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ABSTRACT

5472049063:  Polymer Science Program
Tanatchpom Sirimekanont; Novel Electrospun Titanium (IV) Oxide
Composite Hollow Fibers as Anode in Lithium-ion Batteries.
Thesis Advisors: Prof. Pitt Supaphol and Dr. Korakot
Sombatmankhong 117 pp.

Keywords:  Electrospinning/ Lithium-ion batteries/ Anode/ Titanium oxide
nanofibers/ Hollow fibers

Nanostructured transition metal oxides have been developed as electrode
materials in Lithium-ion Batteries (LIBS) due to their ability to provide high capacity
and improved cycling performance. Among these types, titanium oxide (TiC=)
has attracted considerable interesting owing to its high lithium intercalation property,
minimal toxicity and small volume change during cycling. TiC>, however, has low
jonic and electronic conductivity. Therefore, this present work will focus on the
structural modification of TiG- nanofibers to improve their efficiency. Accordingly,
the hollow ZnO-TiU2 and Agzo-TiUz composite hollow fibers will be prepared
through coaxial electrospinning of the colloidal solution consisting of Titanium (IV)
isopropoxide/ Poly (vinyl acetate)/ Zn particles and Ag particles in case of AgaU-
TiCs2 fibers, followed by calcination in air at 500 °c 1h. Both of added Zn and Ag
particles are employed as seeds to generate the growth of ZnO and Ag2) crystals on
the surface of TiC2 using the hydrothermal treatment at various times and
temperatures. The average diameter of both types of the products obtained after
hydrothermal treatment increased with increasing time and temperature of
hydrothermal treatment. XRD patterns revealed well crystalline features of anatase
TiC2 with ZnO, and Agzo. Additionally, the surface area of the obtained hollow
fibers was observed by BET surface area. Among the hydrothermally treated ZnO-
TiCs2 composite hollow fibers, the fibers which were treated at 115°c 0.5 h provided
the highest surface area (25.164 mV') compared to the other hydrothermally treated
ones. But in case of Agzo-TiC» composite hollow fibers, the fibers which were
treated at 110 °c 1 hprovided the highest surface area (44.960 mV)-
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