การสังเคราะห์เส้นใยอะลูมินาขนาดนาโนด้วยเทคนิคโซลเจลผสานกับการปั่นเส้นใยด้วยไฟฟ้าสถิต

นายพัฒนาศักดิ์ นักสอน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2550

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ALUMINA NANOFIBER SYNTHESIS BY COMBINED SOL-GEL AND ELECTROSPINNING TECHNIQUES

Mr. Pattanasak Nuksawn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Chemical Engineering

Department of Chemical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2007

Copyright of Chulalongkorn University

Thesis Title ALUMINA NANOFIBER SYNTHESIS BY COMBINED SOL-GEL AND ELECTROSPINNING TECHNIQUES Mr. Pattanasak Nuksawn By Field of study Chemical Engineering Assistant Professor Varong Pavarajarn, Ph.D. Thesis Advisor Thesis Co-Advisor Associate Professor Pitt Supaphol, Ph.D. Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree Dean of the Faculty of Engineering (Associate Professor Boonsom Lerdhirunwong, Dr.Ing.) THESIS COMMITTEE Charpomithe Chairman (Associate Professor Tawatchai Charinpanitkul, D.Eng.) Thesis Advisor (Assistant Professor Varong Pavarajarn, Ph.D.) Thesis Co-Advisor (Associate Professor Pitt Supaphol, Ph.D.) Member (Akawat Sirisuk, Ph.D.) External Member

(Assistant Professor Okorn Mekasuwandumrong, Ph.D.)

พัฒนาศักดิ์ นักสอน: การสังเคราะห์เส้นใยอะถูมินาขนาดนาโนด้วยเทคนิคโซถเจลผสาน กับการปั่นเส้นใยด้วยไฟฟ้าสถิต. (ALUMINA NANOFIBER SYNTHESIS BY COMBINED SOL-GEL AND ELECTROSPINNING TECHNIQUES) อ.ที่ปรึกษา: ผศ.ดร.วรงค์ ปวราจารย์, อ.ปรึกษาร่วม: รศ.ดร.พิชญ์ ศุภผล, 63 หน้า.

เส้นใยอะลูมินาขนาดนาโนสามารถที่จะสังเคราะห์ได้โดยใช้เทคนิคโซลเจลผสานกับการ ปั่นเส้นใยด้วยไฟฟ้าสถิต อะลูมิเนียมไอโซโพรพอกไซด์ถูกใช้เป็นแหล่งของอะลูมินา และพอลิไว นิลแอลกฮอลล์ถูกใช้เพื่อเป็นตัวช่วยสำหรับการผลิตเส้นใย ในขั้นตอนการเตรียมสารละลายเพื่อ นำไปผลิตเป็นเส้นใยนั้น อะลูมิเนียมไอโซโพรพอกไซค์จะทำปฏิกิริยาไฮโครไลซิสกับน้ำ สารละลายที่ได้จะถูกกวนจนได้เวลาที่เหมาะสม หลังจากนั้นพอลิไวนิลแอลกฮอลล์จะถูกเข้าไปเพื่อ ควบคุมความหนืดของสารละลายให้อยู่สภาวะที่เหมาะสม ซึ่งจะทำให้ได้สารละลายที่เป็นเนื้อ เดียวกันเพื่อนำไปใช้ในขั้นตอนของการปั่นเส้นใยด้วยไฟฟ้าสถิต เส้นใยที่ได้จากการปั่นด้วยไฟฟ้า สถิตนั้นจะเป็นเส้นใยคอมพอสิตระหว่างโบไมด์กับพอลิไวนิลแอลกฮอลล์ เปลี่ยนเป็นอะลูมินาในเฟสของอัลฟ่าเมื่อผ่านการเผาที่อุณหภูมิ 1,200 องศาเซลเซียส ผลจากการ วิเคราะห์พบว่าขนาดผลึกของเส้นใยที่ได้จากการปั่นด้วยไฟฟ้าสถิตนั้น จะมีขนาดที่เล็กกว่าผง อะลูมินาที่ได้จากสารละลายเดียวกัน เนื่องมาจากสัณฐานของเส้นใยขนาดนาโนจะควบคุมการโต ของผลึกในอยู่ในทิศทางเคียว จากการทดลองพบว่า ค่าความหนืดของสารละลายที่ใช้จะมีผลสำคัญ ต่อความเป็นรูปแบบเดียวกันของเส้นใย โดยค่าความหนืดนั้นจะมีการเปลี่ยนแปลงอย่างมากเมื่อ เปลี่ยนเวลาในการปั่นกวนสารละลายจาก 24 เป็น 48 ชั่วโมง นอกจากนั้นยังพบอีกว่าอุณหภูมิใน การเปลี่ยนเฟสของอะลูมินาจะสูงขึ้นเมื่อมีการเพิ่มปริมาณกรคให้กับสารละลาย ซึ่งจะส่งผลอย่าง ชัดเจนสำหรับผลิตภัณฑ์ที่อยู่ในรูปของเส้นใย

9	9 8	20034000
ภาควัชา	วิศวกรรมเคมี	ลายมือชื่อนี้สีดี
สาขาวิชา	วิศวกรรมเคมื่	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2550	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##4970469121: MAJOR CHEMICAL ENGINEERING

KEY WORD: ALUMINA / ELECTROSPINNING / NANOFIBER / PHASE

TRANSFORMATION / SYNTHESIS

PATTANASAK NUKSAWN: ALUMINA NANOFIBER SYNTHESIS BY COMBINED SOL-GEL AND ELECTROSPINNING TECHNIQUES.
THESIS ADVISOR: ASST. PROF. VARONG PAVARAJARN, Ph.D.,
THESIS CO-ADVISOR: ASSOC. PROF. PITT SUPAPHOL, Ph.D.

63 pp.

The combination of sol-gel and electrospinning techniques was used to produce alumina nanofibers. Aluminum isopropoxide (AIP) was used as an alumina source and Polyvinyl alcohol (PVA) was used as a spinning aid. For the preparation of the spinning solution, AIP was first hydrolyzed with water. The solution was further stirred for desired period of aging time. Then, PVA was added after the mixture became slurry to control solution viscosity. The homogenous solution thus prepared was used for electrospinning. The as-obtained electrospun fibers were in boehmite/PVA composite that could be converted into α -alumina via calcination at 1,20°C. The results show that the crystallite size of the electrospinning products is smaller than the products in powder form because the morphology as the nanofiber control in crystal growth into one dimension. Viscosity of the spinning solution was found to be an important factor affecting uniformity of the obtained fibers. The viscosity of the spinning solution changes strikingly within a short period of time from 24 to 48 hrs. In addition, it was found that the phase transformation of alumina within the products is greatly influenced by the amount of acid added into the spinning solution. The effect of the acid is more pronounced for the product in fiber form.

ACKNOWLEDGEMENTS

The author would like to express his greatest gratitude to his advisor, Assistant Professor Varong Pavarajarn, for his help, invaluable suggestions and guidance throughout the entire of this work. His precious teaching the way to be good in study and research has always been greatly appreciated. Although this work had obstacles, finally it could be completed by his advices. In addition, his friendliness motivated the author with strength and happiness to do this work. He would also like to gratefully acknowledge his co-advisor, Associate Professor Pitt Supaphol from The Petroleum and Petrochemical College, Chulalongkorn University, for a number of suggestions and kindness understanding.

The author wishes to express his thanks to Associate Professor Tawatchai Charinpanitkul who has been the chairman of the committee for this thesis, as well as Dr. Akawat Sirisuk and Assistant Professor Okorn Mekasuwandumrong, who have been his committee members. In addition, the many others, not specifically named, in Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, who have provided her with encouragement and co-operate along this study, please be ensured that he thinks of you.

Moreover, the author would like to thank the National Metal and Materials Technology Center for his fee discount of Transmission Electron Microscope (TEM) analysis. Finally, he would like to dedicate the achievement of this work to his dearest parents. Their unyielding support and unconditional love have always been in his mind.

CONTENTS

		Page
ABSTR	ACT (THAI)	iv
ABSTR	ACT (ENGLISH)	v
ACKNO	DWLEDGMENTS	vi
CONTE	ENTS	vii
LIST O	F TABLES	ix
LIST O	F FIGURES	x
CHAPT	ER	
I	INTRODUCTION	1
II	THEORY AND LITERATURE SURVEY	3
	2.1 Crystal Structure of Alumina.	3
	2.1.1 Alpha-alumina	3
	2.1.2 Boehmite	4
	2.1.3 Phase Transformation	5
	2.2 Sol-gel Process	6
	2.2.1 Fundamental of Sol-gel Processing	6
	2.2.2 Alumina Synthesis via Sol-gel Process	8
	2.3 Electrospinning	10
	2.3.1 Parameter Affecting Fiber Formation	11
	2.3.2 Applications of Electrospun Nanofibers	12
	2.3.3 Alumina Nanofibers via Electrospinning	12
III	EXPERIMENTAL	14
	3.1 Chemicals	14
	3.2 Experimental Proceduers	14
	3.2.1 Preparation of Spinning Solution	14
	3.3.1 Preparation of Alumina Composite Fibers	15
	3.3 Characterizations	16
	3.3.1 X-ray Diffractometry (XRD)	16

СНАРТ	ER
	3.3.2 Scanning Electron Microscopy (SEM)
	3.3.3 Fourier transforms infrared spectroscopy (FTIR)
	3.3.3 Thermogravimetric and Differential Thermal
	Analysis (TG- DTA)
	3.4.4 Transmission Electron Microscope (TEM)
	3.4.5 Viscosity Measurement
IV	RESULTS AND DISCUSSION
	4.1 Preliminary Experiments
	4.2 Effect of Morphology on Phase Transformation
	4.3 Effects of Aging Time
	4.4 Effects of Acid During Sol-gel process
V	CONCLUSIONS AND RECOMMENDATION
	5.1 Conclusions
	5.2 Recommendations for Future Work
REFER	ENCES
APPENI	DICES
API	PENDIX A: SYNTHESIS ALUMINA POWDER FROM SOL-
	GEL PROCESS WITH DIFFERENT
	PRESURSORS
AP	PENDIX B: LIST OF PUBLICATIONS
VITA	

LIST OF TABLES

TABLE		Page
4.1	Average crystallite size of alumina in products synthesized in	31

LIST OF FIGURES

FIGURE		Page
2.1	The hexagonal close-packed structure of α-alumina	3
2.2	Basal (0001) and prismatic (0110) phases in a hexagonal	
	structure of α-alumina	4
2.3	Transformation sequence of aluminum hydroxides	.5
4.1	XRD pattern of dried powder obtained from sol-gel process,	
	before calcination	19
4.2	XRD pattern of powder obtained from sol-gel process and	
	subsequently calcined at 1,200°C for 2 hrs	19
4.3	TEM micrographs of dried powder obtained from sol-gel	
	process: (a) low-magnification TEM image	20
4.4	XRD patterns of as-spun fibers obtained from electrospinning	
	process and fibers calcined at 1,200°C for 2 hrs	21
4.5	Thermogravimetric curves of the pure PVA analyzed in	
	oxygen atmosphere	22
4.6	SEM images of the as-spun composite fiber	23
4.7	SEM images of the fibers calcined at 1,200°C for 2 hrs	23
4.8	TEM micrographs of as-spun fibers calcined at 1,200°C for 2	
	hrs	24
4.9	Thermogravimetric curves of the boehmite powder analyzed in	
	oxygen atmosphere	25
4.10	Thermogravimetric curves of the as-spun fibers analyzed in	
	oxygen atmosphere	26
4.11	Derivatives of thermogravimetric curves for boehmite powders	
	from sol-gel process and as-spun fibers from electrospinning	
	techniques	26
4.12	XRD patterns of boehmite powders calcined at various	
	temperatures	28

FIGURE		Page
4.13	XRD patterns of electrospun fibers calcined at various	
	temperatures	30
4.14	TEM micrographs of as-spun fibers calcined at 1,000°C,	
	1,100°C, and 1,200°C for 2 hrs	33
4.15	TEM micrographs of electrospun fibers calcined at 1,200°C for	
	2 hrs	35
4.16	Viscosity of electrospinning solution with 5.75wt% PVA after	
	aged for different periods of time	36
4.17	Size distribution and SEM image for fibers electrospun after	
	aged for 8 hrs	38
4.18	Size distribution and SEM image for fibers electrospun after	
	aged for 24 hrs	38
4.19	XRD patterns of dried boehmite powders prepared from the	
	solution with acid-to-AIP molar ratio of 0.15:1 and 1.5:1	39
4.20	XRD patterns of boehmite powders prepared with acid-to-AIP	
	molar ratio of 0.15:1, after calcined at 1,200°C and 1,100°C for	
	2 hrs and that of the powders prepared with acid-to-AIP molar	
	ratio of 1.5:1, after calcined at 1,200°C and 1,100°C for 2 hrs	40
4.21	XRD patterns of electrospun nanofibers prepared with acid-to-	
	AIP molar ratio of 0.15:1, after calcined at 1,200°C and	
	1,100°C for 2 hrs and that of the powders prepared with acid-	
	to-AIP molar ratio of 1.5:1, after calcined at 1,200°C and	
	1,100°C for 2 hrs	41
4.22	TEM micrograph of the composite fibers prepared with acid-	
	to-AIP molar ratio of 0.15:1 and calcined at 1,100°C for 2 hrs	43
4.23	TEM micrograph of the composite fibers prepared with acid-	
	to-AIP molar ratio of 0.15:1 and calcined at 1,200°C for 2 hrs	43
4.24	TEM micrograph of the composite fibers prepared with acid-	
	to-AIP molar ratio of 1.5:1 and calcined at 1,100°C for 2 hrs	44
4.25	TEM micrograph of the composite fibers prepared with acid-	
	to-AIP molar ratio of 1.5:1 and calcined at 1,200°C for 2 hrs	44

FIGURE		Page
4.26	Normalized FTIR spectra of boehmite powders prepared with	
	acid-to-AIP molar ratio of 0.15:1 and 1.5:1	46
4.27	Normalized FTIR spectra of the fibers prepared with acid-to-	
	AIP molar ratio of 0.15:1, after calcined at 1,200°C and	
	1,100°C for 2 hrs and that of the fibers prepared with acid-to-	
	AIP molar ratio of 1.5:1, after calcined at 1,200°C and	
	1,100°C for 2 hrs	47
A1	XRD pattern of powder obtained from drying of	
	electrospinning solution by using aluminum isopropoxide and	
	aluminum tri-sec-butoxide as precursor	56
A2	XRD pattern of powder obtained from drying of	
	electrospinning solution and subsequently calcined α-Al ₂ O ₃	
	powders at 1,200°C for 2 hrs by using aluminum isopropoxide	
	and aluminum tri-sec-butoxide as precursor	57