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ABSTRACT

5672015063  Polymer Science Program
Paranya Chanajaree: Dielectric and Piezoelectric Behaviors of
Cellulose/ PVDF Composite Film Preparation By Melt Mixing
Method
Thesis Advisors: Asst. Prof. HathaikamManuspiya 115 pp.
Keywords:  Poly(vinylidene fluoride)/ Cellulose/ Melt process

Poly(vinylidene fluoride) (PVDF) and its copolymers are piezoelectric
polymers with growing applications in sensors and actuators. Generally, PVDF
demonstrates an ability to convert the mechanical energy into electrical energy and
vice versa. In this research, poly(vinylidene fluoride-co-Hexafluoropropylene)
(PVDF-FIFP)/cellulose composites were fabricated via twin screw extruder to achieve
the high dielectric and piezoelectric properties and also utilized as a touch sensor.
Two sources of cellulose-based materials, extracted microcrystalline cellulose (MCC)
from sugarcane hagasses in 1-20 wt.%, and extracted hacterial cellulose (BC) from
Nata de coco in 1-5 wt.%, were provided as an appropriate filler to improve the dipole
alignment of PVDF-HFP matrix. The cast film extruder was used to produce the
transparent composite films with unique properties. The increment in p-phase
crystalline presented with higher amount of cellulose, both MCC and BC. The
dielectric constant corresponded to piezoelectric coefficient was enhanced from 2.00
of neat PVDF-HFP to 3.75 with 10 wt.% MCC loading and 3.25 with 5 wt.% BC
loading. Besides, the presence of MCC and BC in the composite films leaded to an
improvement in thermal properties, and mechanical properties in terms of Young’s
modulus and tensile strength with no dimensional changes at 110°c due to the
excellent thermal, and mechanical properties of cellulose structure,
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