)

In accordance with the kinematic boundary condition, พ must vanish at the lower boundary
(i.e. , พ0  = 0 ) . On the other hand, the vertical velocity พ = dz /  dt at the upper
boundary represents the rate at which the free surface is rising. Thus พ }1 = ^ ,  anddt
eq.(3.32) becomes
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Eq.(3.30) and eq.(3.33) constitute a system of three equations in three unknowns 
น, V, and h. These equations are called the shallow-water equations. Eq.(3.30) and 
eq.(3.33) are linearized about H and น, which is constant. These quantities are related 
geostrophically:

น = g 0 H  
f  dy (3.34)

Where H is the depth of a fluid o f constant density as before. If perturbations น, V, and h 
as well as f  are taken to be independent o f y, the following system o f equations results:

~/du _ 3 u \ ,  _3h _
5(a+ïï s h  * + i i  =  0

3v - 3 v  c _ A -=r-+u v ~  + fu  = 0 3t dx (3.35)

dh -  3h 3u 3H „■ -̂ + นิ + + v = 0 dt dx dx dy

Treating the coefficient H as a constant and assuming harmonic perturbations o f the form 
น0  ê M-x - ct) , Vo e1 x - ct) , and ho e ^ x - ct) transform eq.(3.35) into the following system:

8 (ÏÏ - c) i(iuo - f  Vo + gi|ih 0 = 0

fuo + i(i (นิ - c) Vo = 0

ipHuo + ^r~vo + i)i (นิ - c) ho = 0 dy

(3.36)

In order that eq.(3.36) will have nontrivial solutions for น0 , Vo, and h 0 the
following condition must be satisfied:
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8 (นิ - c) i(i - f
f  ijj, (นิ - c)
.11u  3H
i [ i U

gif1
0

i|i (นิ - c)
=  0

Expansion o f this determinant leads to a cubic frequency equation

8 (u -cp - |gH  + ̂ J ( u - c ) - ^ ^  = 0 (3.37)

This equation contains a pair of fast gravity wave solutions and one slow

meteorological solution. In order to isolate the fast solutions set น ิ =  0, - i ï  =  0 anddy
8 = 1, which gives

c = ± (3.38)

When f  = 0, eq.(3.38) reduces to the formula for shallow-water (gravity) waves. The 
slow meteorological solution to eq.(3.37) may be obtained by setting 8 = 0

c นิ +
( f / H ) ^

p2 + (f2/gH ) (3.39)

This expression can be written in terms of the basic state potential vorticity q = f  /  H , 

which gives

0q _  f  5H = 
dy H2 9y gH2

(3.40)

with eq.(3.40) the phase velocity can be written in the following form:

c = น- H 3 7
p2 + (f2/gH) (3.41)
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This solution is a type of Rossby wave and it gives phase speeds that are reasonable for
observed synoptic disturbances. The formula can be generalized if f  is allowed to vary
with latitude. In this case the potential vorticity gradient becomes

where (3 = df /  dy . This is an example o f the rule that Rossby waves propagate in the 
direction k  X Vq relative to the mean flow. The Rossby waves can be isolated in 
eq.(3.37) by setting 5 = 0 in eq.(3.36). This implies that the V component is 
geostrophic, that is,

However, the น component is not evaluated geostrophically when the disturbance 
fields vary in both X and y, it is necessary to replace eq.(3.30) with the vorticity and 
divergence equation in order to carry out the analysis of this section. It can be show in this 
case that the gravity waves will be eliminated when the time derivation o f the divergence is 
neglected in the divergence equation.

(3.43)
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