IMPACT OF LINKER MOLECULES ON ADSOLUBILIZATION OF ORGANIC COMPOUNDS BY USING HYDROPHOBIC SILICA MODIFIED WITH EO/PO TRIBLOCK COPOLYMERS

Phongsakorn Banjai

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,

Case Western Reserve University, and Institut Français du Pétrole

2012

Thesis Title: Impact of Linker Molecules on Adsolubilization of Organic

Compounds by Using Hydrophobic Silica Modified with

EO/PO Triblock Copolymers

By: Phongsakorn Banjai

Program: Petrochemical Technology

Thesis Advisors: Asst. Prof. Pomthong Malakul

Prof. John H. O'Haver

Asst. Prof. Manit Nithitanakul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

.......... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

8

(Prof. John H. O'Haver)

(Asst. Prof Marit Nithitanakul)

(Assoc. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Metta Chareonpanich)

บทคัดย่อ

พงศกร บาลจ่าย : ผลของการใช้ตัวเชื่อมโยงโมเลกุลที่มีต่อการแอดโซลูบิไลเซชั่นของ สารอินทรีย์โดยใช้ไฮโดรโฟบิกซิลิกาที่ถูกปรับปรุงพื้นผิวด้วยเอททิลีนออกไซด์/โพรพิลินออก ใซด์ ใตรบล็อกโคโพลิเมอร์ (Impact of linker molecules on Adsolubilization of Organic Compounds by Using Hydrophobic Silica Modified with EO/PO Triblock Copolymers) อ. ที่ปรึกษา : ผศ.ดร. ปมทอง มาลากุล ณ อยุธยา ศ.ดร. จอห์น เอช โอเฮเวอร์ และ ผศ.ดร. มานิต นิธิธนากุล 61 หน้า

ในช่วงทศวรรษที่ผ่านมา การใช้กระบวนการแอคโซลูบิไลเซชั่นเพื่อคูคซับสารประกอบ อินทรีย์ชนิคต่างๆนั้นได้รับความสนใจมากขึ้น โดยกระบวนการแอดโซลูบิไลเซชั่นถูกนำมา ประยุกต์ใช้ในการดูดซับสารอินทรีย์จากน้ำเสียด้วยการใช้อนุภาคของแข็งที่ถูกนำมาปรับปรุง พื้นผิวด้วยสารลดแรงตึงผิวชนิดต่างๆ เมื่อเร็วๆนี้ เอทิลีนออกไซด์/โพรพิลีนออกไซด์ ใตรบล็อก โคโพลิเมอร์ซึ่งเป็นสารลดแรงตึงผิวชนิดไม่มีประจุ มีโมเลกุลขนาดใหญ่ มีคุณสมบัติในการซัก ล้างที่ดี มีอัตราการหลุดออกต่ำ และมีความเป็นพิษน้อย ได้ถูกนำมาใช้ในการปรับปรุงพื้นผิววัสดุ ต่างๆ ได้แก่ ไฮโดรโฟบิกซิลิกาเพื่อใช้ศึกษาการแอดโซลูบิไลเซชั่นของสารอินทรีย์ชนิดต่างๆ ดังนั้นในงานวิจัยนี้จึง ได้ศึกษาถึงผลของการใช้ตัวเชื่อมโยงโมเลกุล ทั้งแบบที่ไม่ชอบน้ำ (เตตระเด คานอล) และแบบผสม (โซเดียม โคเคคซิล เบนซีน ซัลโฟเนตกับโคเคคานอล) ที่มีต่อการคูคซับ ของเอทิลีนออกไซด์/โพรพิลีนออกไซด์ไตรบล็อกโคโพลิเมอร์บนพื้นผิวของไฮโครโฟบิกซิลิกา และต่อพฤติกรรมการแอคโซลูบิไลเซชั่นของสารอินทรีย์บนไฮโครโฟบิกซิลิกาที่ได้รับการ ปรับปรุงพื้นผิวแล้ว โคยการศึกษานี้ใช้เอทิลีนออกไซด์/โพรพิลีนออกไซด์ ไตรบล็อกโคโพลิเมอร์ 3 ชนิด ประกอบด้วย พี123 แอล64 และ 25อาร์4 และสารอินทรีย์ 3 ชนิดคือ ฟีนอล 2-แนฟทอล และแนฟทาลีน ผลการศึกษาแสดงให้เห็นว่า ในระบบที่มีการใช้ตัวเชื่อมโยงโมเลกุลนั้น การดูด ซับของ เอทิลีนออกไซด์/โพรพิลีนออกไซด์ ใตรบล็อกโคโพลิเมอร์เกือบทุกชนิดที่ศึกษาบนพื้นผิว ของไฮโครโฟบิกซิลิกามีค่าเพิ่มขึ้น และในการศึกษาการแอดโซลูบิไลเซชั่นของสารอินทรีย์พบว่า ในระบบที่ใช้ตัวเชื่อมโยงโมเลกุลนั้นพบว่า ไฮโครโฟบิกซิลิกาที่ถูกปรับปรุงพื้นผิวด้วยเอทิลีน ออกไซค์/โพรพิลีนออกไซค์ ใตรบลี่อกโคพอลิเมอร์ มีปริมาณสารอินทรีย์ประเภทอโรมาติกส์ที่ ถูกแอคโซลูบิไลซ์มากกว่าในระบบที่ไม่ใช้ตัวเชื่อมเชื่อมโยงโมเลกุล

ABSTRACT

5371017063: Petrochemical Technology Program

Phongsakorn Banjai: Impact of Linker Molecules on

Adsolubilization of Organic Compounds by Using Hydrophobic

Silica Modified with EO/PO Triblock Copolymers

Thesis Advisors: Asst. Prof. Pomthong Malakul, Prof. John H.

O'Haver, and Asst. Prof. Manit Nithitanakul 61 pp.

Keywords: Adsorption/ Adsolubilizaton/ Block copolymer surfactants/ Aromatic

organic compounds/ Lipophilic linker/ Combined linker

For the past decade, the use of an adsolubilization process to adsorb organic compounds has drawn increasing attention. The process has been found to be useful in applications for the removal of organic compounds from waste water by using solid particles modified with various types of surfactants. Recently, Ethylene Oxide/Propylene Oxide triblock copolymers, a nonionic macromolecular surfactants, which have a good detergency property, low toxicity and low desorption, have been used to adsorb onto various solid surfaces such as hydrophobic silica in order to study the adsolubilization of various organic compounds. The adsorption of EO/PO triblock copolymers (P123, L64, 25R4) onto hydrophobic silica by using both a lipophilic linker (tetradecanol) and a combined linker (sodium dodecyl benzene sulfonate/dodecanol), and the adsolubilization behavior of the modified hydrophobic silica for model organic compounds (phenol, 2-naphthol, and naphthalene) were studied. The results showed that by having the linker molecules in the system, the adsorption of almost all the triblock copolymers, used in this study, onto the hydrophobic silica surface increased. In the adsolubilization study, the results showed that the modified hydrophobic silica in the systems with linker molecules showed higher adsolubilized amounts of the model aromatic organic molecules than the systems without linker molecules.

ACKNOWLEDGEMENTS

The work cannot be successful without the participation of the following individual and organizations.

I would like to show the highest appreciation to Asst. Prof. Pomthong Malakul, Asst. Prof. Manit Nithitanakul, and Prof. John H. O'Haver for their greatest supports, recommendations, and inspirations throughout this research.

I would like to thank Assoc. Prof. Pramoch Rangsunvigit and Assoc. Prof. Metta Chareonpanich for their kind of advice and for being on the thesis committee.

I would like to thank Mr. Pattarit Sahasyodhin for his help, recommendation and suggestion.

It is my pleasure to acknowledge Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn university for financial support.

I also would like to thank the Petroleum and Petrochemical College for the invaluable knowledge in the field of Petroleum and Petrochemical technology. Special thanks go to all of the Petroleum and Petrochemical College's staff who help me with invaluable and tireless assistance.

Finally, I would like take this opportunity to thank PPC Ph.D. students and all of my friends for their friendsly assistance, cheerfulness, creative suggestion, and encouragement. I would not have reached this achievement without my family, who always be by my side for all times.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements	v
Tabl	le of Contents	vi
List	of Tables	ix
List	of Figures	Х
СНАРТЕ	R	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Surfactant	3
	2.2 Surfactant Adsorption	9
	2.3 Adsolubilization	13
III	EXPERIMENTAL	21
	3.1 Materials	21
	3.2 Experimental Procedures	21
	3.2.1 Adsorption Isotherms	21
	3.2.1.1 Determination of Surfactant	
	Concentrations	22
	3.2.2 Adsolubilization Isotherms	22
	3.2.2.1 Preparation of Organic Solutions	22
	3.2.2.2 Adsolubilization Studies	23
	3.2.2.3 Determanation of Organic Solute	
	Concentrations	23

CHAPTER		PAGE
IV	RESULTS AND DISCUSSION	24
	4.1 Adsorption of Surfactants onto Hydrophobic Silica	24
	4.1.1 Adsorption Isotherm of Pluronic P123 with/	
	without Linker Molecules	24
	4.1.2 Adsorption Isotherm of Pluronic L64 with/	
	without Linker Molecules	25
	4.1.3 Adsorption Isotherm of Pluronic 25R4 with/	
	without Linker Molecules	26
	4.2 Adsolubilization of Organic Compounds	27
	4.2.1 Adsolubilization of Phenol	28
	4.2.1.1 Adsolubilization of Phenol into	
	Adsorbed Pluronic P123 Layer	28
	4.2.1.2 Adsolubilization of Phenol into	
	Adsorbed Pluronic L64 Layer	29
	4.2.1.3 Adsolubilization of Phenol into	
	Adsorbed Pluronic 25R4 Layer	29
	4.2.1.4 The Maximum adsolubilization of	
	Phenol into Adsorbed Pluronic Layer	31
	4.2.2 Adsolubilization of 2-Naphthol	31
	4.2.2.1 Adsolubilization of 2-Naphthol into	
	Adsorbed Pluronic P123 Layer	31
	4.2.2.2 Adsolubilization of 2-Naphthol into	
	Adsorbed Pluronic L64 Layer	32
	4.2.2.3 Adsolubilization of 2-Naphthol into	
	Adsorbed Pluronic 25R4 Layer	33
	4.2.2.4 The Maximum adsolubilization of	
	2-Naphthol into Adsorbed	
	Pluronic Layer	34
	4.2.3 Adsolubilization of Naphthalene	35

СНАРТЕН	₹	PAGE
	4.2.3.1 Adsolubilization of Naphthalene into	
	Adsorbed Pluronic P123 Layer	35
	4.2.3.2 Adsolubilization of Naphthalene into	
	Adsorbed Pluronic L64 Layer	36
	4.2.3.3 Adsolubilization of Naphthalene into	
	Adsorbed Pluronic 25R4 Layer	36
	4.2.3.4 The Maximum adsolubilization of	
	Naphthalene into Adsorbed	
	Pluronic Layer	38
V	CONCLUSIONS AND RECOMMENDATIONS	40
	5.1 Conclusions	40
	5.2 Recommendations	40
	REFERENCES	41
	APPENDICES	45
	Appendix A Adsorption of Surfactants onto	
	Hydrophobic Silica	45
	Appendix B Adsolubilization of Organic Compounds	50
	CURRICULUM VITAE	64

LIST OF TABLES

TABLE		PAGE
3.1	Properties of Pluronics	21
4.1	The amount of adsorbed copolymer surfactants on the	
	adsorbents used in the adsolubilization studies	28

LIST OF FIGURES

FIGU	FIGURE	
2.1	Surfactant structures	4
2.2	Schematic of molecular interactions including lipophilic	
	linker molecules	7
2.3	Schematic of molecular interactions including hydrophilic	
	linker molecules	7
2.4	Schematic of molecular interactions including combined	
	linker molecules	8
2.5	Four- regime adsorption isotherm of surfactant	9
2.6	Schematic representation of PEO-PPO-PEO triblock copo-	
	lymers adsorbed at a hydrophobic and a hydrophilic surface	
		11
2.7	The phenomena of adsolubilization	14
2.8	The admicelle structure	14
4.1	Adsorption isotherm of Pluronic P123 with/ without linker	
	molecules onto hydrophobic silica at 29°C	24
4.2	Adsorption isotherm of Pluronic L64 with/ without linker	
	molecules onto hydrophobic silica at 29°C	25
4.3	Adsorption isotherm of Pluronic 25R4 with/ without linker	
	molecules onto hydrophobic silica at 29°C	26
4.4	Adsolubization isotherm of Phenol with/ without linker mo-	
	lecules into adsorbed P123 layer at 29°C	28
4.5	Adsolubization isotherm of Phenol with/ without linker mo-	
	lecules into adsorbed L64 layer at 29°C	29
4.6	Adsolubization isotherm of Phenol with/ without linker mo-	
	lecules into adsorbed 25R4 layer at 29°C	30
4.7	The maximum adsolubilization of phenol into the adsorbed	
	surfactant layer with/without linker molecules at 29 °C	31

FIGURE		PAGE
4.8	Adsolubization isotherm of 2-Naphthol with/ without linker	
	molecules into adsorbed P123 layer at 29°C	32
4.9	Adsolubization isotherm of 2-Naphthol with/ without linker	
	molecules into adsorbed L64 layer at 29°C	33
4.10	Adsolubization isotherm of 2-Naphthol with/ without linker	
	molecules into adsorbed 25R4 layer at 29°C	34
4.11	The maximum adsolubilization of 2-Naphthol into the ad-	
	sorbed surfactant layer of various types of pluronics	
	with/without linker molecules at 29 °C	34
4.12	Adsolubization isotherm of Naphthalene with/ without linker	
	molecules into adsorbed P123 layer at 29°C	35
4.13	Adsolubization isotherm of Naphthalene with/ without linker	
	molecules into adsorbed L64 layer at 29°C	36
4.14	Adsolubization isotherm of Naphthalene with/ without linker	
	molecules into adsorbed 25R4 layer at 29°C	37
4.15	The maximum adsolubilization of Naphthalene into the ad-	
	sorbed surfactant layer of various types of pluronics	
	with/without linker molecules at 29 °C	37