คูมารินจากรากมะสัง Feroniella lucida และฤทธิ์ต้านการเกาะกลุ่มของเกร็ดเลือด

นายเสริม สุรพินิจ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-53-2768-9 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

COUMARINS FROM THE ROOTS OF Feroniella lucida AND THEIR ANTIPLATELET ACTIVITIES

Mr. Serm Surapinit

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Biotechnology

Faculty of Science

Chulalongkorn University

Academic Year 2005

ISBN 974-53-2768-9

Thesis Title	Coumarins from the Roots of <i>Feroniella Lucida</i> and Their Antiplatelet Activities
Ву	Mr. Serm Surapinit
Field of Study	Biotechnology
Thesis Advisor	Associate Professor Santi Tip-pyang, Ph.D.
Thesis Co-advisor	Assistant Professor Rattima Jeenapongsa, Ph.D. Assistant Professor Preecha Phuwapraisirisal, Ph.D.
-	the Faculty of Science, Chulalongkorn University in Partial equirements for the Master's Degree
(Professor Pia	Dean of the Faculty of Science amsak Menasveta, Ph.D.)
THESIS COMMITT	`EE
	(Professor Udom Kokpol, Ph.D.)
	(Associate Professor Santi Tip-pyang, Ph.D.)
	Lattima Zeenganga Thesis Co-advisor (Assistant Professor Rattima Jeenapongsa, Ph.D.)
	Preche Phonapraisirisan Thesis Co-advisor (Assistant Professor Preecha Phonapraisirisal, Ph.D.)
	N. Ngamajanavanich Member (Associate Professor Nattaya Ngamrojanavanich, Ph.D.)
	(Associate Professor Nattaya Ngamrojanavanich, Ph.D.)

เสริม สุรพินิจ: คูมารินจากรากมะสัง Feroniella lucida และฤทธิ์ต้านการเกาะกลุ่มของเกร็ดเลือด (COUMARINS FROM THE ROOTS OF Feroniella lucida and THEIR ANTIPLATELET ACTIVITIES) อ. ที่ปรึกษา: รศ. ดร. สันติ ทิพยางค์, อ.ที่ปรึกษาร่วม: ผศ.ดร. ภญ. รัตติมา จีนาพงษา ผศ.ดร. ปรีชา ภูวไพรศิริศาล 50 หน้า. ISBN 974-53-2768-9.

จากการแยกสกัดสารจากสมุนไพรไทยในวงศ์ Rutaceae โดยสกัดแยกสารจากสิ่งสกัดไดคลอโร มีเทนจากส่วนรากมะสัง ได้สารจำนวน 10 ชนิด โดยเป็นคูมารินชนิดใหม่ได้ 3 ชนิด ได้แก่ feroniellin A (7), feroniellin B (11) และ feroniellin C (9) คูมารินที่มีรายงานมาก่อน อีก 8 ชนิด ได้แก่ anisolactone (1), 2″, 3″-epoxyanisolactone (2), psoralen (3), bergapten (4), isopimpinellin (5), marmesin (6), oxypeucedanin hydrate (8) และ 2″, 3″-dihydroxyanisolactone (10) ซึ่งโครงสร้างของสารที่แยกได้หา ได้จากข้อมูลทางสเปกโทรสโกปีและการเปรียบเทียบกับรายงานที่มีมาก่อนหน้านี้ หลังจากนั้นนำสาร บริลุทธิ์ที่ได้มาทดสอบฤทธิ์ในการต้านการเกาะกลุ่มของเกร็ดเลือด โดยใช้ ADP เป็นตัวเหนี่ยวนำ พบว่า feroniellin B มีฤทธิ์ในการยับยั้งการเกาะกลุ่มของเกร็ดเลือดได้ นอกจากนี้ยังพบว่า feroniellin B (IC $_{50}$ = 0.287 mM) ให้ผลการยับยั้งการเกาะกลุ่มของเกร็ดเลือดได้ดีกว่า ibuprofen (IC $_{50}$ = 11.2 mM) ซึ่งเป็น สารมาตรฐาน ถึง 39 เท่า

สาขาวิชาเทคโนโลยีชีวภาพ	ลายมือชื่อนิสิต	જિલ	রপৌ থীত
ปีการศึกษา2548			
	ลายมือชื่ออาจารย์เ	ที่ปรึกษาร่ว	al St-le
	ลายมือชื่ออาจารย์เ	ที่ปรึกษาร่ว	ม ปรท ภูวไพรสุริสาค.

٧

4772542423: MAJOR BIOTECHNOLOGY

KEY WORD: COUMARINS / PLATELET AGGREGATION / FERONIELLIN

SERM SURAPINIT: COUMARINS FROM THE ROOTS OF *Feroniella lucida* AND THEIR ANTIPLATELET ACTIVITIES. THESIS ADVISOR: ASSO. PROF. Dr. SANTI TIP-PYANG, THESIS CO-ADVISOR: ASST. PROF. Dr. RATTIMA JEENAPONGSA, ASST. PROF. Dr. PREECHA PHUWAPRAISIRISAL 50 pp. ISBN 974-53-2768-9.

In phytochemical investigation of coumarins from Thai medicinal plant in the family Rutaceae, dichloromethane crude extract from the roots of *Feroniella lucida* was selected for separation, purification, structural elucidation and evaluation for anti-platelet aggregation. The chromatographic of dichloromethane crude extract led to the isolation of three new furanocoumarins, feroniellin A (7), feroniellin B (11) and feroniellin C (9), along with eight known furanocoumarins , anisolactone (1), 2", 3"-epoxyanisolactone (2) psoralen (3), bergapten (4), isopimpinellin (5), marmesin (6), oxypeucedanin hydrate (8), and 2", 3"-dihydroxyanisolactone (10). The structures of all isolated compounds were established on the basis of spectroscopic data and compared to literatures. All isolated furanocoumarins were further evaluated for anti-platelet aggregation. The results showed that feroniellin B was only one compound among the isolated furanocoumarins that inhibited ADP-induced platelet aggregation. Importantly, feroniellin B (IC₅₀ = 0.287 mM) was thirty-nine times more potent than ibuprofen (IC₅₀ = 11.2 mM), positive control.

		Student's signature			
Academic year	2005	Advisor's signature	Sonti	Tip Jujang	

Co-advisor's signature P. Phiwapraisirisan

Acknowledgements

He would like to express his faithful attitude to his advisors, Associate Professor Dr. Santi Tip-pyang, Assistant Professor Dr. Rattima Jeenapongsa and Assistant Dr. Preecha Phuwapraisirisal, for their assistance and encouragement in conducting this research.

He also gratefully acknowledges the members of his thesis committees, Professor Dr. Udom Kokpol and Associate Professor Dr. Nattaya Ngamrojnavanich for their worthy discuss and guidance.

He would like to thank Associate Professor Thaweesakdi Boonkerd, Plant of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University for plant identification. He also would like to thank Dr. Kwanchai Rattanamanee, Department of Pharmacy Practice, Faculty of Pharmaceutical Science, Naresuan University, for his assistance in anti-platelet activity evaluation.

He would like to express his gratitude to Natural Product Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, for chemicals and laboratory facilities throughout the course of study. He also gratefully acknowledges financial support from the Graduate School, Chulalongkorn University.

Additionally, He wishes to express his appreciation to all of his friends for their friendship and advice during his graduate study.

Finally, He would like to express appreciate to his parents for their great support and encourage all over the course of my education.

CONTENTS

			Pages
Thai Abstra	act		iv
English Abs	stract		v
Acknowledg	gements		vi
Contents	•••••		vii
List of Figu	res		ix
List of Tabl	es		xi
List of Sche	mes		xii
List of Abb	reviations		xiii
CHAPTER			
I	Introduction	on	1
II	Isolation a	nd Characterization of Isolated Coumarins fro	om
	Feroniella	lucida	8
	2.1	Extraction and Isolation	8
	2.2	Structural Elucidation	8
		2.2.1 Feroniellin A	8
		2.2.2 Feroniellin B	11
		2.2.3 Feroniellin C	15
	2.3	Experimental Section	17
		2.3.1 General Experimental Procedure	17
		2.3.2 Plant Material	17
		2.3.3 Extraction and Purification	17
III	Investigati	on of Anti-platelet Aggregation Activity of	
	Isolated Co	oumairn	24
	3.1	Experimental Section	24
	3.2	Results and Discussion	24
117	Canalusias		28

CONTENTS (continued)

	Pages
References	33
Appendices	36
VITA	50

List of Figures

E: 1 1	Structure of this was and a sumaring from Ptoroscular	Pages
Figure 1.1	Structure of trioxygenated coumarins from Pterocaulon	2
	Polystachyum	
Figure 1.2	Mechanisms of agonist-induced platelet activation	
Figure 1.3	Platelet-dependent formation of a thrombus at an atherosclerotic	
	plague	3
Figure 1.4	Initial adhesion results in platelet activation	4
Figure 1.5	Platelets form microaggregates via fibrinogen bridge	4
Figure 1.6	Antiplatelet aggregation coumarins from Zanthoxylum schinifol	ium,
	Toddalia asiatica and Artemisia capillaris	5
Figure 1.7	Coumarins from Feronia limonia	6
Figure 1.8	Coumarins from Aegle marmelos	7
Figure 2.1	Selected HMBC correlations of feroniellin A	10
Figure 2.2	Key NOESY correlations of feroniellin A	11
Figure 2.3	Comparison of pyran moiety of isodehydrothyrsiferol and	
	feroniellin B	13
Figure 2.4	Key HMBC correlations of feroniellin B	14
Figure 2.5	Key NOESY correlations observed for feroniellin B	14
Figure 2.6	Key HMBC correlations of feroniellin C	16
Figure 2.7	Key NOESY correlations observed for feroniellin C	16
Figure 3.1	Inhibition of ADP-induced platelet aggregation by (a) ibuprofen	and
	(b) feroniellin B (Mean \pm SEM, $n = 5$)	25
Figure 3.2	Platelet aggregation-induced by ADP in the presence of ibprofes	n
	(observed for 5 min.)	26
Figure 3.3	Platelet aggregation-induced by ADP in the presence of feroniel	lin B
	(observed for 5 min.)	26
Figure 1	The ¹ H-NMR (CDCl ₃) spectrum of anisolactone (1)	37
Figure 2	The ¹ H-NMR (CDCl ₃) spectrum of 2", 3"-epoxyanisolactone (2)	
Figure 3	The ¹ H-NMR (CDCl ₃) spectrum of psoralen (3)	38

List of Figures (continued)

	Pages
Figure 4	The ¹ H-NMR (CDCl ₃) spectrum of bergapten (4)38
Figure 5	The ¹ H-NMR (CDCl ₃) spectrum of isopimpinellin (5)39
Figure 6	The ¹ H-NMR (CDCl ₃) spectrum of marmesin (6)39
Figure 7	The ¹ H-NMR (CDCl ₃) spectrum of feroniellin A (7)40
Figure 8	The ¹ H-NMR (CDCl ₃) spectrum of oxypeucedanin hydrate (8)40
Figure 9	The ¹ H-NMR (CDCl ₃) spectrum of feroniellin C (9)41
Figure 10	The ¹³ C-NMR (CDCl ₃) spectrum of feroniellin C (9)41
Figure 11	The HMQC (CDCl ₃) spectrum of feroniellin C (9)42
Figure 12	The HMBC (CDCl ₃) spectrum of feroniellin C (9)42
Figure 13	The COSY (CDCl ₃) spectrum of feroniellin C (9)43
Figure 14	The ¹ H-NMR (CDCl ₃) spectrum of 2", 3"-dihydroxy-
	anisolactone (10)43
Figure 15	The ¹ H-NMR (CDCl ₃) spectrum of feroniellin B (11)44
Figure 16	The ¹³ C-NMR (CDCl ₃) spectrum of feroniellin B (11)44
Figure 17	The HMQC (CDCl ₃) spectrum of feroniellin B (11)45
Figure 18	The HMBC (CDCl ₃) spectrum of feroniellin B (11)45
Figure 19	The COSY (CDCl ₃) spectrum of feroniellin B (11)46
Figure 20	Low resolution mass spectrum of feroniellin A (7)46
Figure 21	Low resolution mass Spectrum of feroniellin B (11)47
Figure 22	High resolution mass spectrum of feroniellin B (11)47
Figure 23	Low resolution mass spectrum of feroniellin C (9)48
Figure 24	The Linear plot between concentration and inhibition percentage
	of feroniellin B
Figure 25	The Linear plot between concentration and inhibition percentage of
	ibuprofen49

List of Tables

		Page
Table 2.1	¹ H and ¹³ C NMR data for feroniellin B (7) in CDCl ₃	10
Table 2.2	¹ H and ¹³ C NMR data for feroniellin B (11) in CDCl ₃	12
Table 2.3	Comparison of ¹ H and ¹³ C NMR data of pyran moiety between	
	isodehydrothyrsiferol and feroniellin B (11)	13
Table 2.4	¹ H and ¹³ C NMR data for feroniellin C (9) in DCl ₃	15
Table 3.1	Effect of isolated furanocoumarins on platelet aggregation	25

List of Schemes

		Page
Scheme 2.1	Extraction procedure of the roots of F.lucida	18
Scheme 2.2	Purification of anisolactone (1) and 2", 3"-epoxyanisolactone (2)	
	and fractionation of dichloromethane extract	19
Scheme 2.3	Purification procedure of psoralen (3), bergapten (4)	
	and isopimpinellin (5)	19
Scheme 2.4	Purification processes of marmesin (6), feroniellin A (7),	
	oxypeucedanin hydrate (8), feroniellin C (9), 2", 3"-dihydroxy-	
	anisolactone (10) and feroniellin B (11)	21

List of Abbreviations

°C Degree Celsius

¹³C-NMR Carbon-13 nuclear magnetic resonance

¹H-NMR Proton nuclear magnetic resonance

ADP Adenine diphosphate

brd Broad doublet

brm Broad multiplex

brs Broad singlet

CaCl₂ Calcium chloride

cAMP Cyclic adenine monophosphate

CDCl₃ Deutrated chloroform

CH₂Cl₂ Dichloromethane

COSY Correlated spectroscopy

d Doublet

dd Doublet of doubletDMSO Dimethyl sulfoxide

EtOAc Ethyl acetate

g Gram

GPVI Glycoprotein IV

Hex Hexane

HMBC Heteronuclear multiple bond connectivity

HMQC Heteronuclear multiple-quantum coherence

HPLC High performance liquid chromatography

HRESIMS High resolution electrospray ionisation mass spectrum

Hz Hertz

IC₅₀ Median inhibitory concentration

J Coupling constant

m Multiplex

m/z Mass per charge

MeOHMethanolmgMilligramMHzMegahertz

List of Abbreviations (continued)

mL Milliliter

μM MicromolarmM MillimolarN.A. Not active

nm Nanometer

NOESY Nuclear overhauser effect spectroscopY

ppm Part per million

PPP Platelet-poor plasma

PRP Platelet-rich Plasma

q Quartets Singlett Triplet

TxA2 Thromboxane A2

vWF von Willebrand Factor

δ Chemical shift

 λ_{max} Maximum Wavelength