REFERENCES - Attwood, J., Philip, M., Hulme, A. and Williams, G. and et. al, (2006) The effects of ageing by ultraviolet degradation of recycled polyolefin blends, <u>Polymer</u> Degradation and Stability, 91, 3407-3415 - C. Sammon a, J.Yarwood and N. Everall, (2000) An FT-IR study of the effect of hydrolytic degradation on the structure of thin PET films, <u>Polymer</u> <u>Degradation</u> and Stability, 67, 149-158 - Cardlogix Corporation. "Smart Card Overview." Smart Card Basics. 2010. 15 May 2010 http://www.smartcardbasics.com/overview.html - Cardzgroup Limited. "PVC Cards." Cardzgroup. 2008. 15 May 2010 < http://www.cardzgroup.com/products.html > - Eclipse Laboratories, Inc. "Card testing." Card standards. 5 October 2010 http://www.card-testing.com/cardstandards.html > - Emmanuelle, M. and Jean-Louis, L. (1995) Comparison of two instruments for accelerated weathering tests on plasticized. <u>Polymer Degradation and Stability</u>, 51, 77-81 - Goiato, M.C., Moreno, A. Santos D. M. and et al. (2010) Effect of polymerization and accelerated aging on iris color stability of ocular prosthesis, <u>Contact Lens and Anterior Eye</u>, 33(5), 215–218 - HongQian, K.L. (2007). Network smart card review and analysis. <u>Computer Networks</u>, 51, 2234–2248 - Identification Cards Integrated Circuit(s) Cards with contacts, ISO 7816 standards. - Identification Cards The Identification Cards, ISO 10373 standards. - Identification cards Cards service life (Application profiles and criteria), ISO/IEC 24789 standards. - Ito, M. and Nagai, K. (2007) Analysis of degradation mechanism of plasticized PVC under artificial aging conditions, <u>Polymer Degradation and Stability</u>, 92, 260-270 - Katherine, M.S., Chris, C.J., and Joseph, D. (2004) Smart Cards, <u>Advances in Computers</u>, 60, 147-192 - Khushnuma Irani. "Advantages of Smart Card Technology." Buzzle. 2010. 15 May 2010http://www.buzzle.com/articles/advantages-of-smart-card-technology.html - Ranby BG, Rabek JF. (1975) Polymer Photodegradation. London, New York: Wiley - Tavares, A.C., Gulmine, J.V., Lepienski, C.M., and Akcelrud, L. (2003) The effect of accelerated aging on the surface mechanical properties of polyethylene, Polymer Degradation and Stability, 81, 367–373 - Tjandraatmadja, G.F., L.S. Burn and M.C. Jollands. (2002) Evaluation of commercial polycarbonate optical properties after QUV-A radiation—the role of humidity in photodegradation. <u>Polymer Degradation and Stability</u>,78, 435-448 - Vishu Shah, (2006) <u>Handbook of Plastics Testing Technology 3rd Edition</u>, Wiley-Interscience, Kindle Edition, 142-165 # **APPENDICES** Appendix A The technical data of commercial material expected life time for 10 years (in normal condition) Table A1 The technical data of PETG | Properties | | Test methods (ASTM/ISO) | Condition | |---------------------------------|------|-------------------------|-------------------| | Tensile properties | | * | | | Tensile strength (MPa) | - | D-822 | - At 25°C. | | Modulus (MPa) | - | D-822 | - Using speed at | | | | | 50 mm/min | | Optical properties | | | | | Gloss retention (%) | - | | - At 60° | | Color difference (ΔE) | - | ASTM D 65 | - At angle 45° | | Temperature | | | | | Brittleness temperature | - | | - Storage in | | (°C) | | | freezer at -35°C | | | | | - Storage in over | | | | | at 50°C | | Functional checking | | | | | Each testing step | Pass | Modify ISO/IEC 24789-1* | | | After finish testing | Pass | Modify ISO/IEC 24789-1* | | | Chemical resistance | | | | | (15 min/each solution) | | | | | Salt | Good | | | | Acid | Good | ISO/IEC 10373-1 | | | Alkaline | Good | | | | Alcohol | Good | | | | Fuel B | Good | | | Table A2 The technical data of PC-STD | Properties | | Test methods (ASTM/ISO) | Condition | |-------------------------|-----------|-------------------------|----------------------| | Tensile properties | | | | | Tensile strength (MPa) | > 63.37 | D-822 | - At 25°C. | | Modulus (MPa) | > 1047.26 | D-822 | - Using speed at | | | | | 50 mm/min | | Optical properties | | | | | Gloss retention (%) | < 83.65 | | - At 60° | | Color difference (ΔE) | < 4.77 | ASTM D 65 | - At angle 45° | | Temperature | | | | | Brittleness temperature | <- 35 | | - Storage in freezer | | (°C) | | | at -35°C | | 100 | | | - Storage in oven | | 2. | | | at 50°C | | Temperature range (°C) | -40 - 110 | | | | Functional checking | | | | | Each testing step | Pass | Modify ISO/IE | C 24789-1* | | After finish testing | Pass | Modify ISO/IE | C 24789-1* | | Warpage (mm) | < 0.80 | | | | Chemical resistance | | | | | (15 min/each solution) | | | | | Salt | Good | | | | Acid | Good | | | | Alkaline | Good | ISO/IEC 10373- | 1 | | Fuel B | Good | | | | Alcohol | Good | | | Table A3 The technical data of PVC | Properties | | Test methods (ASTM/ISO) | Condition | |---------------------------------|--------------------|-------------------------|-------------------| | Tensile properties | | | | | Tensile strength (MPa) | > 48.68 | D-822 | - At 25°C. | | Modulus (MPa) | > 1065.80 | D 022 | - Using speed at | | | á. | D-822 | 50 mm/min | | Optical properties | | | | | Gloss retention (%) | < 80.09 | | - At 60° | | Color difference (ΔE) | < 9.03 | ASTM D 65 | - At angle 45° | | Temperature | | | | | Brittleness temperature | <- 35 | | - Storage in | | (°C) | - | | freezer at -35°C | | | ÷. | | - Storage in oven | | | | | at 50°C | | Temperature range (°C) | -40 - 110 · | | | | Functional checking | | | | | Each testing step | Pass | Modify ISO/IEC | 24789-1* | | After finish testing | Pass | Modify ISO/IEC | 24789-1* | | Warpage (mm) | < 0.93 | | | | Chemical resistance | | | | | (15 min/each solution) | | | | | Salt | Good | | | | Acid | Good | | | | Alkaline | Good | ISO/IEC 10373-1 | | | Fuel B | Good | | | | Alcohol | Good | | | # Appendix B The technical data of new multi-layer material expected life time for 10 years (in normal condition) Table B1 The technical data of PC-Teslin | Properties | | Test methods | Condition | |-------------------------|-----------|----------------|----------------------| | | | (ASTM/ISO) | | | Tensile properties | | | , r . | | Tensile strength (MPa) | > 32.43 | D-822 | - At 25°C. | | Modulus (MPa) | > 714.38 | D-822 | - Using speed at | | | | | 50 mm/min | | Optical properties | | | Ä | | Gloss retention (%) | < 78.61 | | - At 60° | | Color difference (ΔE) | < 5.20 | ASTM D 65 | - At angle 45° | | Temperature | | | ė, | | Brittleness temperature | <- 35 | | - Storage in freezer | | (°C) | | | at -35°C | | | | | - Storage in oven | | | | | at 50°C | | Temperature range (°C) | -40 - 110 | | | | Functional checking | | | | | Each testing step | Pass | Modify ISO/IE | C 24789-1* | | After finish testing | Pass | Modify ISO/IE | C 24789-1* | | Warpage (mm) | < 0.93 | | | | Chemical resistance | | | | | (15 min/each solution) | | | | | Salt | Good | | | | Acid | Good | | | | Alkaline | Good | ISO/IEC 10373- | 1 | | Fuel B | Good | | | | Alcohol | Poor | | | Table B2 The technical data of PC-DDI | Properties | | Test methods (ASTM/ISO) | Condition | |---------------------------------|-----------|-------------------------|-------------------| | Tensile properties | | | | | Tensile strength (MPa) | > 63.68 | D-822 | - At 25°C. | | Modulus (MPa) | > 1125.50 | D-822 | - Using speed at | | | | | 50 mm/min | | Optical properties | | | | | Gloss retention (%) | < 88.48 | | - At 60° | | Color difference (ΔE) | < 3.86 | ASTM D 65 | - At angle 45° | | Temperature | | | | | Brittleness temperature | <- 35 | | - Storage in | | (°C) | | | freezer at -35°C | | | | | - Storage in oven | | | | | at 50°C | | Temperature range (°C) | -40 - 110 | | | | Functional checking | | | | | Each testing step | Pass | Modify ISO/IEC | 24789-1* | | After finish testing | Pass | Modify ISO/IEC | 24789-1* | | Warpage (mm) | < 0.98 | | | | Chemical resistance | | | | | (15 min/each solution) | | | | | Salt | Good | | | | Acid | Good | | | | Alkaline | Good | ISO/IEC 10373-1 | | | Fuel B | Good | | | | Alcohol | Good | | | #### **CURRICULUM VITAE** Name: Miss Rattanapatum Piladaeng Date of Birth: May 4, 1987 Nationality: Thai ## **University Education:** 2005-2009 Bachelor Degree of Science (Polymer Science and Technology), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand ## Working Experience: 2008 Position: Internship Student Company name: Innovation Group Thailand Co. Ltd. ## **Proceedings:** 1. Piladaeng, R.; and Manuspiya, H. (2011, January 5-7) Determination of smart card's service life time. <u>Proceedings of the Pure and Applied Chemistry</u> International Conference (PACCON 2011), Bangkok, Thailand. Piladaeng, R.; and Manuspiya, H. (2011, April 26) Material engineering for active card and the study of service lifetime. <u>Proceedings of the 2nd Research Symposium on Petroleum, Petrochemicals, and Advanced materials and the 17th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand. </u> ### **Presentation:** Piladaeng, R.; and Manuspiya, H. (2011, April 26) Material engineering for active card and the study of service lifetime. Poster presented at the 2nd Research Symposium on Petroleum, Petrochemicals, and Advanced materials and the 17th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.