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ABSTRACT

5372021063:  Polymer Science Program
Pitchaya Naneraksa: Smart Packaging from Plastic/nanocopper
Nanocomposite.
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan 134 pp.
Keywords: Nanocomposite/ Copper nanoparticle/ Bentonite organoclay

This study is aimed to develop a smart packaging film from polypropylene
blown film containing 1 wt% Bentonite organoclay/copper nanoparticles for barrier
and antimicrobial purpose. Copper nanoparticles (CuNP) were synthesized using a
one-step synthesis from copper (||) nitrate solution using ascorbic acid as reduction
agent and polyvinylpyrrolidone as dispersant. The synthesized CuNPs had the
particle size of about 6 nm, and the XRD spectrum confirmed three characteristic
diffraction peaks of copper (0). Effect of CuNP content (5, 10, 15 and 20 wt% of
total nano-fillers) on mechanical properties, thermal properties, and permeability of
nanocomposite film was investigated. With the presence of OBEN/CuNP, pp
nanocomposite films showed elongation at break in machine direction over 300% but
their tensile strength was reduced for about 27 %. Nanoparticles acted as nucleating
agents to increase crystallinity of pp films. Water vapour and oxygen permeability
were increased with respect to the CuNP contents, pp nanocomposite films would be
capable to be used in prepacked chilled fish packaging.
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