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ABSTRACT

4982004063:  Polymer Science Program
Tassawuth Pojanavaraphan: Layered silicates (sodium
montmorillonite) hased elastomer nanocomposites.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan (Thal
Advisor) and Prof. David A. Schiraldi (Overseas Advisor)
Keywords: ~ Admicellar polymerization/ Clay aerogel/ Freeze-drying/ Natural
Rubber/ Polypyrrole

Two novel techniques known as freeze-drying and electrolytic admicellar
polymerization were herein conducted for fabricating the natural rubber (NR)-based
composites. These approaches were considered to be ideal for creating various types
of NR-based materials that stood out as good candidates for a wide variety of
applications ranging from thermal insulation till actuator or sensor. By utilizing a
freeze-drying, the granular appearance of pristine clay (sodium montmorillonite, Na+
MMT) was converted into a monolith ‘house of cards’ structure with a bulk density
of typically 0.05 g cm'3. This was originated from the parallel alignment of clay
bundles along the ice crystal through electrostatic interactions between edge and face
(EF) of clay particles. As the neat clay aerogel was relatively fragile, natural rubber
(NR) latex was then introduced, followed by the cross-linking process to increase the
materials structural integrity without harming the bulk density and microstructure.
This reinforcement was illustrated by a good connectivity between each single sheet
through a web of the NR matrix, thus promoting the load transfer under the applied
stress. Further, to enable the production of semiconducting materials based on NR
and Na+MMT, polypyrrole (PPy) was introduced and served as a path for an
effective charge transportation (electron hopping). This was accomplished by
conducting an electrolytic admicellar polymerization of the corresponding agueous
solution. It was seen that the morphological characteristics as well as mass fractions
of both PPy and Na+MMT were crucial in determining the composites electrical
conductivity, mechanical, and thermal performances.
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