#### REFERENCES

- Ajav, E.A., Singh, B., and Bhattacharya, T.K. (1999) Experimental study of some performance parameters of a constant speed stationary diesel engine using ethanol-diesel blends as fuel. <u>Biomass and Bioenergy</u>, 17, 357-365.
- Ali, Y. and Hanna, M.A. (1994) Alternative Diesel Fuels from Vegetable Oils. <u>Bioresource Technology</u>, 50, 153-163.
- Altin, R.C., Etinkaya, S., Yu<sup>\*</sup>cesu, H.S. (2001) The potential of using vegetable oil fuels as fuel for diesel engines. <u>Energy Conversion and Management</u>, 42, 529–538.
- Altun, S., Öner, C., Yasar, F., and Adin, H. (2011) Effect of n-butanol blending with a blend of diesel and biodiesel on performance and exhaust emissions of a diesel engine. <u>Industrial and Engineering Chemistry Research</u>, 50, 9425-9430.
- Arpornpong, N., Attaphong, C., Charoensaeng, A., Sabatini, D.A., and Khaodhiar, S.
  (2014) Ethanol-in-palm oil/diesel microemulsion-based biofuel: Phase behavior, viscosity, and droplet size. Fuel, 132, 101-106
- Attaphong, C., Do, L., and Sabatini, D.A. (2012) Vegetable oil-based microemulsions using carboxylate-based extended surfactants and their potential as an alternative renewable biofuel. <u>Fuel</u>, 94, 606-613.
- Attaphong, C. and Sabatini D.A. (2013) Phase Behaviors of Vegetable Oil-Based
   Microemulsion Fuels: The Effects of Temperatures, Surfactants, Oils, and
   Water in Ethanol. <u>Energy and Fuels</u>, 27, 6773-6780.
- Balat, M. (2008). Modeling vegetable oil viscosity. <u>Energy Sources Part A</u>, 30, 1856–1869.
- Bernat, E., Jordi-Roger, R., Grau, B., Antoni, R., and Rita, P. (2012) Temperature dependence of density and viscosity of vegetable oils. <u>Biomass and Energy</u>, 42, 164–171.
- Bourrel, M. and Schechter R.S. (1988) <u>Microemulsions and Related Systems:</u> <u>Formulation, Solvency, and Physical Properties</u>. New York: Marcel Dekker.

- Chang, D.Y.Z., Van, G.J.H., Lee, I., Johnson, L.A., Hammond, E.G., and Marley,
   S.J. (1996) Fuel properties and emissions of soybean oil esters as diesel
   fuel. Journal of the American Oil Chemists' Society, 73, 1549–1555.
- Che, M.Y.B., Haryati, T., Ghazali, H.M., and Asbi, B.A. (1999) Composition and Thermal Profile of Crude Palm Oil and Its Products. <u>Journal of the</u> <u>American Oil Chemists' Society</u>, 76(2), 237–242.
- Chotwichien, A., Luengnaruemitchai, A., and Jai-In, S. (2009) Utilization of palm oil alkyl esters as an additive in ethanol-diesel and butanol-diesel blends.
   <u>Fuel</u>, 88, 1618-i624.
- Clark, N.A., Lunacek, J.H., and Benedek, G.B. (1970) A study of Brownian Motion Using Light Scattering. <u>American Journal of Physics</u>, 38(5).
- Do, L.D., Singh, V., Chen, L., Kibbey, T.C.G., Gollahalli, S.R., and Sabatini, D.A. (2011) Algae, canola, or palm oils-diesel microemulsion fuels: phase behaviors, viscosity, and combustion properties. <u>International Journal of Green Energy</u>, 8, 748-767.
- Dorfler, H.D. and Swaboda, C. (1993) Some select problems of nonaqueousmicroemulsions-phase diagrams and variation of the composition in the quaternary and ternary systems. <u>Colloid and Polymer</u> <u>Science</u>, 271, 586–599.

- Dunn, R.O. and Bagby, M.O. (2000) Low-temperature phase behavior of vegetable oil/co-solvent blends as alternative diesel fuel. Journal of the American Oil <u>Chemists' Society</u>, 77, 1315–1323.
- Dunn, R.O. and Bagby, M.O. (1994) Solubilization of methanol and triglycerides: unsaturated long-chain fatty alcohol/medium-chain alkanol mixed amphiphile systems. <u>Journal of the American Oil Chemists' Society</u>, 71, 101–108.
- Esteban, B., Riba, J.R., Baquero, G., Rius, A., and Puig, R. (2012) Temperature dependence of density and viscosity ofvegetable oils. <u>Biomass and</u> <u>Bioenergy</u>, 42, 164-171.

- Evangelos, G.G., Constantine, D.R., Athanasios, M.D., and Dimitrios, C.R. (2013)
   Exhaust emissions with ethanol or n-butanol diesel fuel blends during
   transient operation: A review. <u>Renewable and Sustainable Energy Reviews</u>, 17, 170-190.
- Fernando, S. and Hann,a M. (2005) Phase behavior of the ethanol-biodiesel-diesel microemulsion system. <u>Transactions of the American Society of</u> <u>Agricultural Engineers</u>, 48(3), 903–908.
- Galan, M., Bonet, J., Sire, R., Reneaume, J., and Plesu, A.E. (2009) From residual to useful oil:revalorization of glycerine from the biodiesel synthesis. <u>Bioresource Technology</u>, 100, 3775–3778.
- Goering, C.E. and Fry, B. (1984) Engine durability screening test of adiesel oil/soy oil/alcohol microemulsion fuel. Journal of the American Oil Chemists' Society, 61(10), 1627–1632.
- Hansen, A.C., Zhang, Q., and Lyne, P.W.L. (2005) Ethanol-diesel fuel blends a review. <u>Bioresource Technology</u>, 96, 277-285.
- He, B.Q., Shuai, S.J., Wang, J.X., and He, H. (2003) The effect of ethanol blended diesel fuels on emissions from diesel engine. <u>Atmospheric Environment</u>, 37, 4965-4971.
- Ho, Y.K., Mjalli, F.S., and Yeoh, H.K. (2010) Multivariable Adaptive Predictive Model Based Control of a Biodiesel Transesterification Reactor. <u>Journal of</u> <u>Applied Science</u>, 10(12), 1019-1027.
- Jan, C.J.B., Natale, P., and Stefano, C. (2010) Sustainability and use of biodiesel. <u>Biodiesel Science and Technology</u>, 14, 625-712.
- Lin, J., Gaustad, G., and Trabold, T.A. (2013) Profit and policy implications of producing biodiesel-ethanol-diesel fuel blends to specification. <u>Applied</u> <u>Energy</u>, 104, 936-944.
- Lujaji, F., Kristof, L., Bereczky, A., and Mbarawa, M. (2011) Experimental investigation of fuel properties, engine performance, combustion and emissions of blends containing croton oil, butanol, and diesel on a CI engine. <u>Fuel</u>, 90, 505-510.

- Ma, F. and Hanna, M.A. (1999) Biodiesel production: a review. BioresourceTechnology, 70, 1–15.
- Machacon, H.T.C., Shiga, S, Karasawa, T., and Nakamura, H. (2001) Performance and emissioncharacteristics of a diesel enginefueled with coconut oil diesel fuel blend. <u>Biomass and Bioenergy</u>, 20, 63–69.
- Meilita, T.S., Sukardi, Ani, S., and Romli, M. (2001) Biodisel Production Cost Assessment from Different Palm Oil Raw Material as Feedstock. <u>Industrial</u> <u>Engineering Letters</u>, 5.
- Mittelbach, M. and Remschmidt, C. (2004) Biodiesel The Comprehensive Handbook. Graz, Austria: M. Mittelbach.
- Mukherjee, I. and Sovacool, B.K. (2014) Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malysia, and Thailand. <u>Renewable and Sustainable Energy Reviews</u>, 37, 1–12.
- Neuma de Castro Dantas, T., Silva, A.C., and Neto, A.A.D. (2001) Newmicroemulsionsystems using diesel and vegetable oils. <u>Fuel</u>, 80, 75–81.
- Nguyen, T., Abraham, J., Ramallo, M., Wagner, D., and McLennan, J. (2012)
  Formulation of Canola-Diesel Microemulsion Fuels and Their Selective
  Diesel Engine Performance. Journal of the American Oil Chemists' Society, 89, 1905-1912.
- Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., and Della, P.C. (2007) From glycerol tovalue-added products. <u>Angewandte Chemie International</u> <u>Edition</u>, 46, 4434–4440.
- Ploysrimongkol, J. and Tongcumpou, C. (2009) Optimising palm oil-ethanol microemulsionfor use as biofuel. <u>Journal of Scientific Research</u> <u>Chulalongkorn University</u>, 34, 29–35.
- Pramanik, K. (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. <u>Renewable Energy</u>, 28, 239–248.
- Pryde, E.H. (1983) Vegetable oils as diesel fuels: overview. Journal of the American Oil Chemists' Society, 60(8), 1557–1558.

σ

- Rakhi, N.M., Mousumi, C., and Parimal, A.P. (2012) Comparative study of stability and properties of alcohol-diesel blends. <u>Indian Journal of Chemical</u> <u>Technology</u>, 19, 134–139.
- Rosen, M.J. (1989) <u>Surfactants and Interfacial Phenomena</u>, 2nd ed. New York: John Wiley.
- Rosen, M.J. (2004) <u>Surfactants and Interfacial Phenomena</u>, 3rd ed. Hoboken, NJ.: Wiley-Interscience.
- Ryan, T.W., Dodge, L.G., and Callahan, T.J. (1984) The effects of vegetableoil properties on injection and combustion in two different diesel engines. <u>Journal of the American Oil Chemists' Society</u>, 61(10), 1610–1619.
- Rupilius, W. and Ahmad, S. (2007) Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. <u>European Journal of Lipid Science</u> <u>and Technology</u>, 109, 433-439.
- Schwab, A.W. and Pryde, E.H. (1985) Triglyceride methanol microemulsions. Journal of Dispersion Science and Technology, 6(5), 563–574.
- Seddon, R.H.(1942) Vegetable oils in commercial vehicles. <u>Gas Oil Power</u>, 37, 136–41.
- Singh, P., Khurma, J., and Singh, A. (2010) Coconut oil based hybrid fuels as alternative fuelfor diesel engines. <u>American Journal of Environmental</u> <u>Sciences</u>, 6(1), 69–75.
- Sukjit, E., Herreros, J.M., Dearn, K.D., Garcîa-Contreras, R., and Tsolakis, A.
  (2012) The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol-diesel blends. <u>Energy</u>, 42, 364-374.
- Sukjit, E., Herreros, J.M., Piaszyk, J., Dearn, K.D., and Tsolakis, A. (2013) Finding synergies in fuels properties for the design of renewable fuels-hydroxylated biodiesel effects on butanol-diesel blends.Environmental. <u>Science and</u> <u>Technology</u>, 47(7), 3535-3542.
- Xing, C.L., Jian, G.Y., Wu, G.Z., and Zhen, H. (2004) Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol-diesel blend fuel. <u>Fuel</u>, 83, 2013-2020.

D.

- Yoshimoto, Y., Kinoshita, E., Shanbu, L., and Ohmura, T. (2013) Influence of 1butanol addition on diesel combustion with palm oil methyl ester/gas oil blends. <u>Energy</u>, 61, 44-51.
- Yusnida, M., Kiasatina, A., Mohd, A.A., Zoukifli, A., and Mohamad, K. (2013)
  Breakdown Strength Characteristic of RBDPO and Mineral Oil Mixture as an Alternative Insulating Liquid for Transformer. <u>Jurnal Teknologi</u>, 64(4), 69-72.
- Zhang, Z.H. and Balasubramanian, R. (2014) Influence of butanol addition to diesel-biodiesel blend on engine performance and particulate emissions of a stationary diesel engine. <u>Applied Energy</u>, 119, 530-536.
- Timothy, J.R. "Anionic, nonionic, cationic what do they all mean?." Cleanfax. 13 Oct 2010. 2 Sept 2014 < http://www.cleanfax.com/articles/anionicnonionic-cationic-mdash-what-do-they-all-mean >

a

.

## APPENDICES

•

# Appendix A Supplemental Materials for Phase Behavior Study

2

**Table A1** Composition of MO/Oc system at surfactant/cosurfact molar ratio of 1:8and palm oil/diesel ratio of 1:1 (v/v) with ethanol

|              | Concentra | ntion (M) | Composi                 | iton for th | ase Diagram | (%)   |
|--------------|-----------|-----------|-------------------------|-------------|-------------|-------|
| Alcohols/Uil | мо        | Oc        | Alcohol<br>(EtOH alone) | Ons         | MO+Oc       | Total |
| 0/5          | -         | -         | 0                       | 100         | 0           | 100   |
| 175          | 0.80      | 0.1000    | 14.17                   | 70.86       | 14.97       | 100   |
| 2/5          | 1.10      | 0.1375    | 23.00                   | 57.51       | 19.49       | 100   |
| 3/5          | 1.20      | 0.1500    | 29.67                   | 49.44       | 20.89       | 100   |
| 4/5          | 1.30      | 0.1625    | 34.56                   | 43.20       | 22.24       | 100   |
| 5/5          | 1.40      | 0.1750    | 38.23                   | 38.22       | 23.55       | 100   |
| 5/4          | 1.40      | 0.1750    | 42.47                   | 33.98       | 23.55       | 100   |
| 5/3          | 1.50      | 0.1875    | 46.99                   | 28.20       | 24.81       | 100   |
| 5/2          | 1.60      | 0.2000    | 52.83                   | 21.13       | 26.04       | 100   |
| 5/1          | 1.60      | 0.2000    | 61.64                   | 12.32       | 26.04       | 100   |
| 5%0          | -         | -         | 100                     | 0           | 0           | 100   |

|              | Concentra | tion (M) | Composition for Pliase Diagram (%) |       |       |       |  |
|--------------|-----------|----------|------------------------------------|-------|-------|-------|--|
| Alconolizati | MO        | Oc       | Alcohols<br>(EtOH#BuOE)            | Oil   | M@+Qc | Total |  |
| 0/5          | -         | -        | 0                                  | 100   | 0     | 100   |  |
| 175          | 0.16      | 0.0200   | 16.10                              | 80.50 | 3.40  | 100   |  |
| 275          | 0.16      | 0.0200   | 27.60                              | 69.00 | 3.40  | 100   |  |
| 3/5          | 0.24      | 0.0300   | 35.62                              | 59.37 | 5.02  | 100   |  |
| 475          | 0.28      | 0.0400   | 41.87                              | 52.33 | 5.80  | 100   |  |
| 575          | 0.28      | 0.0400   | 47.10                              | 47.10 | 5.80  | 100   |  |
| 574          | 0.28      | 0.0400   | 52.33                              | 41.87 | 5.80  | 100   |  |
| 5/3          | 0.28      | 0.0400   | 58.87                              | 35.32 | 5.80  | 100   |  |
| 5/2          | 0.40      | 0.0500   | 65.65                              | 26.26 | 8.09  | 100   |  |
| 571          | 0.40      | 0.0500   | 76.59                              | 15.32 | 8.09  | 100   |  |
| 5/0          | -         | -        | 100                                | 0     | 0     | 100   |  |

**Table A2** Composition of MO/Oc system at surfactant/cosurfact molar ratio of 1:8and palm oil/diesel ratio of 1:1 (v/v) with EtOH/BuOH ratio of 1:1 (v/v)

|               | Concentra | tion (M) | Composition for Phase Diagram (%) |       |         | 6)    |
|---------------|-----------|----------|-----------------------------------|-------|---------|-------|
| Alconois/Oil- | POME      | Oc       | Alcoluis<br>(EtOE alone)          | Oil   | POME+Oc | Total |
| 0/5           | -         | -        | 0                                 | 100   | 0       | 100   |
| 1/5           | 0.90      | 0.1125   | 14.12                             | 70.58 | 15.30   | 100   |
| 2/5           | 1.10      | 0.1375   | 23.40                             | 58.52 | 18.08   | 100   |
| 3/5           | 1.30      | 0.1625   | 30.22                             | 50.37 | 19.41   | 100   |
| 4/5           | 1.40      | 0.1750   | 34.70                             | 43.37 | 21.93   | 100   |
| 5/5           | 1.50      | 0.1875   | 38.43                             | 38.43 | 23.14   | 100   |
| 5/4           | 1.60      | 0.2000   | 42.05                             | 33.64 | 24.31   | 100   |
| 5/3           | 1.70      | 0.2125   | 46.60                             | 27.96 | 25.44   | 100   |
| 5/2           | 1.80      | 0.2250   | . 52.47                           | 20.99 | 26.54   | 100   |
| 5%1           | 1.90      | 0.2375   | 60.33                             | 12.06 | 27.61   | 100   |
| <b>5/0</b>    | -         |          | 100                               | 0     | 0       | 100   |

Table A3 Composition of POME/Oc system at surfactant/cosurfact molar ratio of1:8 and palm oil/diesel ratio of 1:1 (v/v) and ethanol

÷

|             | Concentra | tion (M) | Compositio              | Composition for Phase Diagram (%) |         |       |
|-------------|-----------|----------|-------------------------|-----------------------------------|---------|-------|
| Alconois/Ch | POME      | Ос       | Alcohots<br>(EtDH+BuOH) | Oil                               | РОМЕ±Ос | Røtal |
| 0/5         | -         | -        | 0                       | 100                               | 0       | 100   |
| 175         | 0.20      | 0.0250   | 16.02                   | 80.12                             | 3.86    | 100   |
| 275         | 0.25      | 0.0313   | 27.21                   | 68.02                             | 4.78    | 100   |
| 3/5         | 0.35      | 0.0438   | 35.04                   | 58.40                             | 6.56    | 100   |
| 4/5         | 0.35      | 0.0438   | 41.53                   | 51.91                             | 6.56    | 100   |
| 5/5         | 0.35      | 0.0438   | 46.72                   | 46.72                             | 6.56    | 100   |
| 5/4         | 0.40      | 0.0500   | 51.43                   | 41.14                             | 7.43    | 100   |
| 5/3         | 0.40      | 0.0500   | 57.86                   | 34.71                             | 7.43    | 100   |
| .572        | 0.45      | 0.0563   | 65.51                   | 26.20                             | 8.28    | 100   |
| 5%1         | 0.45      | 0.0563   | 76.43                   | 15.29                             | 8.28    | 100   |
| 570         | -         | -        | 100                     | 0                                 | 0       | 100   |

**Table A4** Composition of POME/Oc system at surfactant/cosurfact molar ratio of1:8 and palm oil/diesel ratio of 1:1 (v/v) with EtOH/BuOH ratio of 1:1 (v/v)

# Appendix B Supplemental Materials for Fuel Properties Study

These tables show composition of microemulsion biofuels used in this study in unit of volume percentage. There are three main components in system surfactant phase, oil phase and alcohol phase.

 Table B1
 Composition of microemulsion biofuels with methyl oleate (MO) as

 surfactant and 1-octanol as cosurfactant

|                     | Composition (Vol.%)                                           |                            |               |         |  |  |  |
|---------------------|---------------------------------------------------------------|----------------------------|---------------|---------|--|--|--|
| Sample<br>EtOH:BuOH | Surfactant Phase Oil Phase                                    |                            | Alcohol Phase |         |  |  |  |
| Ratio               | Surfactant/Cosurfactant<br>(1:8 molar ratio)<br>MO Surfactant | Palm Oil/Diesel<br>(50:50) | Ethanol       | Butanol |  |  |  |
| 0:100               | -                                                             | 80.0                       | -             | 20.0    |  |  |  |
| 30:70               | · -                                                           | 80.0                       | 6.0           | 14.0    |  |  |  |
| 50:50               | 10.0                                                          | 70.0                       | 10.0          | 1.9.0   |  |  |  |
| 70:30               | 14.8                                                          | 65.2                       | 14.0          | 6.0     |  |  |  |
| 80:20               | 18.8                                                          | 61.2                       | 16.0          | 4.0     |  |  |  |
| 90:10               | 21.4                                                          | 58.6                       | . 18.0        | 2.0     |  |  |  |
| 100:0               | 24.0                                                          | 56.0                       | 20.0          | -       |  |  |  |

σ

**Table B2** Composition of microemulsion biofuels with palm olein methyl ester(POME) as surfactant and 1-octanol as cosurfactant

|                     | Composition (Vol.%)                                             |                            |         |         |  |  |  |  |
|---------------------|-----------------------------------------------------------------|----------------------------|---------|---------|--|--|--|--|
| Sample<br>EtOH:BuOH | Surfactant Phase                                                | Oil Phase                  | Alcoho  | l Phase |  |  |  |  |
| Ratio               | Surfactant/Cosurfactant<br>(1:8 molar ratio)<br>POME Surfactant | Palm Oil/Diesel<br>(50:50) | Ethanol | Butanol |  |  |  |  |
| 0:100               | -                                                               | 80.0                       | -       | 20.0    |  |  |  |  |
| 30:70               |                                                                 | 80.0                       | 6.0     | 14.0    |  |  |  |  |
| 50:50               | 9.8                                                             | 70.2                       | 10.0    | 10.0    |  |  |  |  |
| 70:30               | 14.8                                                            | 65.2                       | 14.0    | 6.0     |  |  |  |  |
| 80:20               | 17.8                                                            | 62.2                       | 16.0    | 4.0     |  |  |  |  |
| 90:10               | 21.0                                                            | 59.0                       | 18.0    | 2.0     |  |  |  |  |
| 100:0               | 23.0 0                                                          | 57.0                       | 20.0    | -       |  |  |  |  |

-

o

 Table B3
 Composition of RBDPO microemulsion biofuels system with methyl

 oleate (MO) as surfactant and 1-octanol as cosurfactant

|                     | Composition (Vol.%)                                           |                         |               |         |  |  |  |  |
|---------------------|---------------------------------------------------------------|-------------------------|---------------|---------|--|--|--|--|
| Sample<br>EtOH:BuOH | Surfactant Phase                                              | Oil Phase               | Alcohol Phase |         |  |  |  |  |
| Ratio               | Surfactant/Cosurfactant<br>(1:8 molar ratio)<br>MO Surfactant | RBDPO/Diesel<br>(50:50) | Ethanol       | Butanol |  |  |  |  |
| 0:100               | -                                                             | 80.0                    | -             | 20.0    |  |  |  |  |
| 30:70               | -                                                             | 80.0                    | 6.0           | 14.0    |  |  |  |  |
| 50:50               | 8.8                                                           | 71.2                    | 10.0          | 10.0    |  |  |  |  |
| 70:30               | 14.2                                                          | 65.8                    | 14.0          | 6.0     |  |  |  |  |
| 100:0               | 23.6                                                          | 56.4                    | 20.0          | -       |  |  |  |  |

o

**Table B4** Composition of RBDPO microemulsion biofuels system with palm oilmethyl ester (POME) as surfactant and 1-octanol as cosurfactant

| •                   | Composition (Vol.%)                                             |                         |         |         |  |  |  |  |
|---------------------|-----------------------------------------------------------------|-------------------------|---------|---------|--|--|--|--|
| Sample<br>EtOH:BuOH | Surfactant Phase                                                | Oil Phase               | Alcoho  | l'Phase |  |  |  |  |
| Ratio               | Surfactant/Cosurfactant<br>(1:8 molar ratio)<br>POME Surfactant | RBDPO/Diesel<br>(50:50) | Ethanol | Butanol |  |  |  |  |
| 0:100               | -                                                               | 80.0                    | -       | 20.0    |  |  |  |  |
| 30:70               | -                                                               | 80.0                    | 6.0     | 14.0    |  |  |  |  |
| 50:50               | 7.8                                                             | 72.2                    | 10.0    | 10.0    |  |  |  |  |
| 70:30               | 13.4                                                            | 66.6                    | 14.0    | 6.0     |  |  |  |  |
| 100:0               | 21.8                                                            | 58.2                    | 20.0    | -       |  |  |  |  |

**Table B5** Composition of microemulsion biofuels with MO as surfactant and 1-octanol as cosurfactant at palm oil/diesel ratio of 30:70

•

|                     | Composition (Vol.%)                                             |                            |                 |      |  |  |  |  |
|---------------------|-----------------------------------------------------------------|----------------------------|-----------------|------|--|--|--|--|
| Sample<br>EtOH:BuOH | Surfactant Phase                                                | Oil Phase                  | Alcohol Phase   |      |  |  |  |  |
| Ratio               | Surfactant/Cosurfactant<br>(1:8 molar ratio)<br>POME Surfactant | Palm Oil/Diesel<br>(50:50) | Ethanol Butanol |      |  |  |  |  |
| 50:50               | 10.0                                                            | 70.0                       | 10.0            | 10.0 |  |  |  |  |
| 80:20               | 18.8                                                            | 61.2                       | 16.0            | 4.0  |  |  |  |  |
| 90:10               | 21.4                                                            | 58.6                       | 18.0            | 2.0  |  |  |  |  |

**Table B6** Composition of microemulsion biofuels with POME as surfactant and 1-octanol as cosurfactant at palm oil/diesel ratio of 30:70

|                     | Composition (Vol.%)                                             |                            |         |         |  |  |  |  |
|---------------------|-----------------------------------------------------------------|----------------------------|---------|---------|--|--|--|--|
| Sample<br>EtOH:BuOH | Surfactant Phase                                                | Oil Phase                  | Alcoho  | l Phase |  |  |  |  |
| Ratio               | Surfactant/Cosurfactant<br>(1:8 molar ratio)<br>POME Surfactant | Palm Oil/Diesel<br>(50:50) | Ethanol | Butanol |  |  |  |  |
| 50:50               | 9.8                                                             | 71.2                       | 10.0    | 10.0    |  |  |  |  |
| 80:20               | 17.8                                                            | 62.2                       | 16.0    | 4.0     |  |  |  |  |
| 90:10               | 21.0                                                            | 59.0                       | 18.0    | 2.0     |  |  |  |  |

66

.

### Appendix C Supplemental Materials for Viscosity Study

### 1. Kinematic Viscosity Calculation

The kinematic viscosity of the microemulsion biofuels can be measured by Canon-Fenske type viscometer (ASTM D 445). Kinematic viscosity calculated using Equation C1, which is provided by the manufacturer of the viscometer:

$$\mu = Kt$$
(C1)

where

 $\mu$  is Kinematic viscosity (cSt)

K is Viscosity constant (K=0.01606 cSt/s at 40  $^{\rm o}$ C)

t is Time of sample flow in viscometer (second)

Example : The sample kinematic viscosity calculation of methyl oleate/1-octanol in palm oil/diesel blend with ethanol can be shown as follows:

t =  $439 \sec$ K =  $0.01606 \operatorname{cSt/s}$ Therefore;

 $\mu$  = (0.01606 cSt/s)(439 sec) = 7.05 cSt

# 2. Raw Data of Kinematic Viscosity in Palm Oil Systems

Table C1 Time and kinematic viscosity of microemulsion biofuels blends at a surfactant/cosurfactant at molar ratio of 1:8 with MO as surfactant and palm oil/diesel 1:1 (v/v) with 20 vol.% of alcohols

| Sample      |     | Time (s) |     |       | Viscos | sity (cSt) |         |
|-------------|-----|----------|-----|-------|--------|------------|---------|
| (EtOH:BuOH) | .#1 | #2       | #3  | #1 +  | #2     | #3         | Average |
| 0:100       | 497 | 499      | 489 | 7.982 | 8.014  | 7.853      | 7.950   |
| 30:70       | 478 | 471      | 474 | 7.677 | 7.564  | 7.612      | .7.618  |
| 50:50       | 439 | 432      | 440 | 7.050 | 6.938  | 7.066      | 7.018   |
| 30:70       | 397 | 391      | 397 | 6.376 | 6.279  | 6.376      | 6.344   |
| 20:80       | 365 | 372      | 367 | 5.862 | 5.974  | 5.894      | 5.910   |
| 10:90       | 362 | 371      | 359 | 5.814 | 5.958  | 5.766      | 5.846   |
| 0:100       | 354 | 352      | 356 | 5.685 | 5.653  | 5.717      | 5.685   |

σ

68

o

**Table C2** Time and kinematic viscosity of microemulsion biofuels blends at a surfactant/cosurfactant at molar ratio of 1:8 with POME as surfactant and palm oil/diesel 1:1 (v/v) with 20 vol.% of alcohols

| Sample      |     | Time (s) | )   |       | Miscos | ity (oSt) |         |
|-------------|-----|----------|-----|-------|--------|-----------|---------|
| (EtOH:BuOH) | #1  | #2       | #3  | #1    | #2     | #3        | Average |
| 0:100       | 497 | 499      | 489 | 7.982 | 8.014  | 7.853     | 7.950   |
| 30:20       | 478 | 471      | 474 | 7.677 | 7.564  | 7.612     | 7.618   |
| 50:50       | 396 | 401      | 395 | 6.360 | 6.440  | 6.344     | 6.381   |
| 30:20       | 395 | 392      | 385 | 6.344 | 6.296  | 6.183     | 6.274   |
| 20:80       | 372 | 382      | 382 | 5.974 | 6.135  | 6.135     | 6.081   |
| 10:90       | 365 | 371      | 367 | 5.862 | 5.958  | 5.894     | 5.905   |
| 0:100       | 347 | 350      | 343 | 5.573 | 5.621  | 5.509     | 5.567   |

#### 3. Raw Data of Kinematic Viscosity in RBDPO Systems

D

**Table C3** Time and kinematic viscosity of microemulsion biofuels blends at a surfactant/cosurfactant at molar ratio of 1:8 with MO as surfactant and RBDPO/diesel 1:1 (v/v) with 20 vol.% of alcohols

| Sample      |     | Time (s) | )   | Viscosity (cSt) |       |       |         |  |
|-------------|-----|----------|-----|-----------------|-------|-------|---------|--|
| (EtOH:BuOH) | ·#1 | #2       | #3  | #1              | #2    | #3    | Average |  |
| 0:100       | 485 | 482      | 477 | 7.789           | 7.741 | 7.661 | 7.730   |  |
| 30:70       | 462 | 466      | 459 | 7.420           | 7.484 | 7.372 | 7.425   |  |
| 50:50       | 430 | 427      | 435 | 6.906           | 6.858 | 6.986 | 6.917   |  |
| 30:70       | 388 | 380      | 385 | 6.231           | 6.103 | 6.183 | 6.172   |  |
| 0:100       | 349 | 348      | 352 | 5.605           | 5.589 | 5.653 | 5.616   |  |

Table C4Time and kinematic viscosity of microemulsion biofuels blends at asurfactant/cosurfactant at molar ratio of 1:8 with POME as surfactant andRBDPO/diesel 1:1 (v/v) with 20 vol.% of alcohols

| Sample      |     | Time (s | )   | Viscosity (cSt) |       |       |         |  |
|-------------|-----|---------|-----|-----------------|-------|-------|---------|--|
| (EtOH:BuOH) | #1  | #2      | #3  | #1              | #2 .  | #3    | Average |  |
| 0:100       | 485 | 482     | 477 | 7.789           | 7.741 | 7.661 | 7.730   |  |
| 30:70       | 462 | 466     | 459 | 7.420           | 7.484 | 7.372 | 7.425   |  |
| 50:50       | 390 | 392     | 399 | 6.263           | 6.296 | 6.408 | 6.322   |  |
| 30:70       | 385 | 369     | 377 | 6.183           | 5.926 | 6.055 | 6.055   |  |
| 0:100       | 344 | 336     | 329 | 5.525           | 5.396 | 5.284 | 5.402   |  |

### 4. Raw Data of Kinematic Viscosity in Palm Oil System (Palm Oil:Diesel = 30:70)

**Table C5** Time and kinematic viscosity of microemulsion biofuels blends at a surfactant/cosurfactant at molar ratio of 1:8 with MO and POME as surfactants and palm oil/diesel 30:70 (v/v) with 20 vol.% of alcohols

o.

| Sample |        | Time (s) |     |     | Viscosity (cSt) |       |       |         |
|--------|--------|----------|-----|-----|-----------------|-------|-------|---------|
| (EtOH  | :BuOH) | #1       | #2  | #3  | #1              | #2    | #3    | Average |
| 50:50  | MO     | 304      | 304 | 312 | 4.882           | 4.882 | 5.011 | 4.925   |
| 50.50  | POME   | 299      | 297 | 300 | 4.802           | 4.770 | 4.818 | 4.797   |
| 80.20  | MO     | 283      | 287 | 276 | 4.545           | 4.609 | 4.433 | 4.529   |
| 80.20  | POME   | 274      | 285 | 279 | 4.400           | 4.577 | 4.481 | 4.486   |
| 00.10  | MO     | 271      | 278 | 267 | 4.352           | 4.465 | 4.288 | 4.368   |
| 50.10  | POME   | 263      | 281 | 269 | 4.224           | 4.513 | 4.320 | 4.352   |

Appendix D Supplemental Materials for Droplet Size Study







Figure D1 Droplet size of palm oil/diesel blend at ratio 1:1 (v/v), MO as surfactant and 1-octanol mixed at a molar ratio of 1:8 and EtOH/BuOH ratio of 0:100.



Figure D2 Droplet size of palm oil/diesel blend at ratio 1:1 (v/v), MO as surfactant and 1-octanol mixed at a molar ratio of 1:8 and EtOH/BuOH ratio of 50:50.



Figure D3 Droplet size of palm oil/diesel blend at ratio 1:1 (v/v), MO as surfactant and 1-octanol mixed at a molar ratio of 1:8 and EtOH/BuOH ratio of 100:0.

### 2. Raw Data of Droplet Size in POME Systems



Figure D4 Droplet size of palm oil/diesel blend at ratio 1:1 (v/v), POME as surfactant and 1-octanol mixed at a molar ratio of 1:8 and EtOH/BuOH ratio of 0:100.

σ



Figure D5 Droplet size of palm oil/diesel blend at ratio 1:1 (v/v), POME as surfactant and 1-octanol mixed at a molar ratio of 1:8 and EtOH/BuOH ratio of 50:50.



Figure D6 Droplet size of palm oil/diesel blend at ratio 1:1 (v/v), POME as surfactant and 1-octanol mixed at a molar ratio of 1:8 and EtOH/BuOH ratio of 100:0.

σ

# Appendix E Supplemental Materials for Density Determination

|                       |                        |       | 1.0   |         |  |  |  |
|-----------------------|------------------------|-------|-------|---------|--|--|--|
| Sample<br>(EtOH;BuOH) | Density (g/mL) at 25°C |       |       |         |  |  |  |
|                       | #1                     | #2    | #3    | Average |  |  |  |
| 0:100                 | 0.856                  | 0.851 | 0.850 | 0.852   |  |  |  |
| 30:70                 | 0.850                  | 0.848 | 0.856 | 0.851   |  |  |  |
| 50:50                 | 0.846                  | 0.849 | 0.850 | 0.848   |  |  |  |
| 30:70                 | 0.839                  | 0.840 | 0.846 | 0.842   |  |  |  |
| 100:0                 | 0.832                  | 0.830 | 0.838 | 0.833   |  |  |  |

 Table E1
 Density of MO system

| Table E2 | Density | of POME    | system |
|----------|---------|------------|--------|
|          | Density | of i Offic | 3,500  |

σ

.

| Sample      | Density (g/mL) at 25°C |       |       |         |  |  |  |
|-------------|------------------------|-------|-------|---------|--|--|--|
| (EtOH:BuOH) | #1                     | #2    | #3    | Average |  |  |  |
| 0:100       | 0.856                  | 0.851 | 0.850 | 0.852   |  |  |  |
| 30:70       | 0.850                  | 0.848 | 0.856 | 0.851   |  |  |  |
| 50:50       | 0.846                  | 0.840 | 0.850 | 0.845   |  |  |  |
| 30:70       | 0.838                  | 0.845 | 0.838 | 0.840   |  |  |  |
| 100:0       | 0.830                  | 0.820 | 0.838 | 0.829   |  |  |  |

-

.

#### Appendix F HLB Calculation of Nonionic Surfactants

HLB calculation for nonionic products is obtained with the Griffin formula (Equation F1):

$$HLB = 20 \times \frac{MW_{H}}{MW_{H} + MW_{L}} = 20 \times \frac{MW_{H}}{MW}$$
(F1)

Where

O

 $MW_{H} = Molecular weight of hydrophilic part$   $MW_{L} = Molecular weight of hydrophobic part$  MW = Molecular weight of surfactant

### 1. HLB Calculation of Methyl Oleate (MO)

 $MW_{H} = 59.04$ MW = 296.5

$$HLB = 20 \times \frac{MW_{H}}{MW}$$
$$= 20 \times \frac{59.04}{296.5}$$
$$= 3.98$$

# 2. HLB Calculation of Palm Oil Methyl Ester (POME)

0

HLB<sub>AVG</sub> calculation of mixed product is obtained by Equation F2:

$$HLB_{AVG} = \%wt_1 \times HLB_1 + \%wt_2 \times HLB_2 + \%wt_3 \times HLB_3 + \cdots$$
(F2)

| Fatty Acid<br>Composition | Carbon<br>Number | Composition<br>(%) | MWH   | MW        | HILB | %× ADBB |
|---------------------------|------------------|--------------------|-------|-----------|------|---------|
| Lauric acid               | C12:0            | 0.1                | 59.04 | 214.35    | 5.51 | 0.0055  |
| Myristic acid             | C14:0            | 0.9                | 59.04 | 242.40    | 4.87 | 0.0438  |
| Palmitic acid             | C16:0            | 45.6               | 59.04 | 270.46    | 4.37 | 1.9908  |
| Palmitoleic acid          | C16:1            | 0.4                | 59.04 | 268.44    | 4.40 | 0.0176  |
| Stearic acid              | C18:0            | 3.8                | 59.04 | 298.51    | 3.96 | 0.1503  |
| Oleic acid                | C18:1            | 38.6               | 59.04 | 296.50    | 3.98 | 1.5372  |
| Linoleic acid             | C18:2            | 10.5               | 59.04 | 294.48    | 4.01 | 0.4210  |
| Einolenic acid            | C18:3            | 0.1                | 59.04 | 292.46    | 4.04 | 0.0040  |
|                           |                  | 1.0                | H     | B average |      | 4.17    |

# Table F1 HLB calculation of POME

o

# Appendix G Supplemental Materials for Heat of Combustion

| Sample      | Heat of Combustion (MJ/kg) |       |         |  |  |  |
|-------------|----------------------------|-------|---------|--|--|--|
| (EtOH:BuOH) | #1                         | #2    | Average |  |  |  |
| 50:50       | 39.78                      | 39.68 | 39.73   |  |  |  |
| 70:30       | 39.22                      | 39.22 | 39.22   |  |  |  |
| 90:10       | 38.79                      | 38.99 | 38.89   |  |  |  |
| 100:0       | 38.58                      | 38.57 | 38.58   |  |  |  |

 Table G1 Heat of combustion of POME system

### **CURRICULUM VITAE**

Name:Ms. Waritta ApichatyothinDate of Birth:April 3, 1991

Nationality: Thai

**University Education:** 

2009–2013 Bachelor Degree of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand

#### **Proceeding:**

 Apichatyothin, W.; Sabatini, D.A.; and Charoensaeng, A. (2015, April 21) Formation of vegetable oil based microemulsion biofuel with butanol in palm oil/diesel Blends. <u>Proceeding of The 6<sup>th</sup> Research Symposium on Petrochemical</u> and <u>Materials\_Technology and The 21<sup>th</sup> PPC Symposium on Petroleum,</u> <u>Petrochemicals, and Polymers</u>, Bangkok, Thailand.

.

U