DEVELOPMENT OF POROUS HYDROXYAPATITE PARTICLES AS CARRIERS OF PROTEINS IN A POLYCAPROLACTONE SCAFFOLD FOR BONE TISSUE ENGINEERING

Sujittra Chaisuntharanon

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

and Case Western Reserve University

2010

Thesis Title:

Development of Porous Hydroxyapatite Particles as Carriers of

Proteins in a Polycaprolactone Scaffold for Bone Tissue

Engineering

By:

Sujittra Chaisuntharanon

Program:

Polymer Science

Thesis Advisors:

Prof. Pitt Supaphol

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof./Pomthong Malakul)

Thesis Committee:

(Prof. Pitt Supaphol)

(Assoc. Prof. Prasit Pavasant)

Pracit Por-

(Assoc. Prof. Nuanchawee Wetprasit)

Nuarchamu hutpragit

(Asst. Prof. Hathaikarn Manuspiya)

(Dr. Neeranut Kuanchertchoo)

Neeranut K.

ABSTRACT

5172034063: Polymer Science Program

Sujittra Chaisuntharanon: Development of Porous Hydroxyapatite

Particles as Carriers of Proteins in Polycaprolactone Scaffold for

Bone Tissue Engineering.

Thesis Advisor: Prof. Pitt Supaphol, Assoc. Prof. Prasit Pavasant and

Dr. Neeranut Kuanchertchoo 100 pp.

Keywords: Hydroxyapatite/ Bone scaffolds/ Controlled release/ Gelatin/

Ovalbumin/ Bovine serum albumin/ Crude Bone Protein/

Polycaprolactone

This study aimed to develop the porous hydroxyapatite (HAp) particles as a controlled release carrier of proteins were embedded in polycaprolactone (PCL) to fabricate porous HAp-PCL scaffolds. Proteins (Ovalbumin, Gelatin type B, Bovine serum albumin and Crude bone protein from pork bone) had been entrapped within the HAp particles. HAp particles were synthesized by coprecipitation technique from dicalcium phosphate dihydrate (CaHPO₄·2H₂O, DCPD) and calcium carbonate (CaCO₃). Incorporation of proteins was accomplished during the coprecipitation of the two reactants. The porous HAp-PCL scaffolds were prepared by solvent casting/particulate leaching method of salt particle 400 µm at 30 wt%. The controlled release of proteins from HAp particles and the HAp-PCL scaffolds was influenced by ionic interaction between molecules of proteins and HAp and investigated by UV-Visible spectrophotometry. Profile release of CBP was the greatest from HAp particle and HAp-PCL scaffold. The potential for use of protein-loaded HAp-PCL as bone scaffolds was assessed by mouse-calvaria derived pre-osteoblastic cells, MC3T3-E1. Cell attachment, cell proliferation, and alkaline phosphatate (ALP) activity on protein-HAp PCL scaffolds were not significant difference due to no effect from proteins. For mineralization, the quantification of calcium deposition was observed the highest intensity on CBP/HAp-PCL scaffold. It can say that crude bone protein/HAp-PCL scaffold was suitable for bone tissue engineering.

บทคัดย่อ

สุจิตรา ชัยสุนทรานนท์ : การพัฒนาไฮครอกซีอะพาไทต์สำหรับพาโปรตีนในโครงเลี้ยง เซลล์พอลิคาโปรแลคโทนสำหรับช่อมสร้างเนื้อเยื่อกระคูก (Development of Hydroxyapatite Porous Particle as carrier of Proteins in Polycaprolactone Scaffold for Bone Tissue Engineering)

อ. ที่ปรึกษา : ศ. คร. พิชญ์ ศุภผล รศ. คร. ประสิทธิ์ ภวสันต์ และ คร.ณีรนุช ควรเชิคชู 100 หน้า

การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาไฮครอกซีอะพาไทต์ให้มีคุณสมบัติเป็นตัวพา โปรตีนที่ดี และฝั่งตัวอยู่ในพอลิคาโปรแลคโทน เพื่อผลิตเป็นวัสคุโครงร่างเลี้ยงเซลล์ที่ทำจากไฮ ครอกซือะพาไทต์-พอลิคาโปรแลคโทน โปรตีน โอวัลบูมิน เจลลาตินชนิคบี โบไวน์ซีรัมอัลบมิน และโปรคืนสกัคจากกระดูกหมู จะถูกกักเก็บภายในไฮครอกซือะพาไทต์ โคยไฮครอกซือะพาไทต์ ถูกสังเคราะห์ผ่านกระบวนการตกตะกอนร่วมระหว่างไดแคลเซียมฟอสเฟตไดไฮเครท (DCPD) และแคลเซียมคาร์บอเนต (CaCO₄) โดยโปรตีนจะถูกกักเก็บภายในไฮครอกซือะพาไทต์ในระหว่าง การตกตะกอนร่วมของสารตั้งต้นทั้งสองตัว หลังจากนั้นทำการขึ้นรูปเป็นวัสคุโครงร่างเลี้ยงเซลล์ ไฮครอกซีอะพาไทต์-พอลิคาโปรแลคโทน โคยใช้อนภาคเกลือเป็นตัวสร้างร การปลดปล่อย และจากโครงเลี้ยงเซลล์ไฮครอกซื้อะพาไทต์-พอลิคาโปรแลก โปรตีนจากไฮครอกซีอะพาไทต์ โทน มีผลร่วมกันระหว่างการเกิดปฏิกิริยาอิออนิกระหว่างโมเลกลของโปรตีนกับไฮครอกซือะพา ไทต์ โดยวิธี UV-Visible spectrophotometry พบว่าโปรตีนสกัดจากกระดูกหมูแสดงผลการ ปลดปล่อยจากไฮครอกซื้อะพาไทต์ และไฮครอกซื้อะพาไทต์-พอลิคาโปรแลคโทนได้ดีที่สด การศึกษาประสิทธิภาพของการใช้โครงร่างเลี้ยงเซลล์ไฮครอกซีอะพาไทต์-พอลิคาโปรแลคโทน ด้วยเซลล์จากกระดูกหนู (MC3T3-E1) พบว่า การยึดเกาะของเซลล์ การขยายจำนวนของเซลล์ และ ปริมาณเอนไซม์เอแอลพีได้ผลที่ไม่แตกต่างกันในแต่ละโครงร่างเลี้ยงเซลล์เนื่องจากยังไม่เห็นผล ของการปลดปล่อยโปรตีน สำหรับการหาปริมาณแร่ธาตุแคลเซียมที่เกิดขึ้นในแต่ละโครงร่างเลี้ยง เซลล์พบว่าโปรตีนสกัดจากกระคูกหมูสามารถเร่งการทำงานของเซลล์กระคูกทำให้โปรตีนสกัด จากกระคูกหมูในไฮครอกซื้อะพาไทต์-พอลิคาโปรแลคโทนได้ปริมาณแคลเซียมสูงสุดอย่างเห็น ไค้ชัคเมื่อเทียบกับ โครงเถี้ยงเซลล์ที่ไม่มีโปรตีนในไฮครอกซื้อะพาไท จึงอาจกล่าวได้ว่าโปรตีน สกัดจากกระดูกหมูที่ฝังตัวในไฮครอกซือะพาไทต์-พอลิกาโปรแลกโทน เหมาะสำหรับเป็นวัสคุที่ ใช้ซ่อมสร้างเนื้อเยื่อกระคูก

ACKNOWLEDGEMENTS

The author would like to thank Prof. Pitt Supaphol, Assoc. Prof. Prasit Pavasant, Assoc. Prof. Nuanchawee Wetprasit, Asst. Prof. Hathaikarn Manuspiya and Dr. Neeranut Kuanchertchoo for their sincere assistances. They have provided the very useful guidance and the great encouragement throughout this research.

The author also thanks to all of colleagues, staff and teachers in the Petroleum and Petrochemical college, Chulalongkorn University who helps greatly during studies.

The author is grateful for funding of the thesis work provided by Petroleum and Petrochemical college; and Center for petroleum, Petrochemicals, and Advanced Materials.

The author wishes to give thanks to all of friends in Pitt Supaphol group's student for helps and suggestions.

Finally, the author would like to express appreciation for supporting scholarship and caring a great love of family especially mother, father, brother, and grandmother.

TABLE OF CONTENTS

			PAGE
	Title Page		i
	Abstract (in English)		iii
	Abstract (in Thai)		iv
	Acknowledgements		v
	Table of Contents	31.	vi
	List of Tables	*	viii
	List of Figures	7.2	ix
CHAPTER		3	
I	INTRODUCTION	- 4	1
		**	
II	LITERATURE REVIEW		2
		p+.	
III	EXPERIMENTAL	144	20
IV	DEVELOPMENT OF POROUS HYD	ROXYAPATITE	
	PARTICLES AS CARRIERS OF PRO	OTEINS FOR BONE	
	TISSUE ENGINEERING		
	4.1 Abstract		28
	4.2 Introduction		28
	4.3 Experiments		29
	4.4 Results and Discussion		33
	4.5 Conclusions		47
	4.6 Acknowledgements		47
	4.7 References		48

CHAP	ΓER	PAGE
V	DEVELOPMENT OF POROUS HYDROXYAPATITE	
	PARTICLES AS CARRIERS OF PROTEINS IN A	
	POLYCAPROLACTONE SCAFFOLD FOR BONE TISSUE	
	ENGINEERING	
	5.1 Abstract	50
	5.2 Introduction	50
	5.3 Experiments	51
	5.4 Results and Discussion	57
	5.5 Conclusions	71
	5.6 Acknowledgements	72
	5.7 References	72
VI	CONCLUSIONS AND RECOMMENDATIONS	74
	REFERENCES	76
	APPENDICES	
	Appendix A Electrical conductivity of proteins-loaded	
	Hydroxyapatite powder	83
	Appendix B Proteins release from HAp powder and HAp-PCL	
	scaffold	84
	Appendix C Particle size distribution of protein-loaded HAp	87
	Appendix D Characterization of Polyscprolactone scaffold	88
	Appendix E Experimental data of water absorption	89
	Appendix F Experimental data of cell culture studies	90
	CURRICULUM VITAE	100

LIST OF TABLES

TABLE		PAGE
2.1	Abbreviations of CaP-compounds with corresponding	14
	chemical formula and Ca/P ratio	
2.2	Comparison of amino acid between albumin	15
4.1	The different crystallite size of calcined and uncalcined HAp	37
4.2	SEM of proteins-loaded HAp powder	40
4.3	BET surface area and pore size of the sample calcined	44
5.1	Density, porosity, pore volume and pore size of PCL scaffold	58
5.2	Formazan crystal within TCPS, PCL, HAp-PCL scaffold	
	were eluted with DMSO after cell seeding 6 hour	63
5.3	Formazan crystals within scaffolds after using eluting dye	
	(DMSO) after cell seeding 1 day	65
5.4	Selected SEM images of MC3T3-E1 after seeding on TCPS,	
	PCL, OVA/HAp-PCL, Gelatin type B/HAp-PCL, BSA/HAp-	
	PCL, and CBP/HAp-PCL scaffolds at 2, 4, and 6 h	66
5.5	Selected SEM images of MC3T3-E1 after seeding on TCPS,	
	PCL, HAp-PCL, OVA/HAp-PCL, Gelatin type B/HAp-PCL,	
	and BSA/HAp-PCL scaffolds at 1, 2, and 3 days	67
	Alizarin Red S staining for mineralization assessment of	
5.6	MC3T3-E1 on 21 days after being cultured on the surfaces	
	of neat PCL, HAp-PCL, HAp/OVA-PCL, HAp/Gelatin-PCL,	
	HAp/BSA-PCL, and HAp/CBP-PCL	70

LIST OF FIGURES

FIGURE		PAGE
2.1	Release from physically entangled, degradable, and	8
	swelling	
2.2	Production methods of polymer microsphere	9
2.3	Schematic illustration of the unit cell from a crystal of	11
	HAp	
2.4	Process of gelatin production	16
2.5	Chemical structure of gelatin	16
2.6	The structure of polycaprolactone	19
4.1	TGA-DTG curves of proteins-loaded hydroxyapatite	34
4.2	XRD pattern of HAp powders	36
4.3	Schematic illustration of the protein-medicated	
	crystallization of HAp crystals with positive charges	37
4.4	The FTIR spectra of HAp powders	38
4.5	TEM micrographs of proteins-loaded HAp powder	41
4.6	EDS spectrum of the biomimetic apatite layer deposited.	43
4.7	Average particle size distribution of Hydroxyapatite	44
4.8	Encapsulating efficiency of protein-loaded hydroxyapatite	
	in phosphate buffer saline solution	46
4.9	Loading capacity of protein-loaded HAp (LC) in	
	phosphate buffer saline solution	46
5.2	SEM images illustrate microstructure of the scaffolds on	
	the surface.	57
5.3	Water absorption capability of the PCL scaffolds in 0.1 M	
	PBS at room temperature within 3 days.	59
5.4	Release profile from protein-loaded HAp-PCL scaffold in	
	10 % MEM.	60
5.5	Direct cytotoxicity evaluation of proteins based on the	

FIGURE		PAGE
	viability of MC3T3-E1.	61
5.6	Indirect cytotoxicity evaluation of protein-loaded HAp	
	based	61
5.7	on the viability of MC3T3-E1.	
	Indirect cytotoxic evaluation of HAp-PCL scaffold based	62
5.8	on the viability of MC3T3-E1.	
	Attachment of MC3T3-E1 on control TCPS, PCL,	63
5.9	HAp/OVA-PCL, HAp/gelatin B-PCL, and HAp/BSA-	
	PCL	64
	Proliferation of MC3T3-E1 on TCPS, PCL, HAp/OVA-	
	PCL, HAp/gelatin B-PCL, and HAp/BSA-PCL.	
5.10	ALP activity of MC3T3-E1 cultured on TCP, PCL, HAp-	
	PCL, OVA/HAp-PCL, Gelatin B/HAp-PCL, BSA/HAp-	68
5.11	PCL and CBP/HAp-PCL porous scaffolds after 3 and	
	7days in culture.	69
	ALP activity of MC3T3-E1 cultured with 2%MEM, OVA,	
	Gelatin type B, BSA and CBP after 5 and 7 days in culture	
	Different absorbance of alizalin red S from MC3T3-E1	71
	on TCPS, PCL, HAp-PCL, proteins-loaded HAp-PCL at	
	21 days.	