DEVELOPMENT OF STAR-SHAPED BENZOXAZINE SUPRAMOLECULE

Choltirosn Sutapin

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2011

Thesis Title:

Development of Star-shaped Benzoxazine Supramolecule

By:

Choltirosn Sutapin

Program:

Polymer Science

Thesis Advisors:

Prof. Suwabun Chirachanchai

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. Suwabun Chirachanchai)

(Asst. Prof. Thanyalak Chaisuwan)

(Asst. Prof. Apirat Pisankittichot)

pirat Pisankettichot

ABSTRACT

5272003063: Polymer Science Program

Choltirosn Sutapin: Development of Star-shaped Benzoxazine

Supramolecule.

Thesis Advisor: Prof. Suwabun Chirachanchai 35 pp.

Keywords: Star-shaped/ Benzoxazine/ Substitution reaction/ Tosylated compound

Synthesis of star-shaped structure with four-arm benzoxazine dimers through the reaction between tetra-tosylated pentaerythritol as a core molecule and benzoxazine dimers as arm molecules is focused. A model reaction of phenol with core molecule suggests that the reaction for four-arm substitution is prohibited, and only two-arm star product substituted with phenols was obtained. In case of the reactions between benzoxazine dimers and core molecule, surprisingly, it does not give only two-arm star product, but also show the formation of cyclic benzoxazine dimers when the amount of case catalyst is excess. Furthermore, the mechanism related to this reaction was proposed as a model for substitution reaction of multitosylated core molecule and phenolic derivatives.

บทคัดย่อ

ชลธิรศน์ สุเทปิน: การพัฒนาซุปปร้าโมเลกุลเบนซอกซาซีนรูปร่างคาว (Development of star-shaped benzoxazine supramolecule) อ. ที่ปรึกษา: ศาสตราจารย์ คร.สุวบุญ จิรชาญชัย 35 หน้า

งานวิจัยนี้นำเสนอ โครงสร้างรูปคาวแบบสี่แขนจากโมเลกุลเบนซอกซาซีนไดเมอร์โคย การสังเคราะห์ผ่านปฏิกิริยาระหว่างโมเลกุลแกนเพนตะอิริทริทอลและโมเลกุลเบนซอกซาซีนได เมอร์ จากปฏิกิริยาต้นแบบของฟืนอลกับโมเลกุลแกนพบว่าปฏิกิริยาไม่สามารถทำเกิดเป็น โครงสร้างแบบสี่แขนได้ หากแต่ผลิตภัณฑ์ที่ปรากฏเป็นเพียงโครงสร้างรูปคาวแบบสองแขน ของฟืนอลเท่านั้น สำหรับกรณีของปฏิกิริยาระหว่างเบนซอกซาซีนไดเมอร์และโมเลกุลแกนไม่ เพียงแต่จะได้โครงสร้างรูปคาวแบบสองแขน แต่ยังแสดงการเกิดวงแหวนเบนซอกซาซีนไดเมอร์ เมื่อเติมเบสในประมาณที่มากเกิดพอ นอกจากนี้ในงานวิจัยยังนำเสนอกลไกการเกิดปฏิกิริยาที่ เกี่ยวข้องเพื่อใช้เป็นต้นแบบสำหรับปฏิกิริยาแทนที่ของโมเลกุลแกนที่มีหมู่โทซิลหลายๆหมู่และ อนุพันธ์ฟินอลต่อไป

ACKNOWLEDGEMENTS

The present dissertation would not have been accomplished without the author supervisor, Associated Professor Suwabun Chirachanchai, who not only originated this work, but also provided her invaluable suggestions and discussions, continuous guidance, intensive recommendation, constructive criticism, inspiration, and the opportunity to do the research.

She also wishes to thank her committees, Asst. Prof. Thanyalak Chaisuwan and Asst. Prof. Apirat Pisankittichot, for their helpful suggestions, valuable comments, and guidance.

She appreciates the scholarship from Thailand Research Fund (BRG5380010) and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek somphot Endowment Fund).

She also would like to acknowledge the Chulalongkorn University Centenary Academic Development Project; the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum Petrochemicals, and Advanced Materials, Thailand, for the supports of this research in the college. She reminds all Professors who have tendered invaluable knowledge to her at the Petroleum and Petrochemical College, Chulalongkorn University. She never forgets the college staff members, and all her friends at the Petroleum and Petrochemical College, Chulalongkorn University.

She would like to extend her appreciation to her senior, Dr. Wonchalerm Rungswang, and Suwabun group members for their encouragement, friendship, lots of help, good time, and good memories during her research work.

Finally, she wishes to express her gratitude to her family for their love, encouragement, understanding, limitless sacrifice, and for being a constant source of her inspiration throughout her study.

TABLE OF CONTENTS

		PAGE	
Tit	le Page	i	
Ab	Abstract (in English)		
Ab	Abstract (in Thai)		
Ac	Acknowledgements		
Tal	Table of Contents		
Lis	List of Schemes		
Lis	List of Figures		
CHAPT	ER		
I	INTRODUCTION	1	
II	LITERATURE REVIEW	3	
	2.1 Star-shaped Molecule	3	
	2.2 Benzxazine Molecule	5	
	2.3 Ponit of the Present Work	7	
Ш	EXPERIMENTAL	8	
	3.1 Materials	8	
	3.2 Instruments and Equipment	8	
	3.3 Methodology	8	
	3.3.1 Preparation of Tetratosylated Pentaerythritol	8	
	3.3.2 Preparation of 3,6-dimethyl-3,4-dihydro-2H-		
	benzole-1,3-oxazine	9	
	3.3.3 Preparation of N,N-Bis(2-hydroxy-5-methyl		
	benzyl)methylamine	9	
	3.3.4 Preparation of Star-shaped Phenol (Model Reaction)	10	

CHAPTER		PAGE
	3.3.5 Star-shaped Benzoxazine Dimer	10
IV	DEVELOPMENT OF STAR-SHAPED BENZOXAZINE	
	SUPRAMOLECULES	12
	4.1 Abstract	12
	4.2 Introduction	13
	4.3 Experimental Section	14
	4.3.1 Materials	14
	4.3.2 Instruments and Equipment	14
	4.3.3 Preparation of Tetratosylated Pentaerythritol, 1	14
	4.3.4 Preparation of BZ-m	15
	4.3.5 Preparation of N,N-Bis(2-hydroxy-5-methyl	
	benzyl) methylamine (BZ-d), 2	15
	4.3.6 Model Reaction Between 1 and Phenol Derivatives	16
	4.3.7 Reaction Between 1 and 2	17
	4.4 Results and Discussion	17
	4.4.1 Characterization of 1 and 2	17
	4.4.2 Model Reaction of 1 and p-Cresol	19
	4.4.3 Characterization of Model Reaction of 1 and 2	25
	4.5 Conclusions	29
	4.6 Acknowledgements	29
	4.7 References	29
V	CONCLUSIONS AND RECOMMENDATIONS	31
	REFERENCES	32
	CUDDICIU IIM VITAF	35

LIST OF SCHEMES

SCHEME	PAGE
CHA	APTER II
2.1	4
2.2	5
2.3	5
2.4	6
СНА	PTER IV
4.1	16
4.2	17
4.3	25
4.4	25
4.5	27

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER IV	
1	FTIR Spectra of Pentaerythritol, Tosyl chloride, and 1.	18
2	¹ H NMR Spectrum of 1 in CDCl ₃ .	18
3	¹ H-NMR Spectrum of 2 in CDCl ₃ .	19
4	ESI-TOF MS Spectrum of The Product Obtained by Using	
	Potassium Hydroxide as Base Catalyst.	20
5	(A) Possible Structures of The Products Obtained	21
	(B) H-NMR Spectrum of Possible Structures of The Products	21
	Obtained.	
6	Nuclear Overhauser Effect Spectroscopy (NOESY) Contour	
	Plot of The Product Obtained.	22
7	Esi-Tof Spectrum of Product Obtained by Using Sodium	
	Hydroxide Base as Base Catalyst.	23
8	ESI-TOF Spectrum of Product Obtained by Using THF and	
	Acetone as Reaction Solvent.	24
9	ESI-TOF MS Spectrum of Product Obtained by Using DMF	
	as Reaction Solvent	24
10	(A) Intensity Ratios Between Two-Arm Benzoxazine Dimer	
	and Cyclic Benzoxazine Dimer Of 4 Molar Ratio Of Base.	26
	(B) Intensity Ratios Between Cyclic Benzoxazine Dimer and	
	Two-Arm Benzoxazine Dimer of 8 Molar Ratio of Base.	26