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The Einstein equation is a field equation which describes gravity in terms of the cur-
vature of spacetime. It states how matter curves spacetime. The solutions of the Einstein
field equation are the metrics of spacetime from which the curvature of spacetime can
be found. The field equations are non-linear, which are complicated to solve. Therefore,
some assumptions are needed to reduce the complexity of the Einstein equation. One of
these assumptions is a perfect fluid sphere. Perfect fluid sphere satisfies the following: no
viscosity, no heat conduction, and isotropy. Perfect fluid black holes are black hole so-
lutions of the Einstein field equation, which are classified according to the Schwarzschild
radius. Perfect fluid spheres that have a radius smaller than the Schwarzschild radius
will be transformed into black holes. In this work, we are interested in studying a black
hole solution of the Einstein field equation. Greybody factors are the transmission and
reflection probabilities of the Hawking radiation which are emitted from a black hole.
Greybody factors can be obtained from their structure of potential. We then calculated
the Hawking radiation temperature and entropy, which are the properties of thermody-
namics. Temperature is expressed in terms of the surface gravity of a black hole, while
entropy is expressed in terms of the area of the event horizon. Finally, we are interested
in the entropy composition of the black hole systems, and then we calculated it for each

system of black holes.
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CHAPTER 1

INTRODUCTION

In this chapter, we will study the relativity of Albert Einstein that is divided into
two theories, namely, special relativity and general relativity, and describe the difference
between these two theories. Since the objective of this thesis is to calculate the greybody
factors of perfect fluid black holes, the theory of Albert Einstein becomes important in
studying the perfect fluid black holes. He developed two theories of relativity, which
are special relativity and general relativity. In this thesis, we are interested in general
relativity because this theory is a gravitational theory that explains how matter is re-
sponsible for the spacetime curvature. The concept of general relativity has resulted in
the formulation of the Einstein field equation, which is an important equation to study
the modeling of stars in the structure of perfect fluid black holes. First, we will introduce
special relativity, which forms the basic knowledge of the theory of relativity in special

cases. Before studying about general relativity, we should start with special relativity.

1.1 Special Relativity

The theory of relativity is the theory of space and time. The theory of relativity
is divided into special and general relativities [1]. In 1905, Einstein introduced special
relativity that explains the motion of non-accelerating bodies, which also describes the
speed of light being constant and is independent of the motion of all observers [2]. The
postulates of special relativity are in four-dimensional forms, the existence of globally
inertial frames, the speed of light being constant, and the principle of special relativity
[3]. Moreover, a counterintuitive concept of special relativity involves time dilation, which
is that the time interval linking two events does not change from one spectator to another,
but depends on the relative velocity; the simultaneity of events, which is when two events
occur simultaneously in two different places for one observer, but may not be at the same

time for another observer, the length contraction, which is the dimension of objects when
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Figure 1.1: Spacetime diagram showing events in space and time [3].

measured by one spectator, which may be tinier than when measured by another observer;
the combination of velocities, where the velocities are not simply combined; inertia and
momentum, when the velocity of an object approaches the speed of light, objects are
accelerating faster and the equation in mathematics that comes from Einstein’s special
theory of relativity is the Mass-Energy equivalence that is the relationship between mass

and the energy [4]. The mass-energy equivalence is given by

E = mc*. (1.1)

In Figure 1.1, the three space dimensions are horizontal and the time dimension is vertical,

and the speed of light is equal to one. So, the direction of light is at 45° from vertical [3].

Einstein’s special theory of relativity is a theory in Minkowski spacetime, where the

line element ds between two events is given by [3]

ds? = —dt* + da® + dy* + d2?, (1.2)

where dt is the time interval, and dr = \/dx? + dy? + dz? is the spatial interval.

In Figure 1.2, spacetime interval is called timelike if ds? < 0, that is, the area has
a velocity less than the velocity of light, lightlike if ds?> = 0, that is, the path has the
velocity equal to the velocity of light, and called spacelike if ds? > 0, that is, the area has

the velocity more than the light.



Figure 1.2: Spacetime diagram showing timelike, lightlike, and spacelike spacetime
intervals [5].

In special relativity, the light speed has the identical value in any inertial that is

non-accelerating, which does not deal with gravity, while general relativity does [6].

1.2 General Relativity

In 1915, Albert Einstein developed the theory of gravitation that is general relativ-
ity. General relativity describes every motion such as the motion of acceleration, curving
or spinning around. Gravitation is the curvature of spacetime. Light and objects move
according to the spacetime. Therefore, spacetime will bend around every object with

mass [7]. The Einstein field equation (EFE) is the centerpiece of general relativity.

In special relativity, the metric of spacetime is flat, which is given by

ds? = n,datdz”, (1.3)
where
-1 0 0 O
0O 1 0 O
Nuv = , (1.4)
0 010
0 0 01

and in Einstein’s general theory of relativity, the metric of spacetime is curved, which is
given by

ds* = g datdx”, (1.5)



Figure 1.3: The 2-sphere is a 2-manifold [3].

where

goo goir go2 9gos
gio 911 912 913

Juv = . (1.6)
920 921 922 Gg23

g30 931 932 933

Special relativity considers the motion of non-acceleration; however, general rela-

tivity considers the motion of acceleration, that is, gravity results in spacetime curvature.

In chapter I, we study about special and general relativities, and analyze the dif-
ference between special and general relativities. Since the objective of this thesis is to
calculate the greybody factors of black holes, we are, therefore, interested in general

relativity and have continued with the equation in general relativity.

We have divided this thesis into six chapters. In chapter II, we study about the
Einstein field equation (EFE), which is an important equation in studying the modeling
of stars in the universe. In chapter 111, we study the modeling of stars that is perfect fluid
spheres, and study the generating theorem of perfect fluid spheres, as well as classify black
holes in perfect fluid spheres in two coordinates. In chapter IV, we study the method to
obtain the greybody factors (transmission probability), that is the bogoliubov coefficients,
and calculate the greybody factors of black holes. In chapter V, we calculate the Hawking
temperature, Hawking radiation, and the entropy of black holes, and also calculate the
entropy composition of the black hole systems. Finally in chapter IV, we present the

conclusion to this thesis and the future work.



CHAPTER II

EINSTEIN’S FIELD EQUATION

In this chapter, we are interested in the most important equation in general rel-
ativity that is the Einstein field equation. The Einstein field equation was published in
1915 by Albert Einstein as a tensor equation, which describes gravity as the result of mass
and energy causing spacetime curvature [8]. The Einstein tensor is used for describing
the spacetime curvature. The stress-energy tensor is used for representing the energy and
the momentum density of the gravitational field [9]. Einstein added a constant (87G) to
the right hand side of the Einstein field equation that is calculated from the Poisson’s

equation [10]. The Einstein field equation can be written in this form
Glarst 3rG T (2.1)

where G, = R, — %Rgu,, is the Einstein tensor, R, is the Ricci curvature tensor, g, is
the metric tensor, R is the scalar curvature, G is the Newtonian constant of gravitation,
T),, is the stress-energy-momentum tensor, and uv are labels that take on the values 0,

1,2, 3.

Next, we introduce the quantities in the Einstein’s general field equation, namely,
the metric tensor, the Christoffel symbols, covariant derivative, the Riemannian curvature
tensor, the Ricci curvature tensor, the Ricci scalar, the Einstein tensor, and the stress

energy tensor.
2.1 Metric tensor

The tensor of metric is the distance between two events. It is a 4x4 matrix, which

also gives ten independent coefficients.

First, we will introduce the metric in two dimensional coordinates that is the carte-



sian coordinates, we then obtain the metric [11]

ds® = da* + dy?, (2.2)

and after we expand ds? in three dimensions, we obtain in this form

2 2
ds® = z Z[dmidyj], (2.3)
i=0 j=0
where
1 00
gi=101 0 |- (2.4)
0 0 1

Next, we will introduce the metric in two dimensional coordinates that is the polar coor-

dinates, we then obtain the metric

ds* = dr® + r2d6?, (2.5)
where
1 0
Gij-= | (2.6)
0 r2

In Einstein’s general theory of relativity, the metric of spacetime is given by

ds® = g datdz”, (2.7)

where

goo goir 9go2 9go3
gio 9g11 9g12 4913

Juv = 5 (28)
920 9g21 922 923

g30 931 932 933



which is the metric tensor. The properties of metric tensor are symmetric [12]

uv = Guu,s (29)

and the inverse matrix g"” is defined by

Gy’ = 53. (2.10)

The metric tensor is a very important variable because it is one of the factors in
other variables such as the Christoffel symbols, the Riemann curvature tensor, the Ricci
curvature tensor and the Ricci scalar. Next, we will introduce the Christoffel symbol that

is associated with the tensor of metric.
2.2 Christoffel symbols

The Christoffel symbols are the tensors that can be extracted dealing with the
partial derivatives of metric g,,,. They are used to inquiry the geometry of the metric.
We start with [13]

¢ o¢h

ds* = MapdC*dC? = nap === = guvda’'da” (2.11)

89“1,_{_89)\1/ 8guz\ ~ [ 82Ca 8CB 8Ca 82Cﬁ :|

oz oz B ox” OxHdx* dxv  Oxt Oxv Oz

L[ P 0P e BT o o 9 o2
" 9r 0zk 0z T 9> Dxv Ok Oxtdz? Ox* Ozt Oxv Oz | ’
Using 73 = 1ga, this gives
2 Fa B
ag,uu + Ogr + ag,u)\ —9 9°¢* 9C (2.13)

ox* OxH oz? 0B i oz



Also,

0C* 9¢P 9z 9*¢P

JuoTs,, = Nap dzv 97 OCP OTh DTN (214)
a¢ce 9%¢P
= 1B v 9o (2.15)
1 89#1/ ag)\y agp)\
= — . 2.1
2 [83:/\ L TR (2.16)
Therefore, the Christoffel symbols are given by
1 ag v 8g>\u 89 A
kK _ - 14 1
F,u)\ - 29ky |:8I>‘ Oz + oz |’ (217)

which is a term of the first order derivative of the metric tensor. Then, we will introduce

the Riemann curvature tensor that is related with the Christoffel symbols.
2.3 Riemannian curvature tensor

The Riemannian curvature tensor R,z is a four-index tensor. It expresses the
curvature of the Riemann manifolds and can be simplified in the form of the second

derivative of the metric tensor [3].

s Oy
ozP x>’

Royw = (2.18)

which is a term of the first order derivative of the Christoffel symbols.

R _ 1 ( 829;“/ 829;0\ 62911)\ 829#1/ 829up 82gl/p
pA\uy —

2 \ Ozrdz> ' OxPOxv  OzPOxt  OxPdr™  Ox OV + amAﬁaj“> (2.19)
_1 P Pgun Py N %Gy,
2\ §zPOxry  OrPOxt  Ox Ox¥ | Ox Ozt )’

(2.20)

which is a term of the second order derivative of the metric tensor. Then, we will introduce

the Ricci curvature tensor that has a relation with the Riemann curvature tensor.



2.4 Ricci curvature tensor and Ricci scalar

The Ricei curvature tensor is the retraction of the Riemann curvature tensor that
is a second order tensor and represents the curvature [14]. The Ricci curvature tensor is

given by

A
R#V — R)\ 8F#V _ 811&1/

A A
v wi i VR RV N (2.21)

Av™ ppt

The Ricci scalar is the curvature scalar that can be extracted in terms of the Ricci

tensor and the metric tensor, which is defined by [3]
R=g"Ry, (2.22)

Next, we will introduce the Einstein tensor that is important in the Einstein field equation.

2.5 Einstein tensor

The Einstein tensor can be expressed in this form
1
Guu =R, — §Rg,u1/- (2.23)

On the left hand side of the Einstein filed equation, G, is the Einstein tensor, which rep-
resents the curvature of spacetime. Einstein created the Einstein tensor, which combines
the Ricci curvature tensor R, the metric tensor g,, and the scalar curvature R [13].
Next, we introduce the stress-energy-momentum tensor that is on the right hand side of

the Einstein field equation.
2.6 Stress-energy-momentum tensor or stress energy tensor

The stress energy tensor is a property of the object that curves spacetime, which
is represented by 7}, on the right hand side of the Einstein field equation. The stress

energy tensor describes the forces on the surface of this elementary volume [9]. The
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stress-energy-momentum tensor can be expressed in this form

Too To1 To2 Tos
T T T2 Tis

T, = , (2.24)
Tog To1 o To3

T30 131 T30 T33

where Tyg is the energy density, To1, To2, To3 are the energy flux, Tig, Tog, T30 are the
momentum density, Tia, T13, Tos, To1, 131, T30 are the shear stress, which is the force
that causes deformation of objects by slipping along a plane, or from pressure, and 771,

Tho, T33 are the normal stress or the isostatic pressure.

In chapter II, we studied about the Einstein field equation and the quantities in
this equation such as the Einstein tensor, the stress energy tensor, the metric tensor,
the Christoffel symbols, the Ricci curvature tensor, the Riemann curvature tensor, and
the Ricci scalar. Afterwards, we studied the Einstein field equation and used all the
quantities in the Einstein field equation to obtain the important constraint to solve the
Einstein field equation. Next, we will study about perfect fluid spheres, which is an

assumption to reduce the complexity of the Einstein field equation.



CHAPTER I11

PERFECT FLUID SPHERE

In this chapter, we will study the perfect fluid spheres because we use it in modeling
of stars like black holes. We also study about generating theorems of perfect fluid spheres
developed by Boonserm, et al. [15]. We are also interested in perfect fluid spheres in two
coordinates, namely, Schwarzschild and isotropic coordinates developed by Boonserm and
Thairatana [16, 17]. In this thesis, we will classify black holes in perfect fluid spheres and

use these black holes to calculate the greybody factors.
3.1 Perfect fluid sphere

The perfect fluid sphere is one of the assumptions to reduce the complexity of the
Einstein field equation. Through the three properties of the perfect fluid sphere (no
viscosity, no heat conductivity, and isotropy (p, = p;)), the stress energy tensor takes the

form [15]

p 0 0 0
0 p 0O
T = , (3.1)
0 0 p O
0 0 D
where the general form of 7}, is given by
T = (p +P)UUs + DYpuv- (3.2)

By substituting equation (3.1) into the Einstein field equation, we obtain the constraint

of the perfect fluid sphere especially given by

Gpp = Géé = G(Z)(Z), (3.3)
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Coordinates

B Schwarzchild ®isotropic M Gaussian polar, Buchdahl, Synge isothermal, exponential

Figure 3.1: The proportion of coordinates.

and use this constraint to solve the Einstein field equation.

In this thesis, we are interested in perfect fluid spheres in two coordinates, namely,
Schwarzschild and isotropic coordinates. The Schwarzschild coordinates is estimated to be
about 55% and the isotropic coordinates is estimated to be about 35%. Both coordinates

constitute the major proportion of the overall coordinates.
3.2 Schwarzschild Coordinates

The specific geometry in the Schwarzschild metric must first be defined by

1

2 _ 2 7,2
ds® = —((r)=dt +5(7“)

dr® + r2d6? + r% sin® () d¢?, (3.4)
and then, we study about the generating theorems that can be used to apply with the
Schwarzschild metric to analyze the perfect fluid spheres in Schwarzschild coordinate.

From the perfect fluid constraint, we derive [16]

_2B(r)rd(r) = ¢(r) +¢(r)B(r)

G = (0) |
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and
Gy = -LZCROEBOCOL VOO £COF0) g
Set G = Gy, we obtain [16]
[r(r¢(r)18'(r) + [2r2¢" (r) — 2(r¢(r))B(r) 4+ 2¢(r) = 0, (3.7)

or by rearranging the above equation, we derive

2r°8(r)¢"(r) + (r28'(r) — 2rB(r))' (r) + (rB'(r) — 28(r) +2)¢ = 0. (3-8)

Next, we will study the generating theorem in Schwarzschild coordinates, which is pre-

sented by Boonserm, et al. [15], and is divided into four theorems.
3.2.1 Generating theorems

Generating theorems developed by Boonserm, et al. [15] that explains the four
theorems, when applied with perfect fluid spheres, still result in the generation of the
same perfect fluid spheres. In addition, the generating theorems can also be used to

obtain new perfect fluid spheres in Schwarzschild coordinates.

Theorem 1 (15 BVW theorem [16, 15]). Suppose {¢(r), 3(r)} represents a perfect fluid

sphere, and is described by

L) e [CE)C) ),
20~ ey rem) o | Gy e ™ >

Then, {{(r), B(r) + AA(r)} is also a perfect fluid sphere. That is, the mapping of

Ty :{¢(r), Br} —{C(r), B(r) + AA(r)}} (3.10)

takes perfect fluid spheres into perfect fluid spheres.
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Theorem 2 (2" BVW theorem [16, 15]). Suppose {{(r), 3(r)} represents a perfect fluid

sphere, and is defined by

rdr
Z(r)=o _ 3.11
=t | mim 1y
Then, {{(r)Z((,B),B(r)} is also a perfect fluid sphere. That is, the mapping of
Ty : {C(r), Br} = {C(r)Z(¢, B), B(r)} (3.12)

takes perfect fluid spheres into perfect fluid spheres.

Theorem 3 (3" BVW theorem [16, 18]). Suppose {¢(r), 3(r)} represents a perfect fluid

sphere, and is defined by

) (SO =)
Ar) = [g(r)JrrC,(r)] p{2/ OROETI O (3.13)

Then, {{(r)Z(C,B + AA(r)), B(r) + AA(r)} is also a perfect fluid sphere. That is, the

mapping of
T5 - {¢(r), B(r)} = {C(r)Z(¢, B+ AA(r)), B(r) + AA(r)} (3.14)
takes perfect fluid spheres into perfect fluid spheres.

Theorem 4 (4" BVW theorem [16, 18]). Suppose {¢(r), B(r)} represents a perfect fluid

sphere, and is defined by

G0 qea o [ GG~ G
0= e e S am et O
rdr

Then, {Co(r), B(r) + AA({p)} is also a perfect fluid sphere. That is, the mapping of

Ty - {¢(r), Br} — {Co(r), B(r) + AA(Co) } (3.17)
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takes perfect fluid spheres into perfect fluid spheres.

We study about the generating theorem of perfect fluid spheres because these the-
orems classify seed and non-seed metrics that generate new solutions of perfect fluid
spheres, and we will also categorize the black holes in these perfect fluid spheres. Next,
we will study about the generating theorem in isotropic coordinates and apply it on the

isotropic metric to analyze the perfect fluid spheres in isotropic coordinates.
3.3 Isotropic Coordinates

The specific geometry in the isotropic metric must first be defined by

ds® = —((r)2dt* + . {dr® + 12d6? + r*sin®(0)d¢*}. (3.18)

77 WIS
(r)?B(r)

Next, we will study the generating theorem in isotropic coordinates, which is presented

by Boonserm and Visser [18], and is divided into two theorems
3.3.1 Generating theorems in isotropic coordinates

Generating theorems in isotropic coordinates developed by Boonserm and Visser
[18] that explains the four theorems, when applied with perfect fluid spheres still result
in the generation of the same perfect fluid spheres. In addition, a generating theorem

developed by [17] can be used to obtain new perfect fluid spheres in isotropic coordinates.

Theorem 5 (7" BVW theorem [18]). Suppose {¢, 3} represents a perfect fluid sphere,

and the transformation of Buchdahl in disguise is given by

¢(r)
B(r)

1

0 Z{er + r2d6?* 4 r? sin®(0)dp?}. (3.19)

ds? = Sdt? +
Then, {¢(r)~, B(r)} is also a perfect fluid sphere. After applying theorem 5 n times,

¢(r) = ¢(r)~ ' if n is an odd number, and {(r) = {(r) if n is an even number.
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Theorem 6 (8" BVW theorem [18]). Suppose {¢, 3} represents a perfect fluid sphere,
and is defined by

rdr
VB2

Then, {{(r), B(r)Z(B)} is also a perfect fluid sphere, and the geometry in isotropic coor-

Z(r)=o+¢ / (3.20)

dinates is defined by

1

2 _ () 2de2
ds™ = ¢t Bz

S{dr? + r*d6* + r* sin®(0)d¢*}. (3.21)

In generating theorem, these six theorems can be used to obtain the new solution of
perfect fluid spheres in two coordinates. After this, we study about the perfect fluid
spheres and the generating theorem of perfect fluid spheres that is developed by [16] and

then, we will classify black holes in perfect fluid spheres.
3.4 Black holes in perfect fluid spheres

Black holes are the large theoretical objects. In 1971, the first physical black hole
was discovered. Black holes are regions in space that can absorb everything that comes
close to its surface, including light. Scientists have proven that black holes exist, with one
present at the center of our galaxy [19]. There exist only four types of black holes, where
these black holes are described as whether they are with or without rotation and charge;
namely, Schwarzschild black hole, Kerr black hole, Reissner—Nordstréom black hole, and

Kerr-Newman black hole.

3.4.1 Types of black holes

Types of black holes Non-rotating (J = 0) Rotating (J > 0)

Uncharged (Q = 0) Schwarzschild black hole Kerr black hole

Charged (Q # 0) Reissner-Nordstrom black hole | Kerr-Newman black hole

Table 3.1: Type of black holes
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Figure 3.2: Embedded Schwarzschild black hole [20].

In this thesis, we are focused on the theory of black holes that are classified by charge
and rotation. There are four types of black holes in the theory of black holes, namely,

the Schwarzschild black hole, Kerr black hole, Reissner—Nordstrém black hole, and Kerr-

Newman black hole.
3.4.2 Schwarzschild black hole

The Schwarzschild black hole is a static and spherical symmetrical black hole with

mass [19]. The Schwarzschild black hole in Schwarzschild coordinates is given by [15]

2m \ 2 2m\ "
ds® = — (1 — —m> dt® + (1 - _m) dr® + 12d6? + r*sin®(0)d¢>. (3.22)

T r

3.4.3 Kerr black hole

The Kerr black hole is stationary, axisymmetric and depends on angular momentum

[19]. The Kerr metric is given by

2Mr(dt — asin?(0)dp?)?
r2 + a? cos?(6)

ds®> = —dt* + (r* 4 a?) sin?(0)dp® +

dr?

2 1 02 cos? By v e
H(r"+aTeos™(0) + (0" + 5y

). (3.23)
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Equatorial \
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singularity

Figure 3.3: Sketch of Kerr black hole [21].

Figure 3.4: The space-time geometry of a Reissner-Nordstrom black hole of charge Q
[22].

3.4.4 Reissner-Nordstrom black hole

The Reissner-Nordstrom black hole is static and spherically symmetric and depends

on electric charge [19]. The Reissner-Nordstrom metric is expressed as
ds® = —Adt* + Bdr? + r(d6? + sin?(0)d¢?), (3.24)

where A = % + %, and B =1/A.
3.4.5 Kerr-Newman black hole

The Kerr-Newman black hole is the most overall asymptotically flat black hole.

The Kerr-Newman black hole spins and be dependent on electric charge and rotational
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Figure 3.5: Sketch of Kerr-Newman black hole [23].
momentum (angular momentum). The Kerr-Newman metric is given by [19]

2 in2
ds? = (A‘“("r) + d02> p? — (dt — asin® 9d¢)2(p7;) + ((r* + a®)d¢ — adt)ﬁ%- (3.25)

In this thesis, we are focused on the Schwarzschild black hole. Thus, we will compare

the radius of perfect fluid spheres with the Schwarzschild radius.
3.4.6 Schwarzchild Radius

The event horizon is the borderline of a black hole and the Schwarzschild radius is
the distance from the singularity or the center of the black hole. Stars with sizes smaller
than the Schwarzschild radius will be transformed into black holes [24]. The Schwarzschild

radius is given by [19]
_2GM

c2

: (3.26)

Ts

where rg is Schwarzschild radius, G is the gravitational constant, c¢ is the speed of light,
and M is the solar mass. Several spherical body of mass M restricted within the critical
radius r should be a black hole. Next, we calculate the radius of perfect fluid sphere in

Schwarzschild coordinates.
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Fvent horizon

Figure 3.6: Schwarzschild radius.

3.4.7 Perfect fluid black hole in Schwarzschild coordinates

We calculate the radius of perfect fluid spheres in the Schwarzschild coordinates by
matching with Schwarzschild exterior black hole. We start with spherical symmetrical

geometry in Schwarzschild (curvature) coordinates

1

ds® = —¢(r)2dt? + B0) dr® + r2d6? + r% sin® (0)dep>. (3.27)
Using a perfect fluid constraint
Grr=——t675= G (3.28)
We consider [16]
G — —2rB(r)¢ (r)r;rci 7(3) —¢(r)B(r) (3.29)

Considering the Einstein field equation

fo- = 87TGT,¢7:, (330)
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the pressure inside the perfect fluid sphere is expressed by

Gip 1 —2rB(r){(r r) —((r)B(r
po G 1Bl >ch<>(“£)> ((r)B(r) )

So, the radius r of a perfect fluid sphere, must satisfy [25]

p(r) =0. (3.32)

We obtian black holes in the structure of a perfect fluid sphere in Schwarzschild coordi-

nates as shown in Table 3.2.

Black holes Metrics
Schwarzschild Exterior —(1 —2)dt? + (1 — 22)~1dr? + r2dQ?
Tolman VI —(Ar'=" + Britm)2di? + (2 — n?)dr?* + r2dQ?
Kuch 68 II —(1 = 22)dt* + [(1 — 22)(1 + C(2r — 2m)?)]Ldr? + r2dQ?
M-W TII —Ar(r — a)di? + i dr? + r2dQ?

Table 3.2: A black hole in the form of a perfect fluid sphere in Schwarzschild
coordinates

Matese and Whitman considered M-W III and Kuchowicz considered Kuch 68 II.

Next, we calculate the radius of perfect fluid sphere in isotropic coordinates.
3.4.8 Perfect fluid black hole in isotropic coordinates

We calculate the radius of perfect fluid sphere in isotropic coordinates by matching
with Schwarzschild exterior black hole. We start with the spherically symmetric geometry
in isotropic coordinates

ds® = —((r)2dt* + S{dr® +17d6” + r* sin®(0)d¢”}. (3.33)

o
¢(r)*B(r)



Using a perfect fluid constraint

GW = Géé = G(M),

and we use Gy to calculate the radius of perfect fluid sphere.

We consider [16]
2
Gii = (¢)?B? — (B)?¢? +2B'B>-.
r

Considering the Einstein field equation

Grp = 8nGT5y,

the pressure inside the perfect fluid sphere is given by

- 81G &G

p

So, the radius r of a perfect fluid sphere must satisfy [25]

p(r) =0.

(¢)2B%— (B)?¢® + 23’37.

22

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

We obtain black holes in the structure of a perfect fluid sphere in isotropic coordinates as

shown in Table 3.3.
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Black holes Metrics
Schwarzschild Exterior — 8;?;2 dt* + (1 + 2—]\;{)4{0572 +r2dQ?}
N-P-V Ia —(ar'2 4 br!72)2(Ar'te 4 Brloe)2det+
(Ar'*2 + Bri=3)"2{dr? + r2dQ?}
Burl | AL )RR (14 5) F e {dr? + r2d0°)

Table 3.3: A black hole in the structure of a perfect fluid sphere in isotropic
coordinates.

Then, we will find the potential of black holes by starting with the Klein-Gordon equation
because this equation is one of the wave equations. After we derive this equation, we can
obtain an equation that is similar to the Schrodinger equation, which is a combination of

kinetic energy and potential energy.
3.4.9 Klein-Gordon Equation

The Klein-Gordon equation is the relativistic wave equation that describes the
behavior of spinless particles [26]. The Klein-Gordon equation can be expressed in the

form
—
V=g

where g, is the metric tensor, g is the inverse of the metric tensor, and g is the

O/ —99"" 0utp = 0, (3.39)

determinant of the metric tensor. We can use this equation and transform it into the

Regge-Wheeler equation that is equivalent to the Schréodinger equation.
3.4.10 Regge-Wheeler equation

The Regge-Wheeler equation explains the perturbations of the Schwarzschild metric
and also plays a significant role in Schwarzschild black hole [27]. The Regge-Wheeler
equation can be written in this form [28]

2
W~ V() =0, (3.40)



24

where V(r) = M r=1/C(r 4.\ /C(r is the potential of black holes.
We can then use this potential to obtain the greybody factors. For the Schwarzschild
black holes that have a coefficient in front of dr? equal to dt?, we can obtain the potential

in the form [29]
0 DI0) | f0F0)

Vir)= o =

(3.41)

Using the general potential of the Schwarzschild black hole developed by Ngampitipan
[28], we can obtain the potential of the perfect fluid black hole in isotropic coordinates
using this concept [28]. We begin with static spherical symmetrical geometry in isotropic

coordinates, which then gives

1
ds? = —((r)%dt* + Wdﬂ +r?dQ?, (3.42)

where d? = df? + sin?(0)dp>. Let A(r) = ¢(r)? and B(r) = ((r)?B(r)%.

We start with the Klein-Gordon equation

\/— u\ﬁg o =0, (3.43)

where g, is the metric tensor, g"” is the inverse of the metric tensor, and g is the

determinant of the metric tensor.

—A(r) 0 0 0
0 B(r)~! 0 0
Juv = R (3.44)
0 0 r?B(r)~! 0
0 0 0 r2sin?(0)B(r)~!
A7t 0 0 0
0 B(r) 0 0
g = , (3.45)
0 0 r2B(r) 0
0 0 0 r~2sin=2(0) B(r)
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él((:))g rsin?(9), (3.46)

g =
V=9=1/ ;((:))3 2 sin(6). (3.47)

Then, the Klein-Gordon equation becomes

1
du/—gg"r o, =0, 3.48
=5 " (3.48)
where u, v are labels that take on the values 0,1,2,3 or ¢,7,8, ¢.

1 1

8t(\/:§gtt8t¢) + 8r(\/jggw 7‘¢)

Ve N
+—=00(y/=30"000) + Do/ =35"0) = 0. (3.49)
040" 000) + =0/ =" 0r) + (/") + (5 0) = 0. (3.50)
—%%?f - T_2B(r)\/ ié:i 9, <\/ 1‘34((:))3 r2B(r)8T¢>
+728311(9)69(sin(0)3(r)89w) +r=2B(r) sin2(9)gz§ =0. (3.51)
U(t,r, Q) = e“lp(r) X (Q). (3.52)

Substituting ¥ (¢, r, Q) into the above equation, we derive

A(T‘)_lw2€iwtg0(’l“)X(Q) + T—Qeith(Q)B(T) B(T) d < A(T) T2B(T) ng(’I"))

A(rydr \ \| B(r)3 dr
. . 2
+r2sin"1(0) et p(r) 0y (B(r) sin(0)9p X (Q)) + r2B(r) sin 2(0) e (r) 0 ;ib(QQ) = 0.
(3.53)

Multiplying by 72 /et (r) X () into equation (3.53),
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+B(r)sin 1 (0) X (Q) L0y (sin(0) 9y X (Q)) + Si §ZQ)X<Q)—182§;Q> =0. (3.54)
Since
B(r)(sin™1(0) 0 (sin(0) 0y X (Q)) + L_OX(@) B(r)[-1(1+1)X(Q)], (3.55)

sin2(0) 062

A% + 6 B() ﬁgg;ﬁ( ﬁ((f))gﬂB(r)dﬁf))—B(r)[zuw:o. (3.50)

Multiplying by A(r)e(r)/r?B(r)? into equation (3.56),

B(r) " wo(r) + 17 A<T>B<r>‘1£i( A<r>B<r>1r2dﬁf~T)>

— B(r) [+ 1)]

Multiplying by B(r)? into equation (3.57),

we(r) +r7°B(r) A(T)B(T)gd; (B(T)‘l A(T)B(T’)Tzdzgﬂr)>

B+ 1) A0 o (35

Let 7. = ¢(r) in order to simplify the above equation and to use the chain rule; then, we

get
i GKTR I d

JINJ
dr — dr dr, C(T)dr*'

(3.59)

Substituting the above equation into equation (3.58)

W2o(r) + 172 B(r)\/A(r)B(r) (r) df* (B(r)h/A(r)B(r)c'(r)r?dg?f:))

Choose ¢(r) = 1/4/A(r)B(r) in equation (3.60),

wo(r) + r2B(r) df (B(r)_1r2d§:r)> — B()[i(l + 1)]‘4(7")9”(7“) 0.  (3.61)
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Let o(r) = f(r)¥(r),

W) _ 5 B0 4 A B ) (3.62)
B2 2 _ gy ) B g2 ) VA BIRG). (363)
r 2 r

+(2B(r) " f'(r) = r2 f(r)B(r) "2 B'(r) + 2rB(r) ™" f(r))/ A(r) B(r)

HB) 2 AT B S+ - BO) R (VADBOEE). (364

(B 22 < By 1250 DD 4 L po) ) A BT

(3.65)

From the above equation, when the second and the third terms are cancelled, the equation

becomes

(rP2B(r) 7 (r) = 2 f(r)B(r) 2B'(r) + 2rB(r) " f(r)) + B(r) 172 f'(r) = 0.  (3.66)
2T2B(T)_1f'(r) = T2f(r)B(r)_2B'(r) + 27’B(’I“)_1f(7‘) =0. (3.67)

Multiplying by B(r)/r into equation (3.67),

2rf'(r) — rf(r)B(r) 1B/ (r) + 2f (r) = 0. (3.68)

We rearrange equation (3.68)

2rf'(r) + (—rB(r)_lB'(r) +2)f(r)=0. (3.69)

Then, we derive f(r)
f'tr) _rB(r)"'B'(r) -2

= - (3.70)
¥ _BOYB), 1
= —dr — —dr. (3.71)
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In f(r) = %ln B(r) —1Inr. (3.72)
We obtain
f(r) = Lj(’") = B(r)sr L. (3.73)

rB’(r)
, :<2 50 Bm);l_l i ap s
fi(r) = 5" B(r)"2B'(r) —r “B(r)-=. (3.74)

Substituting f(r) and f’(r) into equation (3.65), we derive

r ) 2 (y
7 (B (7")_17“2%) = By p() i S
+ di* <B(7")—17«2 (;r_lB(T)_iB/(T) N T—QB(T)i‘)) A(r)B(r)¥(r). (3.75)

d 1 odp(r L dPU(r
s (B(r) 17“2571)) =rB(r)" 2 dré )

E di (;TB(T)‘gB’(T) AB(T)‘5> A(r)B(r)®(r). (3.76)

Substituting ¢(r) and equation (3.76) into equation (3.61), we derive

29 (r
Wi(\/B(r)/r)¥(r) + r2B(r) [rB(r)zd;;g )]

d
dr.

+7“_2B(7”){ (;TB(T)—SB’(T)—B(T)—5> A(r)B(r)¥(r)

—B(r)[i( + 1)]A<T)(@/T)\I/(T) =0. (3.77)

B(r)

Multiplying by into equation (3.77),

2 T 3 1
WA (r) + d;;g ) +r~1/B(r) [di* (;T‘B(T)2B/(T) — B(r)z) VA(r)B(r)¥(r)
A(r)B(r)¥(r)

— (1 +1) 5 =0. (3.78)
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From the Regge-Wheeler equation

dQ\Il(r)
dr2

+ W = V()] () =0, (3.79)

and then,

Vir) = B g | — | 650)

is the potential of black holes in the form of perfect fluid spheres in isotropic coordinates.

We use these potential formula in two coordinates to obtain the potentials of black holes.

3.4.11 Potentials of black holes

We obtain the potentials of black holes in Schwarzschild and isotropic coordinates

as shown in Tables 3.4 and 3.5.

Black holes Potentials
Schwarzschild Exterior Vi(r) = Z(ZH)S—QTM) i %(1;@)
Tolman VI V(r) = (A+Br8)(3A+14Az+14Az21);§—53r8+14Br8z+14312r8)
Kuch 68 II Vry= $ED0-%2) | 20@r-2m)
M-W III V(r) = A(G*T)[2a2+7lt;j127l2a272ar78r2}

Table 3.4: Potentials of black holes in the form of the perfect fluid spheres in
Schwarzschild coordinates.

Black holes Potentials
Schwarzschild Exterior V(r) = 16(M—27”)27”2(—Sﬂf&ﬁ(%;?fﬁ+l2(M+2T)2)
N-P-Vla V(r) = a?l(1 + 1) + P0G 4 ab(2tet)

1
A(14r2) 72T E [—8a(2+2a—k)rt —4(3ak+kr?)r2 (14+12) +k21(1+1) (14r2)2]

Burl I Vir)= 52,2

Table 3.5: Potentials of black holes in the form of perfect fluid spheres in isotropic
coordinates [30].
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Figure 3.7: Potential of Schwarzschild Exterior black hole.

Potentials as shown in Tables 3.4 and 3.5 are potentials of black holes in the form of
perfect fluid spheres in Schwarzschild coordinates and isotropic coordinates, respectively.
Potentials are functions that depend on r (radius of perfect fluid black hole). We use

these potentials to calculate the greybody factors.

Potentials of perfect fluid black holes are plotted as shown in Figures 3.7 - 3.10
represent the potentials of black holes in the form of perfect fluid spheres in Schwarzschild
coordinates and Figures 3.11 - 3.13 represent the potentials of black holes in the form of
perfect fluid spheres in isotropic coordinates. The figures of the potentials show the
gravity of black holes and we derive greybody factors for perfect fluid black holes and

depend on the potentials of the black holes.
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Figure 3.9: Potential of Kuch 68 II black hole.
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Figure 3.10: Potential of M-W III black hole.
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Figure 3.11: Potential of Schwarzschild Exterior (isotropic) black hole.
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Figure 3.12: Potential of N-P-V Ia black hole.
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Figure 3.13: Potential of Burl I black hole.
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In chapter III, we studied about perfect fluid spheres, the properties of perfect fluid
spheres, and considered perfect fluid spheres in two different coordinates, namely, the
Schwarzschild coordinate and the isotropic coordinate. Next, we classified black holes in
perfect fluid spheres in Schwarzschild coordinate and isotropic coordinate by finding the
radius of the perfect fluid spheres compared with the Schwarzschild radius. We obtained
four categories of black holes in Schwarzschild coordinate and three categories of black
holes in isotropic coordinate. Then, we calculated the potential of black holes by deriving
the Regge-Wheeler equation from the Klein-Gordon equation. Finally, we plotted the
figures of the potentials of black holes to show the spacetime curvature outside the event

horizon.



CHAPTER IV

GREYBODY FACTORS FOR PERFECT

FLUID BLACK HOLE

In this chapter, we will learn the method to obtain the greybody factors or the
transmission probabilities of black holes that is the Bogoliubov coefficient. There are
many techniques to obtain the transmission and reflection probabilities such as the WKB
approximation and the 2x2 transfer matrix [31, 32]. In this thesis, we will study the
Bogoliubov coefficients developed by Boonserm [33], which is the highly accurate method
to obtain the rigorous bound on the reflection and transmission probabilities. The rigorous

bound can be used to derive the greybody factors of perfect fluid black holes.
4.1 Bogoliubov coefficients

The Bogoliubov coefficients developed by Boonserm [33] is the method that can
be used to obtain the rigorous bound on the reflection and transmission probabilities,
which involves o and 8. The concept of this method is used to obtain the exact solution
of the second order linear ordinary differential equation in the form of a matrix time-
ordered exponential and the Bogoliubov coefficient that relate with the constant of this
matrix. We then use these coefficients to obtain the rigorous bound on the reflection and

transmission probabilities.

We start with the second order differential equation

d2¢

= T w?(x)b(t) = 0. (4.1)

The solutions are given by [33]

o(t < t;) = et (4.2)



Bt > ty) = ae ot 1 gomit, (43)

From equation (4.2) and equation (4.3), we get

¢ eJriwoti
= 4.4
WL ,L'e-‘r’iwoti ( )
0 ti
and
¢) ae+iw0tf + ﬂe—iwotf
pu— ) . . (4-5)
wlo . Z’(a€+2w0tf _ ﬂefzwotf)
We also have
¢
2 =T , (4.6)
Ty <.
Wo tf Wwo t
) (4.7)
From equation (4.7), we get [33]
qe Tty _ geTiwoly — _jeetiwnti 4 gotiwoltiy (4.9)
Solving the two above equations, we get [33]
2aeT 0t = (g + d 4+ i(b — ¢)eTwol], (4.10)
20”0t = [q — d 4 i(b + ¢)eTwol]. (4.11)
1 ,
a=la+d+ilb- ¢)]ewolts=t), (4.12)
1 .
B=gla—d+i+ c)]etwoltstt, (4.13)

jof? = Jl(a+ > + (b~ o)’ (4.14)
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8P = Jl(a—d + (b-+ ) (415)

and
B (a+d)?+(b—c)?—(a—d)?—(b+c)?
— I ,

B 2ad — 2bc + 2ad — 2bc
N 4

=ad—bc=1. (4.16)

From equation (4.14) and equation (4.15), we get [33]

1 1
B = Jlo® + d* + 6% + ¢* = 2] = 24r(TTT — 1. (4.17)
Also,
1 1
o = Zla + & +- 62+ &+ 2) = 2er(TT7 4 ), (4.18)
Let
X(t) =TT )T, (4.19)
and
triz] = tr{TTT} = a® + b* + 2 + d°. (4.20)

Then, the differential equation is [33]

0 w 0 —w?(t)/w
dd—X - Ol + x(1) W01 (4.21)
b =) Jwo 0 wo 0
dX 0 wo a?+b* ac+bd a’?+b® ac+bd 0 —w?(t)/wo
- +
d —w?(t)/wo O ac+bd c*+ d? ac+bd c*+ d? wo 0
(4.22)
ax 2un(ac + bd) “ol@ + ) = W)@ 8 )
At (e + d?) — (w2 Jwo)(a® + b?) (=202 fuw) (ac + bd)
and so
X 2
WIX] _ e+ bd)(wo — <), (4.24)

dt wo
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dtr[X] w?
<2 bd - — 4.25
T < glac+ b - £, (4.25)
dtr[X] w? w?
<2|\/(a2 + b2 + 2 + d?) — 4wy — —| = \/(tr[z])? — 4jwo — —|.  (4.26)
dt wo wo
From equation (4.24), we get
1 dtr[X 2
Xy -, (1.27)
(tr[z])2 —4 dt wo
dcosh™ tr[X /2] w?
< - — 4.28
T <oy -2, (4.28)
ts W2
(X /2] < / e |dt. (4.29)
t; wo
ty 1 W2
2/ di h2/ = |wo — = |dt. 4,
|B]” < sin @- g lwo — —-ldt (4.30)
ty i\ (JJ2
¥4 h2/ = |wo — —|dt. 4.31
la]” < cos | Z\wo w0| (4.31)

i

We obtain the rigorous bound on the Bogoliubov coefficient. We begin with the Schrodinger’s

time-independent equation

——" k% (z)y(z) = 0, (4.32)

2m[E-V (x
where k%(z) = %

The solutions in the asymptotic regions are given by [33, 34]

ik _ocox —ik_ocox

af " 4 g ) T — —00
bla) m { VEo T Voo . (4.33)
ej/k];iz, T — 00

The transmission and reflection probabilities are given by [33, 34|

(4.34)
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Figure 4.1: The relation between transmission and reflection probabilities.

Through the conservation probability (T-+R=1) [33, 34]

o 18 =1 (4.35)
We obtain [33, 34]
Il < cosh { / \ ﬂ(m)dm] , (4.36)
and
(3< sinh [ / X ﬁ(m)dm] , (4.37)
where

() = Y@ T B26) = )

Th(@) (4.58)

The rigorous bound of the transmission and reflection probabilities are given by [33, 34]

T > sech? [ / h ﬁ(m)dw] : (4.39)

—00

and

R < tanh? [ / h ﬁ(az)dm] : (4.40)

—00



39

4.2 Greybody factors

Hawking radiation, the radiation emitted by black holes, is reflected by potential,
while the rest of the radiation is sent out [35]. Greybody factors are the transmission
probabilities of the Hawking radiation. The transmission and reflection probabilities of
black holes can be calculated using the 2x2 transfer matrix method to obtain the lower
bound on the transmission coefficient and the upper bound on the reflection coefficient.

The 2x2 transfer matrix method is given by [32]

1 oo
T > sech?E / |V (r)|drs, (4.41)

dr. __ 1

where ar W

For the Schwarzschild black holes that have a coefficient in front of dr? equal to
dt?, we can obtain dr, in this form [29]
dry 1

7 i (4.42)

The transmission and reflection probabilities as shown in Tables 4.1 and 4.2, respec-
tively represent the transmission and reflection probabilities of black holes in the form of

perfect fluid spheres in Schwarzschild coordinates.

The relation between the transmission and reflection probabilities are plotted as
shown in Figures 4.2 - 4.4 represent the relation between the transmission and reflection
probabilities of black holes in the form of perfect fluid spheres in Schwarzschild coordinates
namely, Schwarzschild exterior, Tolman VI, and Kuch 68 II black holes, respectively. The
reflection probability of these two black holes namely, Tolman VI and Kuch 68 II increase

if w increases, and the transmission probability decreases if w increases.
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Black holes Transmission probabilities
1 200+ 1
Schwarzschild Exterior T > sech? | — +20(1 4 1)m
2w 4m?
Tolman VI T > sech?| L (A+Br®)(3A+14A1+14A1%)
= 2w 4/TArT V?M

+(5Br® — 14Br®l — 14BI%r®) J4/T4r Ty | - AHB2

Kuch 68 11 T > sech? 1 I+ 1a*(m +4Cm’ —r + 8Cm”r)
B 2w (r +4Cm?r)?

+2¢/Csinh 2V C(m — r)]
+tIn[l + a*b +4Cm(m —r)] — tm[rﬂ
Ala = 7)(Va (10 + T+ T12), [ 222)
a3/ —TAr(a—r)(a + r)2ja’

 A(a—r)(=14y/rsinh~'[y/r/a])
a3/2 \/—7Ar(a—7')2 (a+r)2 /a3

—8A(a —r)yaP/a*?\/=TAr(a —r)*(a + T)Q/aﬂ

M-W III T 2 sech2

Table 4.1: Transmission probabilities of black holes.

where a* = /T +4C0(m —r)2,b = 1+ 4Cm?2,t = *CmlEZHCmHEC2HACMT )

P =3 F1[-3/2,-1/2,1/2, —r/a] and 2Fi[a,b,c, 2] = ij[(a)é)(f)n z].
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Figure 4.2: The relation between transmission and reflection probabilities of
Schwarzschild Exterior black hole.

Black holes

Reflection probabilities

Schwarzschild Exterior

I m+20(+1)m
9., 2

R < tanh?

2w 4m

1 (A+ Br®)(3A+ 14Al + 14A7?)

Tolman VI R < tanh® | —
2w 4\/_707\/144-73%8)
+(5Br® — 14Br®] — 14BI%%) /4/Tdr \/E}
Kuch 68 II R < tanh® L+ Da*(m + 4Cm3 —r +8Cm?r)
2w (r + 4Cm2r)?
+2v/C'sinh ' [2¢/C(m — 1)]
+tIn[l + a*b+4Cm(m —r)] — tln[frﬂ
Ala = )(Va* (10 + T + T12), [ 2£2)
M-W III R < tanh?
a3/2\/—TAr(a —r)%(a +7)2/a?
 A(a—r)(~14y/rsinh ! [\/r/_a])
03/2\/—7A’r‘(a—7")2(a+7«)2/a3
—8A(a — r)/aP/a¥?*\/=TAr(a — r)?(a + T)z/aﬂ
Table 4.2: Reflection probabilities of black holes.

where a* = /1 +4C(m —

T‘)2,b _ 1+4Cm2,t _ 4Cm(l(—2+4C’m2);;l2(—2+4Cm2)+b4),

and P =y F1[-3/2,-1/2,1/2, —r/a.
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Figure 4.3: The relation between transmission and reflection probabilities of Tolman
VI black hole.

Figure 4.4: The relation between transmission and reflection probabilities of Kuch 68
1T black hole.

For the isotropic coordinates, we can obtain dr, in this form

dr A 1
&~ CPB e

The greybody factors of the Schwarzschild Exterior are given by [30]

2(R — 11)3(—AM(R — 1) + UM + 2(R — 1)) + 2(M +2(R — 11))?)

T > sech? — ,
(M — 2R = 1)) (M + 2(R = 1)\ (e s
(4.44)
and
R < tann? | 2B~ r1)?(=4M (R — 1) + 1(M + 2(R — r1))* + (M + 2(R — r1))?)
(M = 2(R = r0))(M +2(R = 1))°/ (e ey
(4.45)
The greybody factors of N-P-V Ia are given by [30]
T> sech? (b+ar)(bl(1+1) — a(l + 1+ 1?)rlog[r] + arlog[b + ar]) (4.46)
B 2ry/(b+ ar)?w ’
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Figure 4.5: The relation between transmission and reflection probabilities of
Schwarzschild Exterior (isotropic) black hole.

and
R < tanh? (b+ar)(bl(1+1) — a(l + 1+ 1?)rlog[r] + arlog[b + ar]) ’ (4.47)
2ry/(b+ ar)?w
Wherer:%m’+8 brz.
The greybody factors of Burl I are given by [30]
2\6 (2 _ 9Rp4 _ 2 4y 4 72(_ 2 4
T > sech? (1+7r%)°(60r" — 287* + [(=3 + 6r° + %) + [*(=3 + 6r° +1%)) (448)
67/ (1 +r2)12w
14 r2)6(60r2 — 2874 _ 2 4y 472 2, 4
R < tanh? (1+r%)%(60r 8rt + 1(=3+ 612 + %) + (=34 6r° + 1)) (4.49)
6r/ (14 r2)12w

_ _ TTiaraa? — —1-6a—10a>—4a®
where 7 = \/c (5 4(1+c)rraer ) and ¢ = 7370, 1607+ 407 -

In the Figures 4.5 - 4.7 represent the relation between the transmission and reflection
probabilities of black holes in the form of perfect fluid spheres in isotropic coordinates
namely, Schwarzschild exterior, N-P-V Ia, and Burl I black holes, respectively. The
reflection probability of these three black holes in isotropic coordinates decreases if w

increase, and the transmission probability increases if w increases.
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Figure 4.6: The relation between transmission and reflection probabilities of N-P-V Ia
black hole.

Figure 4.7: The relation between transmission and reflection probabilities of Burl I
black hole.
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In chapter IV, we studied the method to obtain the greybody factors of black holes.
The coefficients we have obtained are a and § that are used to calculate the transmission
and reflection probabilities. Then, we calculate the greybody factors or the transmission
probability of black holes in two coordinates and plot the graph to show the relation

between the transmission and reflection probabilities of these perfect fluid black holes.



CHAPTER V

HAWKING TEMPERATURE AND ENTROPY

In this chapter, we compute the Hawking temperature and entropy from the Hawk-
ing radiation and also compute the entropy composition of the black hole systems. After
calculating the greybody factors of the Hawking radiation of black holes, we will calculate
the Hawking temperature that is the thermal radiation of black holes that has a temper-
ature, and also calculate the entropy that is associated to the Hawking temperature.

Moreover, we will also calculate the entropy of the black hole systems in each coordinate.

5.1 Thermodynamics

Thermodynamics explains the relationship between work, energy, heat, and tem-
perature. Thermodynamics can predict the origin and extinction of the universe with
the second law of thermodynamics and indicate the direction of time with the increase in
entropy [19]. Next, we will introduce the two laws of thermodynamics, namely, the first

law and second law of thermodynamics [19].
5.1.1 The First Law of Thermodynamics

The first law of thermodynamics explains that energy cannot be established or

disrupted in an isolated system.

In thermodynamics, the quantities of the energy supplied to the system as heat is given
by
TdS = dE — dW, (5.1)

where F is the energy and W is work.

In black hole dynamics, the quantities of the energy supplied to the system as heat is
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given by
TdS =dE —QdJ — ®dQ), (5.2)

where J is the rotational momentum (the angular momentum) and @ is the electric

charge.
5.1.2 The Second Law of Thermodynamics

The second law of thermodynamics describes the the entropy as always increasing

in an isolated system.

In thermodynamics, entropy can never decrease:

AS > 0. (5.3)

In black hole dynamics, the area of event horizon can never decrease:

ASy+ ASy > 0. (5.4)

5.2 Hawking temperature

The temperature of the Hawking radiation can be calculated in the matter of the

surface gravity of the black hole [29];

where k = (\/C2(r)B(r))’.

For Schwarzschild black holes with a coefficient in front of dr? equal to dt?, we can

obtain & in this form [29];

k= f(r). (5.6)
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For isotropic coordinates, we can obtain x in this form;

k= (C(r)*B(r))" (5.7)

5.3 Entropy

Entropy is also one of the fundamental properties in thermodynamics, which can

be expressed in the form

S— / M, (5.8)
Black holes Temperatures

Schwarzschild Exterior T = ﬁ

_(CA/r34Br5)?

Tolman VI T = \/TM
Kuch 68 II T = 2N

M-W IIT T = _%W s

Schwarzschild Exterior (isotropic) T=27

N-P-V Ia T=+/(a+br)/2n

1(1+a)
Burl I T = A““)Q—;”\/ (1 +12) Taore? /A

Table 5.1: Temperatures of black holes

In Table 5.1, the calculation of the temperatures of the Schwarzschild exterior black hole
and the Kuch 68 II black hole are obtained by [36]. In this thesis, we compute the
temperatures of the Tolman VI black hole, the M-W III black hole, the Schwarzschild
exterior (isotropic) black hole, the N-P-V Ia black hole and the Burl I black hole.
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Black holes Entropies
Schwarzschild Exterior S =2M?rx
Tolman VI S — 15m(A+Br8) tan~1[\/ B/ Ar4]
4r34/—14AB(A+Br8)2 /r6
Kuch 68 1I S = 7r(d+ln[Ag]CTln[1+d])
dM 1 g
M-W II1 L 2d
. . . . 125M
Schwarzschild Exterior (isotropic) S = M

A(r(4b+3ar)+3(b+ar)y/—r2(b+ar) In[b+ar))
3a7r\/—r2(b+ar)3

Burl I g — _ 4r(4r?)~9[(1+4a+2a?)g—(1+6a+2a%)h+2aj]

(1+4a+2a2)Amy/(14+r2) 21 /A

N-P-V Ia S=-

Table 5.2: Entropies of black holes

In Table 5.2, the calculation of the entropies of the Schwarzschild exterior black hole and
the Kuch 68 II black hole are obtained by [36] where g = Hypergeometricy, F1[1/2, m,

h = Hypergeometricy F1[1/2

’ 1Jr4oH—2a2 ’ ' 14+4a+2a??

2+4a

TFiatoqz- 10 this thesis, we compute the entropies of the Tolman VI black hole,

and ¢ =
the M-W III black hole, the Schwarzschild exterior (isotropic) black hole, the N-P-V Ia
black hole and the Burl I black hole.

5.3.1 Entropy Composition

The entropy composition is the entropy of the black hole systems. In this thesis,
we examine two black holes as a system, and the black holes in the system are in the
same coordinates. We then compute the entropy of the black hole systems in two cases,

namely, additive entropy composition and nonadditive entropy composition.

5.3.1.1 Additive Entropy Composition

The additive entropy composition is given by [37]

S92 = 51+ Ss. (5.9)

3/2,

3/2, —r?],j = Hypergeometric, F1[1/2 3+3a+2a2 3/2,—r

_7’2]7

],
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Figure 5.1: The additive entropy composition of Schwarzschild exterior and Tolman

VI black holes.

We obtained the additive entropy composition of the black hole systems in Schwarzschild

coordinates as shown in Table 5.3.

System of Black holes

Entropy Composition

Schwarzschild Exterior @ Tolman VI

1571(A+Br8) tan~1 [/ B/ Ar?|
4r3y/—14AB(A+Br8)2/r6

SST R 2M27T +

Schwarzschild Exterior @ Kuch 68 11

SS = IM27 + 7r(d+ln[]\g]c In[1+d])

Schwarzschild Exterior @ M-W 111

SSM—2M27T+fdM1

Tolman VI @& Kuch 68 11

157(A+Br8) tan~1[y/B/Ar4]
4r3 \/714AB(A+BT8)2/T6
7 (d+In[M]—In[14d)])

2C

Stk =

+

Tolman VI @ M-W III

157 (A+Br8) tan~1 [/ B/ Ard]
4r3\/—14AB(A+Br8)2/r6

+J Grdr

STM =

Kuch 68 II & M-W III

SKM _ ﬂ(d+ln[ﬂggln[l+d])

B

Table 5.3: The additive entropy composition of the black hole systems in
Schwarzschild coordinates
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Figure 5.2: The additive entropy composition of Schwarzschild exterior and Kuch 68
II black holes.

System of Black holes Entropy Composition

Schwarzschild Exterior @& N-P-V Ia Sen = 181252”1}’”_“3(?’“))3

i 3(b+ar)y/—r2(b+ar) In[b+ar])

18am? \/77’2 (b+ar)3

Schwarzschild Exterior @& Burl 1 Ssp = %

_ 4r(140r?) " 9[(1+4a+2a2)g—(1+6a+2a2) h+2aj]
(1+4a+2a2)Amy/(1+12) =24 /A

N-P-V Ia @ Burl I Sng = _ Ar(4b+3ar) +3(b+ar) /—r2(btar) Infb-+ar))
3a7r\/—r2(b+ar)3
_Ar(14r2?)~9[(1+4a+2a2)g—(1+6a+2a>) h+2aj]
(1+4a+2a2)Aﬂ\/(1+r2)—2q/A

Table 5.4: The additive entropy composition of the black hole systems in isotropic
coordinates

We obtained the additive entropy composition of the black hole systems in isotropic

coordinates as shown in Table 5.4 where g =2 F[1/2, m, 3/2,—r?%,
_ . 2 4
h =2 F1[1/27 %73/27 _T2]7] =2 F17 %73/27 _T2]7 and q= %'

5.3.1.2 The nonadditive Entropy Composition

The nonadditive entropy composition rule can be obtained by the Abe’s equation

[37]

S12 = 51+ So + AS159, (5.10)

where 0 < A < 1.
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We obtained the nonadditive entropy composition of the black hole systems in Schwarzschild

coordinates as shown in Table 5.5.

System of Black holes

Entropy Composition

Schwarzschild Exterior @ Tolman VI

. 2 157(A+Br8) tan~1[/ B/ Ar%]
Ssr = 2M*m + 4r3\/—1TAAB(A+ Bro)2/r0

+>\( 15M2%72(A+Br8) tan~1[/ B/ Ar%] )
2r3 \/714AB(A+B7‘8)2/7"6

Schwarzschild Exterior @ Kuch 68 11

Ssx = 2M?m 4 TEMI 1 +d)

+)\( M27T2(d+ln[cl\/1]—ln[1+d}) )

Schwarzschild Exterior @ M-W III

_ 2 dM 1 g
Ssy = 2M*m + | - 5d

FARMT [ Ly

Tolman VI & Kuch 68 II

157(A+Br8) tan~1[y/B/Ar4]
4r3\/—14AB(A+Br®)2 /r6
w(d+In[M]—In[1+d])

2C

STK =

+
1572 (A+Br8) tan~1[y/ B/ Ar*](d+In[M]—In[1+d])

+A( 8CT3/—14AB(A+Br8)2 /r6
Tolman VI & M-W 1T Star = 15;“:‘/“9142;&;;;/?:} +f dff %d
T 44
Kuch 68 IT & M-W I Sycy = "M | dM L g
+)\( (d+1n[M] ln[l+d] f dj\f;lpdr

Table 5.5: The nonadditive entropy composition of the black hole systems in
Schwarzschild coordinates
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We obtained the nonadditive entropy composition of the black hole systems in isotropic

coordinates as shown in Table 5.6.

System of Black holes Entropy Composition

Schwarzschild Exterior & N-P-V Ia Sgn = 1812521‘1/(’;(4;;?")) =

1 3(b+ar)y/—r2(b+ar) In[b+ar])

18am? \/—7"2 (b+ar)3

_\(125M 4(r(4b+3ar)
( 24m )<3a7r\/—r2 (b+ar)3 )

ar)+/—r2(b+ar) In[b+ar
+)\(125M)<3(b+ )/ —r?(b+ar) In[b+ ])>

24 3a7r\/—7”2(b+ar)3
i i _125M _ 4r(1+r%)"9[(1+4a+242)g
Schmarzchild Bixterior © 3 Son = 24m (1+4a+2a2) A/ (1412) 24 /A
(14-6a+2a2)h~+2aj]

 (1+4a+202) Amy/(1472) 29/ A

_)\( 125M)( 4r(147r2)~9[(1+4a+2a?)g )
24m (1+4a+2a2)A7r\/(1+r2)*2¢Z/A
125M (1+6a+2a2)h+2aj]

+)\< 24m ) (1+4a+2a2)A7r\/(1+7“2)—2‘1/A)

N-P-V Ta @ Burl I s \ 4(r(4b+3ar)+3(b+ar)+/ —r2(b+ar) In[b+ar])
MR 3a7r\/—T2(b+a7‘)3
4r(147r2)~9[(1+4a+2a?)g—(14+6a+2a?) h+2aj]
(1+4a+2a2)A7r\/(1+7"2)*2‘1/A
4(r(4b+3ar)+3(b+ar)y/ —r2(b+ar) In[b+ar])
+)\[( 3a7r\/—r2 (b+ar)3 )
(47'(1—1—7"2)_‘1[(1+4a+2a2)g7(1+6a+2a2)h+2aj} )]
(1+4a+2a2)Amy/(14+r2) 21 /A

Table 5.6: The nonadditive entropy composition of the black hole systems in
isotropic coordinates

where g =9 F1[1/2, 75 25-2,3/2, =12, h =y F1[1/2, 279 3/2 —r?],

' 1+4a+2a?? ' 1+4a+2a?°
. 3+3a+2a? 2 __ 2+44a
J =2 F1[1/2’ 1+4a+2a?”’ 3/2’ - ]’ and 4= T74a+2a>"

In chapter V, we calculated the Hawking temperatures and the entropy of black
holes. We calculated the Hawking temperature and the entropy of perfect fluid black
holes and also calculated the entropy composition of black hole systems. Finally, we
plotted the graph to show the entropy of each black hole system by using the radius of
one of the black holes in the system, where the result of all entropy composition increases

when the radius of the black hole increases.



CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this chapter, we discuss the conclusion of this thesis and provide some possibilities

about future work.
6.1 Conclusions

In chapter I, we studied special and general relativities, and explained the difference
between special and general relativities. In this thesis, we are interested in general rela-
tivity. The objective of this thesis is to calculate the greybody factors of black holes using
general relativity, which describes how matter causes spacetime curvature. This concept
has led to the formulation of the Einstein field equation. In chapter II, we studied about
the Einstein field equation and the quantities in the Einstein field equation, namely, the
Einstein tensor, the stress energy tensor, the metric tensor, the Christoffel symbols, the
Ricci curvature tensor, the Riemann curvature tensor, and the Ricci scalar, and further
described these quantities in more detail. The Einstein field equation in general relativity
is the most important equation to study about perfect fluid black holes in this thesis. In
chapter III, we studied the perfect fluid spheres, the properties of perfect fluid spheres,
and made use of these properties of the perfect fluid spheres to obtain the constraint that
can reduce the complexity of the Einstein field equation. We also considered the perfect
fluid sphere in two different coordinates, namely, the Schwarzschild and the isotropic co-
ordinates. Moreover, we studied the generating theorem of perfect fluid spheres and how
these theorems can generate new solutions of perfect fluid spheres. Next, we classified
black holes in perfect fluid spheres in Schwarzschild coordinates and isotropic coordinates
by deriving the radius of the perfect fluid sphere and compared it with the Schwarzschild
radius. If the radius of the perfect fluid spheres is lower than the Schwarzschild radius,

the perfect fluid sphere becomes a black hole. In this thesis, we obtained four black holes
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in Schwarzschild coordinates, namely, the Schwarzschild exterior black hole, the Tolman
VI black hole, the Kuch 68 II black hole, and the M-W III black hole, and three black
holes in isotropic coordinates, namely, the Schwarzschild exterior (isotropic) black hole,
the N-P-V Ia black hole, and the Burl I black hole. After that, we calculated the po-
tential of the black hole by deriving the Regge-Wheeler equation from the Klein-Gordon
equation. The Regge-Wheeler equation is similar to the Schrodinger equation, which
contains the kinetic and potential energies. We derived the potential of the perfect fluid
black holes in isotropic coordinates by using the concept of Schwarzschild coordinates.
Finally, we plotted the figures of the potentials of perfect fluid black holes to show the
spacetime curvature outside the event horizon. After calculating the potentials of the
black holes, we used these potential to calculate the greybody factors. In chapter IV, we
studied the Bogoliubov coefficients method to obtain the greybody factors of black holes.
The coefficients that we obtained are «v and S that are used to calculate the transmission
and reflection probabilities. Then, we calculated the greybody factors of black holes in
Schwarzschild coordinates and isotropic coordinates, and plotted the graphs showing the
relation between the transmission and reflection probabilities. The results show that the
reflection probability of these three black holes in isotropic coordinates decreases if the
wave’s energy increases, and the transmission probability of these three black holes in
isotropic coordinate increases if the wave’s energy increases. In chapter V, we calculated
the Hawking temperatures and the entropy of black holes. We calculated the Hawking
temperature and the entropy of perfect fluid black hole and also compute the entropy
composition of black hole systems. In this thesis, we considered two black holes in a
system and these two black holes are in the same coordinates. We divided the entropy
composition into two cases, namely, the additive entropy composition and the nonadditive
entropy composition. These two cases are different. Additive have A = 0 but nonadditive
have 0 < A < 1. Finally, we plotted the graph to show the entropy of each system of
black hole by using the radius of one of the black hole systems. The results of all entropy

composition increases when the radius of black holes increases.
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6.2 Future work

We have made suggestions about future work that can be developed from this thesis as

follows.

o We are interested in the power spectra of greybody factors of black holes that is
associated to the temperature and the entropy of black holes. We will calculate
the power spectra in different black holes and compare the power spectra in these

black holes.

o We will calculate the greybody factors of different black holes by using the WKB
approximation and the Bogoliubov coefficients, and compare the results of the
greybody factors in these two methods for each black hole. We will then analyze
the results to determine which method is best to obtain the highly rigorous of the

greybody factors.

o We will study the new method that is adiabatic approximation that refers to the
Schrodinger equation and we will calculate the greybody factors by using this

method.
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In appendix, we show mathematica code to calculate the radius of perfect fluid
spheres and compare the radius of perfect fluid spheres with Schwarzschild radius. Next,
we will calculate the potential of black holes. Finally, we calculate the greybody factors,

the Hawking temperature, and the entropy of black holes.

APPENDIX A : The radius of MW-III black hole, the potential, and the greybody
factors of M-W III black hole mathematica code
In[1l= f:.‘;Ax rx(r-=a)
P=D[f, r]
oulll= AfAT (-a+r)

Ar+A(-a+r)
Out[2]=

24/ATr (-a+r1)

In[3]:= fa2=1A2

outfgl- Ar (—a+r)

]

C-Jt}:l]— 1——
7
-(2xgxrxP)+f=(fxg) 0 ]
== 3

a2

In[5):= Solve[
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2M
Inlél:= Solve[(l -?] ==AR(R-2a), M]
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1
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APPENDIX B : The radius of N-P-V Ia black hole, the potential, and the grey-

body factors of N-P-V Ia black hole mathematica code

= Z2= (a r+b)2 (a r+b}-2
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APPENDIX C : The radius of Tolman VI black hole, the potential, and the

greybody factors of Tolman VI black hole mathematica code
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APPENDIX D : The greybody factors, the Hawking temperature, and the en-

tropy of Schwarzschild Exterior (isotropic) black hole mathematica code
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APPENDIX E : The greybody factors, the Hawking temperature, and the entropy

of Burl I black hole mathematica code

4(a+1)
—
W= Z2 = A (L4 r2)2a” #dasl
4(1l+a)
outll= A (l+r2)l+4a+232

2= Z =+ Z2

4(1+a)

Outll= \/A(l+r2)1+4a+252

4(1+a)
Tagaso.2
Inl3k= A(1+r2)1+4a+2a

(1+a)
Tadmeda2
out[3]- A(l+r2)l+4a+?_a

1
6= B2 = Simplify P ]

72 (l+r2)2e2 +da+1

4483
(l+r2) 14434222
Qut[6]=
A
In[7}:= B=JB2
__ 4+Ba
(l+r’2) 1+42+222

Qut[7]=

A

Infal= Solve[((D[Z, r]1)? xB2) - ((D[B, r])?xZ2)+(2xBxD[B, r'])(E]::@, r]
r

J_l_ea_1@a2_4a3 \/_1_&“>a_1@a2_4a3
Outlgl= {{I’—)— y 4=

1+10a+16a°+4a° \/1+1@a+16a2+4ag

4a M 4
Solve[(l+r2)la2+Aa+1==[l+2_ s M]
r

a a a
{{rvuz r(71+(1+r2)l*43*232)}, {Mafz i r'(fj + (1+r2)l*43+2a2)}, {r«uz i r(ﬁ + (1+r2)l*4a*262)}, {M 5>-2r [1+

a

(147577



70

Tx(l+l)x222xB2

2

rxD[Z2x B2, r] _1] r]]]

Infol= S'imp'l.'ify[ #rlxzx 22 xBZxD[Zx
2xZ2xB2

r

a
2
A(1+r?)  1+asv207 (gar_16a’rs8a(l+da+2a’) ri-d (1sdas2a®)r2 (1+r?)-12a(1+4a+2a2) r? (1+r2)+4

(1+4a+2a%)?r?

Outl9l=

1

k2r2

4
S'imp'l'ify[ A(l+r?) 2+E[(-16.-,1 -16a’+8ak)r—(4kri+12ak) r? (1+r?)+ (K 1+k*17) (1+r2)2]]

4
o fA(1+r?) T TR[—ga (242a-K) rfea (3ak-kr?) r2 (14r?) 4k 1 (141) (1417)?]
S'lmp'l'lfy[ e ]
"
—243
A(l+r?) TK[-8a(2+2a-k) r*+4 (3ak-kr?)r2 (1+r?)+ k2 1 (1+1) (1+r?)?]

kZ |.2

4
A(lsr?) "R [_8a(2+42a-Kk) r'=4 (3ak+kr?) r? (14r2) 4+ k2 1(141) (1+17)?]

K2 r2

4

1 1 e c
A(lsr?) 1#2a+227 (L1gar’-l6a’r‘+8a(l+d4a+2a’)r

_
2w Z2B(l+4a+23’)’r’

k= Simpli fy[Integrate[

a+222)r?(Lser?)-12a(1+4a+22%)r? (1+r?)+ (1+4a+22a%)2 1 (1+r?)2+(Ll+4a+22a%)2 1% (L+r?

2+da

(141r2) 1+das2a” (7(1+4a+282)21 (1+1) Hypergeometrﬁc2Fl[fl, — 5 7r2]74r2((1+9 a+10a” 42
2 l+4a+2a 2

outl10]=

2 (1+4a+2a%)?

ns= T=Simplify[D[z2B]/ (2pi)]

4+8a

B 2
(14r2) 1+4a+23

4(l+a)
A(1+r2)1+ﬂa+232

A

Out[15]= T
2p1

a
infel= Q = S'imp'l.'ify[D[2 r(—l+ (1+ r2}1+43+231), r]]

a -1+%
il 4a|’2(1+|'2) l+d4a+22a
+

outfiel= —2 +2 (l+ r2)1+4a+2a

l+4a+2a’

n171- Integrate[Q/T, r]

2+43a
4pir (14r2) Ledasza’ ((1+4a+2 a?) Hypergeometr'iczFl[é, ﬁ, %, -r?| - (1L+6a+2a?) Hypergeometri
+4a+eca
oufi7l= —
4+8a
2, l+4a+2a°

(1+r7)

(1+4a+2a%)A

A



71

APPENDIX F : The entropy composition of black hole systems, namely, Schwarzschild
Exterior black hole & Tolman VI black hole, and Schwarzschild Exterior black hole &
Kuch 68 II black hole mathematica code
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