CHAPTER Il
BACKGROUND AND LITERATURE SURVEY

2.1 Mathematical and Optimization Models

Nowadays, many applications in all areas of science and engineering em-
ploy mathematical models. According to Floudas (1995), a mathematical model of a
system is a set of mathematical relationships (e.g., equalities, inequalities and logical
conditions) which represent an abstraction of the real world system under considera-
tion.
A mathematical model of & system consists of four key elements as follows:

1) Variables

Variables can be continuous integer or a mixed set of continuous inte-
ger. They have different values and their specifications defining different states of
the system.

2) Parameters

Parameters are fixed to one or multiple specific values and each fixa-
tion defines a different model.

3) Constraints

Constraints are the prescribed bounds representing abstraction of the
restrictions or confines in the real world system.

4) Mathematical relationships

Mathematical relationships can be algebraic, differential, integrodif-
ferential, or a mixed set of algebraic and differential constraints, and can be linear on
nonlinear.

2.1.1 Optimization Models
In the general terms, optimization is the way to find the best efficient
solution from a collection of candidates for a problem by using numerical and mathe-
matical methods. The optimization process lies at the root of engineering, since the
classical function of the engineer is to design new, more efficient and less expensive
plans, procedures or systems for the improved operation.



In order to apply the mathematical and numerical techniques of opti-
mization to the real world engineering problems, good formulation problem is the
key to succeed. The process of formulating the engineering optimization problem is
to describe the boundaries of the system to be optimized, to select the system vari-
ables that will be used to characterize or identify candidates, and to define the per-
formance criterion that will be used to rank the candidates and determine the “best”
(Reklaitis, 1983).

The performance criterion is denoted as an objective function. It can
be both the minimization of cost and the maximization of profit for instance. An op-
timization problem may contain one or multiple performance criteria.

2.1.2 Structure of Optimization Models
An optimization models generally can be stated as (Chapra, 2003):
Find X, which minimizes or maximizes / (x,y)

st dlx, §) < al i=12.,m
e(x,y) = 1 =12, (2.1)
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Where x is an n-dimensional design vector, y is a vector of integer
variables, d'(x,y) are inequality constraints, el(x.y) are equality constraints, aj and

are constants and f(x,y) is the objective function.

Optimization problems can be classified by consideration or elimina-
tion of the problem elements:

 |fthe set of integer variables is empty and the objective function
and constraints are lingar, it is a linear programming (LP) problem,

 |fthe set of integer variables is empty, and there exist nonlinear
terms in the objective function and/or constraints, then it becomes a nonlinear pro-
gramming (NLP) problem.

o |fthe set of integer variables is not empty, the integer variables
participate linearly and separately from the continuous, and the objective function
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and constraints are linear, then it becomes a mixed-integer linear programming
(MILP) problem.

o« If the set of integer variables is not empty, and there exist
nonlinear terms in the objective function and/or constraints, then it becomes a mixed-
integer nonlinear programming (MINLP) problem.

2.1.3 Modeling Procedures

Modeling Procedures are composed of four phases: 1) problem defini-
tion and formulation, 2) preliminary and detailed analysis, 3) evaluation and 4) inter-
pretation application. The modeling procedure is an iterative procedure (Edgar et al.,
2001). Figure 2.1 summarizes the activities of developing the optimization model.

*  Problem definitionand formulation phase

In this phase the problem is defined and the important elements that
relate to the problem and its solution are identified. The degree of accuracy needed in
the model and the model’s potential uses is determined.

*  Design phase

The design phase includes specification of the information content,
general description of the programming logic and algorithms necessary to develop
and employ a useful model, formulation of the mathematical description of such a
model, and simulation of the model.

*  Evaluation phase

This phase is intenced as a final check of the model as a whole. Test-
ing of individual model elements will be conducted during earlier phases. Evaluation
of the model is carried out according to the evaluation criteria and test plan estab-
lished in the problem definition phase. Next, sensitivity testing of the model inputs
and parameters is carried out and determined if the apparent relationships are physi-
cally meaningful. This step is also referred to as diagnostic checking and may entail
statistical analysis of the fitted parameters.
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Figure 2.1 Major activities in model building prior to application (Edgar et al., 2001).
2.2 Mathematical Programming

Mathematical programming is the process of using mathematical models to
help find good solutions to business problems. It provides a general framework for
modeling the problem and organizing the data (Shimizu, 1997).

Much of the theory and most of the algorithms that exist for mathematical
programming depend on the differentiability of the objective function and constraint
functions defining the feasible region (Kendall et al., 2005). When the data (parame-
ters) are known number (without risk), assuming complete information about the
problem to be solved and a static environment within which the schedule will be
executed, the program is called the deterministic programming.



In reality, the deterministic schedule obtained may become infeasible be-
cause of the dynamic behavior of the real-world applications which involve data with
uncertainties. To deal with such the problem, many approaches of scheduling have
been proposed in the literature to take account of the presence of uncertainties
(Kendall etal, 2005). Reactive scheduling and stochastic programming are examples
among these approaches.

Reactive scheduling involves revising or re-optimizing a schedule when an
unexpected event occurs. Most efforts concentrate on “repairing” the existing pre-
dictive schedule to take account ofthe unexpected events that have come up (Herroe-
len and Leus, 2005). Stochastic programming is the model that enables the modeler
to create a solution which is optimal over a set of scenarios. It takes advantage of the
fact that probability distributions governing the data are known or can be estimated.
The goal is to find some policy that is feasible for all (or almost all) the possible data
instances and maximizes the expectation of some function of the decisions and the
random variables. The most widely applied and studied stochastic programming
models are two-stage linear programs (http://stoprog.org). Uncertainty planning and
two-stage stochastic programming will be explained in detail in the next topic.

2.3 Refinery Operations Planning and Scheduling

The goal of planning and scheduling is to maximize the profitability of the
entire refinery by choosing the best feedstocks, operating conditions and schedules,
while fulfilling product quantity and quality objectives consistent with marketing
commitments (Swift, 2000).

Planning and scheduling in refineries takes place over a hierarchy of time
horizons. At the top level there is enterprise planning: this is concerned with a com-
pany’ market position worldwide and allocating capital investment over a period of
5 years or more. Below this is operational planning over the time horizons between
1 week and 6 months; this is concerned with deciding which crudes to buy. how to
process them and which products to sell. At the bottom there is detailed scheduling
within the refinery, which answers the question “What am | going to do next?”
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(Simon, 1997). The cascade of models used in operational planning and scheduling is
shown in Figure 2.2.
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Figurez.z Planning and scheduling cascade in a refinery (Simons, 1997).

Linear and integer programming are heavily used in the long-term planning
models. With shorter time horizons the models have to be more detailed and accurate
and this leads to the use of Successive Linear Programming. The greatest challenges
lie with the transition from operational planning to detailed scheduling, where the
assumptions implicit in LP-based models break down. These are that operations can
be broken down into a series of time periods, during each of which it suffices to
model activities as continuous (or average) flows.

Generally, planning and scheduling of oil refinery operations can be divided
into three main parts. The first part involves the crude-oil unloading, mixing and in-
ventory control. The second part consists of the production unit scheduling, which
includes both fractionation and reaction processes. Lastly, the third part covers
blending of finished product, and shipping to the customer (Jia et al., 2003). Figure
2.3 depicts the overall picture of oil refinery operations.
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Figure 2.3 0verview picture of the oil refinery operations (Méndez et al., 2006).

The different modeling and solution of each of these problems will pave the
way toward addressing the overall problem of scheduling of refinery operations,
a task that is currently prohibitively expensive to solve. The lack of computational
technology for production scheduling is the main obstacle for the integration of pro-
duction objectives and process operations (Pinto et al, 2000).

2.3.1 Refinery Planning and Scheduling with Mathematical Programming

Application

Mathematical programming has been extensively studied and imple-
mented for both long-term and short-term plant-wide refinery planning. Some com-
mercial software with linear programming (LP) models, such as RPMS (Refinery
and Petrochemical Modeling System) and PIMS (Process Industry Modeling System),
have been developed for refinery production planning. In this thesis, the mathem ati-
cal model isimplemented in the program called GAMS.
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2.3.2 General Algebraic Modeling System (GAMS) and GAMS Data Ex-
change (GDX) facilities

GAMS isasoftware product of the GAMS Development Corporation.
It includes the capability to solve linear programs and integer linear programs. It al-
lows the formulation of models in many different classes of problem, including linear
(LP), mixed integer linear (MIP), nonlinear (NLP), mixed integer nonlinear (MINLP),
mathematical programs with equilibrium constraints (MPEC) and stochastic linear
problems.

GDX facilities are binary flies that are portable between different plat-
forms. They are written using the byte ordering native to the hardware platform they
are created on, but can be read on a platform using a different byte ordering. GD X
facilities stores the values of one or more GAMS symbols such as sets, parameters
variables and equations. They can be used to prepare data fora GAMS model, pre-
sent results of a GAMS model, store results of the same model using different pa-
rameters etc.

In order to write data from GAMS to other application program, the
user writes @ GDX file and then to the program from the GDX file. The process to
import data from an Excel file to GAMS is similar.

GAMS 7”* GDX Application
<— <— Poogram

2.4 Pricing Theory

In marketing, pricing has the definition of “The evaluation of something in
terms of its price, usually based on market demand and competition”. The decisions
related to the determination of prices begin with the available information on the
fixed and variable costs, which are easily obtained from accounting and production
registers. The relationship of demand and prices is also required as input data, and it
is usually obtained by using historical data and, what is less usual, by direct experi-
mentation over the consumer’s response to different price levels in several consistent
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with the enterprise goals. The most widely used objective function when determining
prices isthe maximization of profit.

Economic theory of consumer behavior have heen studied and proposed to
see how consumers allocate their incomes and how this determines the demands for
various goods and services. This will help vs understand how changes in customer’s
income and product prices affect demands for goods and services and why the de-
mands for some products are more sensitive to price and income changes than the
others.

2.4.1 Consumer Behavior
Consumer behavior is best understood in three steps. The first step is
to examine consumer preferences. Specifically, we need a practical way to describe
how people might prefer one good to another. Second, we must account for the fact
that consumers face bhudget constraints-they have limited incomes that restrict the
quantities of goods that they can buy. The third step is to put consumer preferences
and budget constraints together to determine consumer choices. In other words, given
their preferences and limited incomes, what combinations of goods will consumers

buy to maximize their satisfaction?

2.4.2 Utility Function

In economics, one way to describe the customer preference is using
the concept of “utility”. Utility is the measure of the relative level of satisfaction that
a customer gets from consuming different bundles of goods and services. The de-
mand function of the customer can be derived by considering a model of utility-
maximizing behavior coupled with the economic constraints.

In the basic problem of preference maximization, the set of affordable
alternatives is the set of all products that satisfy the consumer's budget constraint.

Let x be the customer consumption in bundle X, m Dbe the fixed
amount of money available to a consumer, and p = (p\, ... ,Pk) be the vector of
prices of (goods;, .., goodsk). Now s the utility function of the customer, and the
budget set of the consumer, the set of affordable bundles, is given by
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The problem of preference maximization can then be written as:

max ()
such that px < m (2.3)
and Xisin X.

W ith this problem, we can characterize optimizing behavior by means
ofcalculus, as long as the utility function is differentiable. The Lagrangian
for the utility maximization problem can be written as

L =w(x)- X(px- ) (2.4)

where Xis the Lagrange multiplier. Differentiating the Lagrangian with re-
spect to x, gives us the first-order conditions

ou(x) .
- M./4 0 for 1 =1,...k. 2.5
L P, (2.5)

The demand function that maximize the consumer satisfaction are obtained
from solving this equation.

In order to simplify calculations, various assumptions have been made of
utility functions.

«  CES (constant elasticity of substitution) utility is one with constant

relative risk aversion
. quasilinear utility
. homothetic utility

2.4.3 Constant elasticity of substitution (CES) utility
The Constant Elasticity of Substitution (CES) utility function is the
utility function that has a constant elasticity of substitution. It is useful because this
class of utility functions can be used to model commodities that are either substitutes
for one another, or complements of one another. The CES utility function for two
commodities x and y can be written as:

(X, ¥)= @a-xp + bmyp).p (2.6)



Forany values of a> 0 andh >0.
2.5 Uncertainty and Risk

Uncertainty and risk are both referred to a situation wherein the possible
future outcomes of a present decision are plural. But the classical distinction be-
tween risk and uncertainty is that. for risk, the dimensions and probabilities of the
outcomes are known in advance while they cannot be objectively specified for uncer-
tainty (Porterfield, 1995).

Most operations by business enterprises and many of their financing lie
within the domain of uncertainty. One approach to avoid this dilemma is to convert
the operation decision from an uncertainty situation to a quasi-risk situation, by pro-
jecting a subjective distribution of its possible outcomes and assigning subjective
probabilities to each ofthem (Porterfield, 1995).

2.5.1 Uncertainty in Refinery Planning

For the refinery industry which has to deal with many sections from
crude oil purchasing and processing to product distributing and selling, planning and
scheduling may contain a lot of uncertainties. The uncertainties arise from crude cost,
product price and demand etc. The effect of these uncertainties, for example, demand
uncertainty, results in over- or under-production, with resultant excess inventories
orfand inability to meet customer needs, respectively. Excess inventory incurs un-
necessary holding costs, while the inability to meet the customer needs results in
both losses of profits and potentially, the loss of customers. This trade-off between
the profit maximization and the cost minimization of risk from safety stock leads to
the formulation ofa stochastic optimization.

2.5.2 Two-stages Stochastic Programming
This kind of problems is characterized by two essential features: the
uncertainty in the problem data and the sequence of decisions (Barbaro and Baga-
jewicz, 2004). Some model parameters are accounted as random variables with a cer-
tain probability distribution. In turn, some of these decisions must be made with in-



14

complete information about the future. Then, as some of the uncertainties are re-
vealed, the remaining decisions will be made. A number of decisions that have to be
made before the experiment are called first-stage decisions, and the period when
these decisions are made is called the first stage. On the other hand, the decisions
made after uncertainty is unveiled are called second-stage decisions and the corre-
sponding period is called the second stage. Among the two-stage stochastic models,
the expected value of the cost (or profit) resulting from optimally adapting the plan
according to the realizations of uncertain parameters is referred to as the recourse
function. A problem is said to have complete recourse if the recourse cost (or profit)
for every possible uncertainty realization remains finite, independently of the nature
of the first-stage decisions.

This Optimization model involves maximization or minimization of
expected profits or expected cost, respectively, where the term “expected7 refers to
multiplying profits or costs associated with each scenario by its probability of occur-
rence (Lababidi et ah, 2004).

The general form of a two-stage linear stochastic problem with fixed
recourse and a finite number of scenarios can be defined as (Birge and Louveaux,
1997):

Max \i[Profit] = E pSqjyX-c*x

s.t. Ax - b
Tpc + Wys = hs e (2.7)
x >0 X e X
ys > 0 V5e

In the above equation, first-stage decisions are represented by variable
x and second-stage decisions are represented by variable ys, which has probability ps.
The objective function contains a deterministic term,c7x , and the expectation of the
second-stage objective, ¢y, ,taken over all realizations ofthe random events. For a

given realization of the random events, e , the second-stage problem data gs, hs,
and Tsbecome known, and then the second-stage decisions, ys(x), must be made.
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2.5.3 Financial Risk

As previously mentioned, although the stochastic models can optimize
the total expected performance measure, they usually do not provide any control of
its variability over the different scenarios; i.e., the decision maker is assumed to he
risk neutral. But different attitudes toward risk may he encountered.

The financial risk associated with a plan under uncertainty is defined
as the probability of not meeting a certain target profit (maximization) or cost (mini-
mization) level referred to asQ (Barbara and Bagajewicz, 2004). For the two-stage
stochastic problem, the financial risk associated with a design x and target profit Q
is therefore expressed by the following probability:

Risk(x,Q) = P {Profit(x) < Q) (2.8)

Where Profit(x) is the Profit after the uncertainty has been unveiled
and a scenario is realized.

According to Barbara et al., the minimization of risk at some profit
levels renders a trade-off with expected profit. A risk-averse decision maker will feel
comfortable with low risk at low values ofO , while a risk taker will prefer to lower
the risk at high values ofQ . The trade-off lies in the fact that minimizing risk at low
values of Q (e.g., a loss) is in conflict with the minimization of risk at high values of

Q (e.g., large profits) and vice versa.

2.6 Financial Risk Management
Some measures to manage financial risk are as follows:

2.6.1 Value at risk and upside potential
Value at risk (or VaR) is a widely used measure of risk in literature
(Guldimann, 2000). It is defined as the expected loss for a certain confidence level
usually set at 5% (Linsmeier & Pearson, 2000). A more general definition of VaR is
given by the difference between the mean value ofthe profit and the profit value cor-
responding to the /7-quantile (value atp risk). VaR has been used as a point measure
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very similar to the variance. VaR measures the deviation of the profit at 5% risk from
the expected value.

However, VaR can only be used as a measure of robustness, but not
risk. To relieve these difficulties, Aseeri and Bagajewicz (2004) proposed that VaR
be compared to a similar measure, the Upside Potential (UP) or Opportunity Value
(OV), defined in a similar way to VaR but at the other end of the risk curve with a
quantile of (1-p) as the difference hetween the value corresponding to a risk of (1-p)
and the expected value. They discussed the need of the Upside Potential for a good
evaluation of the project.

2.6.2 Use of Sampling Algorithm to Obtain Optimal Solution
In this method, a relatively small number of scenarios are generated
and used to run the stochastic model. After the series of designs are obtained, the first
stage variables of each one is used as fixed numbers in a new stochastic model con-
taining a much larger number of scenarios. Aseeri and Bagajewicz (2004) proved
that this algorithm, run for a sufficiently large number of scenarios can approximate
the optimal solution.

2.6.3 Upper and Lower Risk Curve Bounds

The upper bound risk curve is defined as the curve constructed by
plotting the set of net present value (NPV) for the best design under each scenario.
Aseeri and Bagajewicz (2004) proved that any feasible solution cannot cross this
curve. Figure 2.5 shows the upper bound risk curve and curves corresponding to pos-
sible and impossible solutions. The lower bound risk curve is defined as the curve
constructed by plotting the highest risk of the set of designs used to construct the up-
per bound risk curve at each NPV abscissa. Unlike the upper bound risk curve, the
lower bound risk curve can he crossed by feasible solutions.

The objective function value (ENPV) of any feasible solution is
smaller than or equal to that of the upper bound risk curve (Aseeri and Bagajewicz,
2004). Therefore, the gap between any solution and the best possible integer solution
will always be less than or equal to the gap hetween that solution and the upper
bound risk curve.
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2.1. Literature Survey

2.1.1 Refinery Operation Planning and Scheduling

In the last 20 years, a number of models have been developed to per-
form short term scheduling and longer term planning-of batch plant production to
maximize economic objective (Shah, 1998). The application of formal, mathematical
programming techniques to the problem of scheduling the crude oil supply to a refin-
ery was considered by Shah (1996). The consideration includes the allocation of
crude oils to refinery and portside tanks, the connection of refinery tanks to crude
distillation units (CDUs), the sequence and amounts of crude pumped from the ports
to the refineries, and the details related to discharging of tankers at the portside. The
mathematical programming model is based on a discretization of the time horizon
into intervals of equal duration. The problem was decomposed into two smaller ones:
downstream and upstream problems. The downstream problem was solved first and
the upstream problem was solved subsequently.

In addition, optimization was applied for refinery by Zhang et al.
(2001) to integrate the hydrogen network and the utility system with the material
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processing system. They considered the optimization of refinery liquid flow, hydro-
gen flows, and steam and power flows simultaneously and presented the approach on
debottlenecking in refinery operation. Their aim was to shift bottlenecks from an ex-
pensive process to a cheaper one by modifying networks such as the hydrogen net-
work and the utility system. Other bottlenecks which could not be tackled by the
network changes were retrofitted by using detailed process models to achieve the re-
quired extra capacity.

Moro et al. (1998) developed a nonlinear planning model for diesel
production. The resulting optimization model is solved with the generalized reduced
gradient method. Pinto and Moro (2000); Pinto et al. (2000) and Joly et al. (2002)
focused on the refinery productions. The model are composed of a representation of
the refinery processing units and their interconnections and involve equations to rep-
resent the performance of such units as well as the mixing of process streams. The
work also addressed scheduling problems in oil refineries that are formulated as
mixed integer optimization models and rely on hoth continuous and discrete time
representations. The problems involve the optimal operation of crude oil unloading
from pipelines, transfer to storage tanks and the charging schedule for each crude oil
distillation unit. Moreover, they discussed the development and solution of optimiza-
tion models for short term scheduling of a set of operation that includes product re-
ceiving from processing units, storage, and inventory management in intermediate
tanks, blending in order to attend oil specifications and demands, and transport se-
quencing in oil pipelines.

Gothe-Lundgren et al. (2002) described a production planning and
scheduling problem in oil refinery company. They focused on planning and schedul-
ing to select mode of operation to use in order to satisfy the demand while minimiz-
ing the production cost. The model is formulated using a mixed-integer linear pro-
gramming (MILP).

Rejowski and Pinto (2003) considered the system composed by one
petroleum refinery, one multi product pipeline and several depots that are connected
to local consumer markets. MILP models were proposed for the simultaneous opti-
mization of systems with multiple depots. Key decisions of the model involve load-
ing and unloading operations of tanks and of the pipeline. Several operating con-
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straints were incorporated in the model and the model for a large-scale example that
contains pipeline segments of similar size were solved. Finally, they found that the
model was successfully able in avoiding time periods of high-energy costs and at the
same time managed to fulfill all product demands.

Neiroa and Pinto (2004) proposed a general framework for modeling
petroleum supply chains after the model of processing units were developed by Pinto
et al. (2000). They also introduced the particular frameworks to storage tanks and
pipelines. By considering nodes ofthe chain as grouped elementary entities that were
interconnected by intermediate streams, they built the complex topology by connect-
ing the nodes representing refineries terminals and pipeline networks. Their decision
variables include stream flow rates, properties, operational variables, inventory and
facilities assignment. The resulting multiperiod model is a large-scale MINLP. Then
they applied the proposed model to a real-world corporation and showed the model
performance by analyzing different scenarios. Their results have demonstrated the
potential of problem petroleum supply chain to real-world petroleum supply chains
and how it can be used to help in the decision making process of the production
planning.

Persson and Gothe-Lundgren (2005) suggested an optimization model
and a solution method for a shipment planning problem. They considered shipment
planning of bitumen products from a set of refineries to a set of depots. The planning
is about making sure that it satisfies the given demand at lowest cost. They suggested
a shipment planning model that includes considerations of production, by represent-
ing the production (process scheduling) by a linear programming (LP) model. The
combined process scheduling and shipment planning problem is represented by a
mixed-integer linear programming (M ILP) model.

Méndez et al. (2006) presented a novel MILP-hased method that ad-
dresses the simultaneous optimization of the off-line blending and the short-term
scheduling problem in oil-refinery applications. His main purpose was to find the
best way of mixing different intermediate products from the refinery in order to
minimize the blending cost while meeting the quality and demand requirements of
the final products. An iterative procedure was proposed to effectively deal with non-
linear gasoline properties and variable recipes for different product grades. The solu-



20

tion ofa very complex MINLP formulation was replaced by a sequential MILP. Sev-
eral examples representative of real world problems were presented to illustrate the
flexibility and efficiency ofthe proposed models and solution technique.

2.7.2 Pricing Decisions in Planning and Scheduling Model

Pricing decision is another one important aspect for planning in a
highly dynamic environment. Some studies have heen done concerning this issue.

Guillén et al. (2005) integrated pricing decision with the scheduling
model for batch plants. Their integrated model can simultaneously provides the op-
timal prices and operation schedule as opposed to earlier models where prices are
usually considered as input data. The model was also developed to he able to handle
the uncertainty associated to the demand curve. Finally, financial risk management is
discussed.

Voeth and Herbst (2006) studied the business relationships within the
supply chain provide interesting opportunities for mutually increased henefit. They
investigated the opportunities for suppliers and customers to collaborate on pricing in
order to establish mutually beneficial relationships. They demonstrated that this goal
can only be attained when price is no longer regarded as an exante distributive pa-
rameter between market partners, but as ajoint tool for outcome optimization within
the overall supply chain process. A calculation example is clarified and the manage-
rial implications for practical implementation, is pointed out.

Karwan and Keblis (2007) considered the plant operation problem in
the industrial gas industry where the price of the primary production input changes
hour to hour, which is often referred to as real time pricing. The purpose of their
work is to present an optimization based planning approach thatrigorously takes into
account the realities of this problem. Their work seeks to identify the conditions un-
der which real time pricing is most appealing vis-a-vis other electricity pricing
schemes.

2.7.3 Planning and Scheduling under Uncertainty
One of major problems against planning and scheduling is uncertainty.
Confronting this problem, different strategies have been studied and proposed.
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Singh etal. (2000) provided an improved formulation for the gasoline
blending optimization problem that incorporates both the blend horizon and a sto-
chastic model of disturbances into the real-time optimization (RTO) problem. The
work starts with examining three different blending RTO strategies. Their suitability
for use in blending optimization was examined. Performance improvements were
obtained using the time-horizon based RTO (THRTO) approach system that consid-
ers the entire remaining blend horizon and incorporated a prediction of future sto-
chastic disturbances. Finally, an automotive gasoline blending case-study was used
to illustrate the superior performance of this new RTO method.

Reddy et al. (2004) presented the first complete continuous-time
mixed integer linear programming (MILP) formulation for the short-term scheduling
of operations in a refinery that receives crude from very large crude carriers via a
high-volume single buoy mooring pipeline. Their objective was to develop the model
that respond effectively and speedily to uncertain oil markets while maintaining reli-
able operations. An iterative algorithm was used to eliminate the crude composition
discrepancy. The algorithm uses MILP solutions and obtains maximum-profit sched-
ules for industrial problems with up to 7 days of scheduling horizon.

Some fundamental approaches for scheduling under uncertainty were
determined and compared by Herroelen and Leus (2005). The various approaches
consist of reactive scheduling, stochastic project scheduling, fuzzy project scheduling,
robust (proactive) scheduling and sensitivity analysis. They discussed the potentials
of these approaches for scheduling under uncertainty projects with deterministic
network evolution structure.

Csédji and Monostori (2005) presented an approximate dynamic pro-
gramming based stochastic reactive scheduler that can control the production process
on-line, instead of generating an off-line rigid static plan. The stochastic scheduling
problem was formulated as a special Markov Decision Process. Homogeneous multi-
agent systems were suggested, in which cooperative agents learn the optimal value
function in a distributed way by using trial-based Approximate Dynamic Program-
ming (ADP) methods. After each trial, the agents asynchronously update the actual
value function estimation. Finally, benchmark experimental results which illustrate
the effectiveness of the ADP based approach are shown.
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Al-Redhwan et al. (2005) addressed the problem of uncertainty in op-
timizing water networks in process industries to be able to accommodate the changes
of wastewater flow rates and level of contaminants. A three-step methodology was
developed. First, they generated a deterministic optimization model. This model
searches for the network configuration with minimum freshwater use and optimal
wastewater reuse or regeneration-reuse. The second step involved a sensitivity analy-
sis in which uncertainty was introduced as maximum and minimum ranges in operat-
ing conditions. Finally, a stochastic formulation was developed, based on the sce-
nario-analysis stochastic programming approach. The optimization models are NLP
problems which were effectively solved using GAMS. These models were tested on
a typical refinery wastewater network.

Guillén et al. (2005) considered the design and retrofit problem of a
supply chain (SC) consisting of several production plants, warehouses and markets,
and the associated distribution systems. A two-stage stochastic model was con-
structed in order to take account of the effects of the uncertainty in the production
scenario. The problem objective, i.e., SC performance, is assessed by taking into ac-
count both the profit over the time horizon and the resulting demand satisfaction. Fi-
nally, the SC configurations obtained by means of deterministic mathematical pro-
gramming were compared with those determined by different stochastic scenarios
representing different approaches to face uncertainty.

Liao and Rittscher (2006) developed a measurement of supplier flexi-
bility with consideration of demand quantity and timing reduction uncertainties. The
measurement was extended to consider the uncertainty when the demand quantity is
randomly raised. In addition, a multi-objective supplier selection model under sto-
chastic demand conditions was developed. The model was determined with simulta-
neous consideration of the total cost, the quality rejection rate, the late delivery rate
and the flexibility rate, involving constraints of demand satisfaction and capacity.

2.7.4 Financial Risk Management
Risk management now has become a vital topic for planning and
scheduling. Some work in various fields of business and industry has been concerned
about this subject and started turning to face this subject.
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For example, lerapetritou and Pistikopoulos (1994) introduced inte-
grated metric and estimated future plan feasibility together with the potential eco-
nomic risk for two-period linear planning models. The metric is based on the con-
cepts of flexibility, the ability of handling uncertainty while meeting production re-
quirements and maximum regret. An algorithmic procedure was proposed for the
estimation of such a combined metric involving the solution of two multi-parametric
linear programming sub-problems for the evaluation of maximum regret. Then the
analytical expressions of the regret as a function of the uncertain parameters and the
plan were obtained. These expressions were incorporated in a mixed-integer index
programming formulation. The incorporation of these analytical tools into an overall
planning framework was shown and illustrated with example problems.

Mulvey et al. (1997) studied and discussed components of as-
set/liability management systems of three leading international firms in USA as
Towers Perrin, Frank Russell, and Falcon Asset Management. These companies ap-
plied asset/liability management for efficiently managing risk over extended time
periods by dynamically balancing the firm’s asset and liabilities to achieve their oh-
jectives. Three components of asset/liability management were compared and de-
scribed: 1) a multi-stage stochastic program for coordinating the asset/liability deci-
sions; 2) a scenario generation procedure for modeling the stochastic parameters; and
3) solution algorithms for solving the resulting large-scale optimization problem.

Lowe etal. (2002), concerning the financial risk problem, paid atten-
tion to maintain an international sourcing/production network. They proposed and
illustrated a two-phase multi-screening approach which was used to help evaluate the
strategy of having production facilities, using a Harvard Business School as a study
case. Their approach involves a relatively simple one-year-ahead analysis in Phase 1,
followed by a more detailed analysis in Phase 2. Afterward, new criteria of stochastic
comparison: namely, Pareto optimality, near-Pareto optimality, maximum regret,
mean-variance efficiency, and stochastic dominance were introduced. At last, they
illustrated how excess capacity could provide flexibility by allowing a global manu-
facturing firm to shift production between various production facilities as relative
costs change over time.
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Gupta and Maranas (2003) developed a model for incorporating mar-
ket-based pollution abatement instruments in the technology selection decision of a
firm. Multistage stochastic programming is used to model emission and market un-
certainties while accounting for the availability of derivative instruments. The in-
struments help minimize total pollution abatement costs and predict the environ-
mental liability. The model quantifies the benefits of the flexibility offered by these
instruments. Management of environmental and financial risks was addressed by
linking the optimization model with hasic statistical and probabilistic techniques.

Cheng et al. (2003) presented the method of risk management using
Markov decision process with recourse that considers decision making throughout
the process life cycle and at different hierarchical levels. The formulation integrates
design decisions and future planning by constructing a multi-period decision process
in which one makes decisions sequentially at each period. The objectives they con-
cerned with are expected profit, expected downside risk, and process lifetime. The
multi-objective Markov decision problem was finally decomposed, employing rigor-
ous multi-objective stochastic dynamic programming algorithm, and the Pareto op-
timal design strategy was obtained.

In addition, various methods and tools are studied and introduced in to
optimizing and programming models to encounter the financial risk problem. The
use of value at risk were proposed by Guldimann (2000) and Jorion (2000). Other
approaches to the management of financial risk was recently presented by Barbaro
and Bagajewicz (2004), and Aseeri and Bagajewicz (2004).

Barbaro and Bagajewicz (2004) presented a methodology to include
financial risk management in the framework of two-stage stochastic programming
for planning under uncertainty. They adapted a known probabilistic definition of fi-
nancial risk to use in the framework and analyzed its relation to downside risk. Their
method is compared with the methods that intend to manage risk by controlling the
second-stage variability. One of the major contributions of their work to the field of
planning under uncertainty is the formal definition of financial risk as applied to
these problems. Based on this definition, several theoretical expressions were devel-
oped, providing new insight on the trade-offs between risk and profitability. Thus,
the cumulative risk curves were constructed to be very appropriate to visualize the
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risk behavior of different alternatives. Moreover, they examined the concept of
downside risk and a close relationship with financial risk was discovered. Conse-
quently, they suggested that downside risk be used to measure financial risk, consid-
ering that in that way there is no need to introduce new hinary variables that increase
the computational burden.

Aseeri and Bagajewicz (2004) presented some new concepts and pro-
cedures for financial risk management. Upside potential (UP) or opportunity value
(OV) as means to weigh opportunity loss versus risk reduction as well as an area ra-
tio (RAR) are introduced and discussed to complement the use of value at risk. Up-
per and lower bounds for risk curves corresponding to the optimal stochastic solu-
tions were developed, the use of the sampling average algorithm was studied, and the
relation between two-stage stochastic models that manage risk as well as the use of
chance constraints and regret analysis was discussed. These concepts are illustrated
by introducing a stochastic planning model to optimize natural gas commercializa-
tion in Asia, under uncertainty.
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