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ABSTRACT

4673004063: Petroleum Technology Program
Narumon Vipanurat: A Mixed Integer Linear Programming (MILP)
Model for Heat Exchanger Networks Retrofit
Thesis Advisors: Asst. Prof. Kitipat Siemanond, and
Prof. Miguel Bagajewicz, 193 pp. ISBN 974-9651-83-9
Keywords: Retrofit / Heat Exchanger Networks/ Mixed Integer Linear

Programming

Today all industries must deal with volatile crude oil prices and additional
investments are required to meet more stringent environmental regulations.
Therefore, optimization of energy usage through more efficient heat exchanger
network retrofit and heat integration with the cost reduction are playing an extensive
attraction. The grass-root and retrofit designs of heat exchanger network for process
industries are addressed in this paper. A strategy is proposed as the MILP
formulation based on the special transshipment structure concept. This methodology
can generate networks where utility cost, heat exchanger areas and selection of
matches are optimized simultaneously. In addition, the simplicity in model
assumption, non-isothermal mixing, comes with handling constraints such as stream
splitting and allowed/forbidden matches which bring the model structure more
convenient to use.

The application examples presented here show that the automatic rigorous
MILP model can ke successfully applied to the complex hot and cold process
streams which provides a profitable network for both grass-root design and retrofit,
24.06% total cost saving in the case study of crude distillation unit. This approach
also gives a clear advantage over Hypertargets method (Briones, 1999) with more
saving about 118 k$/yr of total cost. Finally, in special scenario, relocation topology
can be used for further reduction in total cost. The MILP also gives the highest
annual cost saving for retrofit HEN by comparing with the approaches of Ciric et al.

(1989) and Kin-Lung et al. (2000).
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ABBREVIATIONS

Sets

B = {07) Imore than one heat exchanger unit is permitted between hot

stream | and cold stream] }

CZ = {J Ij is a cold stream present in zone z }
ci = {J \jis a cold stream present in temperature interval in zone z }
CUZ = {J |J is a heating utility present in zone z } (C U:czC :)

H z= {/ 17is a hot stream present in zone z }

H m ={i Ii is a hot stream present in temperature interval Min zone z }
HUZ - {| || is a heating utility present in zone z } (HUza H Z)

Mz = {m 1Mis a temperature interval in zone z }

Mz ={ MiMis a temperature interval belonging to zone z, in which hot

stream i is presented }

={ m Imis the starting temperature interval for hot stream i }
m{ ={ M1Mis the final temperature interval for hot stream I }

Nj ={ | is atemperature interval belonging to zone z, in which cold

stream] is presented }

NIH = {i Inon-isothermal mixing is permitted for hot stream i }
Nl( = {J Inon-isothenrial mixing is permitted for cold streamj }
1 ={ | s the starting temperature interval for cold streamj }
! - { | s the final temperature interval for cold streamj }
p = {07) Iheat exchange match between hot stream iand cold streamj

is permitted }
pII]. = {J I heat transfer from hot stream | at interval M to cold stream] is

permitted }



Parameters

AlL

A-Tk

N/max

A mm

AA | na

A M a x

Cm

cji

cl

CJ

XVI

- {/ I'heat transfer from hot stream i to cold streamj at interval s

permitted }

= {i Isplits are allowed for hot stream i }

= {J Isplits are allowed for cold streamj }

= {z| z is a heat transfer zone}

Area of an existing exchanger between streams i andj in zone z prior
to retrofit
Area of the £-th existing exchanger between streams i andj in zone z

prior to retrofit

Maximum shell area for an exchanger matching hot stream i and cold

stream]j in zone z

Maximum area for a new heat exchanger matching hot stream i and

cold streamj in zone z

Maximum area addition for an existing heat exchanger matching hot
stream Mand cold streamj in zone z

m u m area addition for the /r-th existing heat exchanger matching
hot stream i and cold streamj in zone z

Heat capacity of hot stream | at temperature interval m

Heat capacity of cold streamj at temperature interval

Cost of heating utility i

Cost ofcooling utility]

Fixed charge cost for a heat exchanger matching hot stream i and cold

stream j



HHEAD mi1

Kpmax

KL

XVl

Variable cost for a new heat exchanger matching hot stream i and cold
stream /
Area addition cost for an existing heat exchanger matching hot stream

i and cold stream /

Temperature difference between interval m of hot stream i and

interval of cold streamj at cold end

Flow rate of hot process stream i

Flow rate of cold process streamj

Upper bound for the flow rate of heating utility i

Upper bound for the flow rate of cooling utilityj

Film heat transfer coefficient for hot stream iin interval m

Film heat transfer coefficient for cold streamj in interval

Enthalpy change for hot stream Mat interval mofzone z

Enthalpy change for cold streamj at interval ofzonez

Temperature difference between interval m of hot stream i and

interval of cold streamj at hot end

Maximum number of heat exchangers allowed between hot stream /
and cold streamj in zone z when (&) G B

Number of existing heat exchangers between hot stream i and cold
streamj in zone z when (/j) G B

Number of existing heat exchangers in the original network

Lower bound for heat transfer from hot stream / at interval m to cold

stream/

Lower bound for heat transfer from hot stream i to cold stream j at

interval



TI
AT1
AT1

AT II"

Variables

Ad

Ak

Al

AA dk

K]

Xv1i1l

Upper temperature of interval m
Lower temperature of interval
Upper temperature of interval
Lower temperature of interval
Temperature range of stream i
Temperature range of stream /

Mean logarithmic temperature difference between intervals and

Number of existing heat exchangers between hot stream i and cold
streamj in zone z
Maximum number of new heat exchangers allowed for the retrofit

design

Total required area for a match between hot stream i and cold stream j
in zone z

Area of the A-th existing heat exchanger between hot stream i and cold
streamj in zone z after retrofit

Area of a new heat exchanger between hot stream i and cold stream j
in zone z

Area addition for an existing heat exchanger between hot stream i and
cold streamj in zone z
Area addition for the A-th existing heat exchanger between hot stream

i and cold streamj in zone z
Determines the beginning of a heat exchanger at interval m of zone z

for hot stream / with cold stream j. Defined as binary when (@) eB

and as continuous when (/j) gB.



Determines the beginning of a heat exchanger at interval of zone z
for cold stream j with hot stream i. Defined as binary when (ij) eB
and as continuous when (ij) <tB.

Determines the end of a heat exchanger at interval mof zone z for hot

stream i with cold stream j. Defined as binary when (ij) eB and as
continuous when (ij) <B.

Determines the end of a heat exchanger at interval ofzone z for cold
stream j with hot stream i. Defined as binary when (ij) eB and as
continuous when (ij) <£B.

Number of existing heat exchangers between hot stream i and cold
streamj in zone z when (ij) eB

Heat transfer from hot stream i at interval m to cold stream j at
interval in zone z

Non-isothermal mixing heat transfer for hot stream i between intervals
mand in zone z

Non-isothermal mixing heat transfer for hot stream i between intervals
mand in zone z

Heat transfer from hot stream i at interval mto cold streamj in zone z
Heat transfer to cold streamj atinterval from hot streamy in zone z

Auxiliary continuous variable utilized to compute the hot side heat
load of each heat exchanger when several exchangers exist between
hot stream i and cold streamj in zone z

Auxiliary continuous variable utilized to compute the cold side heat
load of each heat exchanger when several exchangers exist between
hot stream i and cold streamj in zone z

Auxiliary continuous variable utilized to compute the area of

individual heat exchangers between hot stream i with cold streamj in

zone z when (ij) e B.



Number of heat exchangers between hot stream / and cold stream in

Z0ne z
Auxiliary continuous variable equals to zero when an exchanger ends

at interval m for hot stream i and at interval  for cold streamj. A
value of one corresponds to all other cases.

Auxiliary binary variable that determines whether the £-th between
hot stream i with cold stream] in zone z exists at interval m of when

()eB

Determines whether heat is being transferred from hot stream i at

interval m to cold streamj. Defined as binary when (i.j)*B and as
continuous when (i j) e B.
Determines whether heat is being transferred from hot stream i to cold

stream j at interval . Defined as binary when (/) £B and as
continuous when (i,j) e B.

Auxiliary binary variable used for heat exchanger relocation.
Auxiliary binary variable that determines whether the £-th original
heat exchanger of zone z has is serving the match between hot stream
| and cold streamj, when zj) ¢B.

Auxiliary binary variable used for heat exchanger relocation. This
variable determines whether the th original heat exchanger of zone z
has is serving the h-th exchanger streams i andj, when (z}) ¢ B.
Auxiliary continuous variable equal to one when heat transfer from
interval m of hot stream i to cold streamj occurs in zone z and it does
not correspond to the beginning nor the ending of a heat exchanger. A
value of zero corresponds to all other cases.

Auxiliary continuous variable equal to one when heat transfer from
hot stream i to interval ~ of cold streamj occurs in zone z and it does

not correspond to the beginning nor the ending of a heat exchanger. A
value of zero corresponds to all other cases.
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