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# # 6172189623 : MAJOR CHEMISTRY
KEYWORD: Isothiocyanate Unsymmetric thiourea Desulfurization Photocatalyst Carbon
tetrabromide
Saharat Techapanalai : TETRABROMOMETHANE-MEDIATED DESULFURIZATION FOR
SYNTHESIS OF  ISOTHIOCYANATES FROM  AMINES. Advisor:  Prof. SUMRIT
WACHARASINDHU, Ph.D. Co-advisor: Prof. MONGKOL SUKWATTANASINITT, Ph.D.

Isothiocyanate considered as an important building block for pharmaceutical
industry. Traditional methods for preparation of isothiocyanate involved the desulfurization of
dithiocarbamate salt from amine using oxidizing agent. Although those methods are efficient,
however, all of them require the use of toxic reagent, strong oxidizing agent, multiple step
synthesis, harsh condition and large amount of metal catalyst. Therefore, in this research, we
develop two mild methods to synthesize isothiocyanates from amines using low toxic reagent.
For the first process, we were able to demonstrate the use of photocatalyst, safranin O to
convert dithiocarbamate salt of d-bromoaniline into 4-brophenyl isothiocyanate in 48% yield in
one-pot under white LED irradiation. For the second process, commercially and low toxic CBrq4
was used for desulfurization process. Based on our optimize investigation, we found that the
use of CBr, 1.5 equivalences in the presence of 3.0 equivalences of DBU as base in acetonitrile
give the optimized condition. Under this condition, we were able to synthesize 32 examples of
isothiocyanates in moderate to excellent yields. Moreover, we were able to extend this
methodology to prepare unsymmetrical thioureas via the in situ generation of isothiocyanate in
one-pot. The synthesis of isothiocyanates and unsymmetrical thioureas were able to prepare a
one-gram scale in good vyields. The mechanistic study revealed that CHBr; and sulfur
were detected by NMR and SEM/EDX. This evidence suggests that CBr, act as an electrophile
to induce the desulfurization process. The benefit of this reaction includes one-pot synthesis,

open air condition and low toxic desulfurizing agent.
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CHAPTER |
INTRODUCTION

1.1 Overview

Isothiocyanates are important building block for construction sulfur-containing
heterocyclic compounds. They are found in various applications such as
pharmaceuticals, natural products and organic materials.  Traditionally,
isothiocyanates were prepared from direct thiocarbonylation between amine with
various thiocarbonyl transfer reagents. However, the reaction required anhydrous
solvent, strong exothermic and required the use of toxic reagent. In recent years, the
oxidative desulfurization between amine and carbon disulfide to deliver
isothiocyanate has been tremendously studied due to their benefit such as high
atom economy and ease of practical operation. However, such method involves the
use of heavy metals and strong oxidizing agents. Therefore, the safe and efficient
method for preparation of isothiocyanate is still challenged. In this work, we replace
the toxic oxidizing agent into carbon tetrabromide which is a commercially available,
cheap and less hazardous reagent to prepare isothiocyanate from amines as shown

in scheme 1.1.
+

H BH
R,N\n/S
S
Scheme 1.1 Synthesis of isothiocyanate using carbon tetrabromide.

CS,, base CBry, 1t

R-NH, R-NCS

1.2 Introduction to isothiocyanate

Isothiocyanates have been known as important class of organic compounds and
they are common subunits in various natural products and bioactive compounds. For
example, sulforaphane (1) was isolated from Japanese wasabi spice® ? which shown
antioxidant and anti-cancer activity. Moreover, moringa isothiocyanate® 2
processed high inflammatory bioactivity. In addition, the simple isothiocyanate such
as phenyl (3), benzyl (4), phenylethyl (5) and allyl isothiocyanates (6) was found in
11

the brassicale vegetables showing antibiotic®, anticancer®® and antitumor'®

activities (Figure 1.1).
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SCN
o /\@\
(0]

1l
SN
- NCS 3
R%0_r~0
6-(Methylsulfinyl)hexyl isothiocyanate Me/
(Sulforaphane) 2
1 RO bR

Moringa isothiocyante

2
NCS NCS NCS
/\/NCS

Phenyl Benzyl Phenylethyl Allyl
isothiocyanate isothiocyanate isothiocyanate isothiocyanate
3 4 5 6

Figure 1.1 Natural and bioactive compounds of isothiocyanates.
Moreover, isothiocyanate was used fluorescence biomarkers for biomolecule

in medical and biological diagnostics'*™.

In- addition, in organic synthesis,
isothiocyanates are useful building block for construction of sulfur-containing
heterocyclic compounds to prepare various therapeutic drugs, natural products and

15-18

bioactive compounds as shown in Figure 1.2.

Ry

xR
R1
~

N S

R4©
N 0
NCS Quinoline derivatives N—(/ \>/s\/[(

H /

R QWTANL2 N N

Isothiocyanate derivatives Ry

X Re R,

R

! N/ S Pyrimido[5,4-b]indoles derivatives
R4©

Quinoline derivatives

Figure 1. 2 The example of sulfur-containing heterocyclic compounds from
isothiocyanates
1.3 Reviews on synthesis of isothiocyanates

In general, isothiocyanates can be prepared from 8 different staring material

such as 1) isocyanide (8) 2) amide (9) 3) aldoxime (10) 4) Iminophosphorane (11) 5)



15

phosphoramidate (12) 6) isocyanate (13) 7) N-formamide (14) and 8) amine (7) as

summarize in Scheme 1.1. We will discuss each substrate in the following section.

(0]
MR
R/ N
AmideH R—C|)=N—OH
_ 9
R-NEC H
Isocyanide Aldoxime
8 CS; 10
W) S
HQNJ\NHZ
i
R—NH, R—C—R R-N=C=S CS, R=N=P(C¢Hs)3
Amine or, Cs, Isothiocyanate Iminophosphorane
11
CS,
O
S(powder) Lawesson's EtO\II:I’ R
o Reagent Eto/ \N/
X .
R\N H R—-NCO Phosphoramidate
H Isocyanate 12

N-Formamide
14

13

Scheme 1.2 A various substrate for synthesis of isothiocyanates
1. Isocyanide (8)
In 1991, Fujiwara and coworker'’ reported the use corresponding isocyanide
(8) with element sulfur in the presence element as a catalytic amount. Triethylamine
was used as a base in THF. Aliphatic and aromatic isothiocyanates were isolated in

good to excellent yield as shown in Scheme 1.3.

Se (5% mol), S(1.2 eq.),

Et.N (2.4 eq.) THF,
R—-NC itlest Aen) R—-NCS

8 reflux, 0.5 - 7.5 h. 62-95%

Scheme 1. 3 Synthesis of isothiocyanate from isocyanide
2. Amide (9)
In 1991, Penso and coworker® reported the use of amide derivatives (9) as
starting material to react with carbon disulfide in presence of the mixture between
potassium carbonate and sodium hydroxide. Aliphatic and aromatic isothiocyanates

were generated in low to excellent yields as shown in scheme 1.4.

o K,CO3 (1.5 eq.), NaOH (1.0 eq.)
)J\ CS, (4.0 eq.)
9 H CH3CN, 0.5-3 h, rt. 26-82%

Scheme 1. 4 Synthesis of isothiocyanate from amide
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3. Aldoxime (10)

In 1997, Kim and coworker” reported the two methods for synthesis of
isothiocyanates from the reaction between aldoxime (10) with ether N-
chlorosuccinimide (Method I) or mixture of HCl, DMF, Oxone (Method Il) to generate
chloro-oxime (10’) intermediate. The treatment of thioureas with intermediate gave

isothiocyanates in good to excellent yields as shown in Scheme 1.5.

N-chlorosuccinimide (1.0 eq.)
rt., 30 min. DMF (Method I)

-999 Thiourea (1.1 eq. R_ N<
R-C=N-OH 7699% » |R-C=N-OH (11ea)” [R¢ 0 RoNGS
H HCI (1.1 eq.), DMF, Cl Et;N, THF S—‘—NHZ
10 Oxone (1.1q) 10 NH,
rt., 5-8 h. (Method II)
61-99%

Scheme 1.5 Synthesis of isothiocyanate from aldoxime
4. Iminophosphorane (11)

In 1982, Molina and coworker? reported the use of Iminophosphorane (11) as
starting material which were generated from amines with triphenylphosphine
dibromide. Then intermediate 11 can reacted with either CO, or CS, to provide
isocyanate (13) and isothiocyanate in good to excellent yields as shown in scheme

1.6.

co,
— 2 3 R-NCO *+ (CgHs)sPO

73-97%

(CsHg)3PB (13)
.
R-NH, ——=> 23 R-N=P(CgHs); —
EtsN Iminophosphorane
1" CS,(2.0eq.)

[ e R-NCS + (CgHs)sPO

75-96%

Scheme 1.6 Synthesis of isothiocyanate from iminophosphorane
5. Phosphoramidate (12)
In 1989, Zwierzak and coworker®® reported the preparation of aliphatic and
aromatic isocyanates from phosphoramidate (12) derivatives. It reacted with NaH to
undergo deprotonation and reacting further with CS, to generate isothiocyanate in

good to excellent yields under reflux condition as shown in scheme 1.7.
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1. NaH/n-BusN*Br (5 mol%)

EtO\(l? benzene, 50°C, 2h.
EtO” N7 » R-NCS
H 2. CS, (2.0 eq.), reflux, 2h 74-91%
12

Scheme 1.7 Synthesis of isothiocyanate from phosphoramidate
6. lsocyanate (13)

In 2005, Populian and coworker®* reported the utilization of isocyanate (13) as
staring material. It reacted with Lawesson’s reagent under solvent-free condition
mediating by microwave irradiation to provide aliphatic and aromatic isothiocyanates
in moderate to excellent yield as shown in Scheme 1.8.

S 8.3
MeO—@—P{S,P—Q—OMe
(Lawesson's reagent (0.5 eq.))
R—N=C=0 » R—NCS

13 Microwave irradiation 43-94%
solvent-free

Scheme 1.8 Synthesis of isothiocyanate from isocyanate
7. Formamide (14)
In 2004, Liang and coworker® reported the preparation of isothiocyanate from
formamide derivatives (14) and sulfur powder in presence of bis(trichloromethy)
carbonate (BTC) and selenium powder. They obtained isothiocyanate in good to

excellent yield as shown in scheme 1.9.

Q cl O Cl
Se (0.5%), Et3N (3.3 eq.)
Yt + Cl cl , ¢ 3
_
4 C|>|\O)LO)<C| » R-NCS
BTC (0.4 \ (1.0eq.) CH,Cly, reflux 84-93%
14 4 eq.

Scheme 1.9 Synthesis of isothiocyanate from formamide

Even though above reports demonstrated highly efficient synthesis of
isothiocyanates, most of processes required multiple steps synthesis of starting
materials. Unlike above starting materials, amine was considered as one of the most
highly available starting material. However, many methods for the preparation of
isothiocyanate has been extensively studied until now and we will discuss the details

in next section.
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1.3.1 Synthesis of isothiocyanates from amine
The typical synthesis of isothiocyanates from amine involve two strategies
(Scheme 1.10). The first method (Scheme 1.10, Top) is the direct thiocarbonylation
of amine with thiocarbonyl transfer reagent to deliver isothiocyanates in one step.
The Second method (Scheme 1.10, Bottom) is the treatment of amine with carbon

disulfide in presence of base following of desulfurization to give isothiocyanate.

thiocarbonyl transfer

reagent \

R—NH, R—NCS

CS,, base
+
H BH desulfurization

[ R,N\H/S_ ] reaction

Scheme 1.10 Two strategies for the synthesis of isothiocyanates from amine

1.3.1.1 Reviews on thiocarbonylation transfer reagents

The direct synthesis of isothiocyanate via thiocarbonyl transfer reagents in
one pot method was summarized in Scheme 1.11. In 1932, Johnson and Dyer® first
reported the use of thiophosgene (15) as a thiocarbonyl reagent to provide
corresponding isothiocyanate in good yield. The first step is attacking of amine to the
thiophosgene along with the leaving of chloride ion. Then the elimination takes
place to generate isothiocyanate. With the same concept, there are various
thiocarbonyl transfer reagents were reported such as N,N-thiocarbonyl-di-imidazole
(16)°", thiocarbonyl-2,2’-pyridine (17)%®, (Thiocarbonyldioxy)dibenzotriazole (18),
chlorothionoformate (19)% and (MegN)SCF (20)*°.

Although, various thiocarbonyl transfer reagents gave high vyields of
isothiocyanates in one pot fashion. Due to the high reactive property of those

thiocarbonyl transfer reagents. However, most of them therefore generate high
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temperature from strong exothermic property, toxic reagent and required anhydrous

condition.
R—NH, thiocarbonyl transfer » R-NCS
reagent
thiocarbonyl transfer reagent : s
S A S 7
1. o L
ClI” °Cl (O N N~ 07 07 N
15 16 17

S -+
N j\ N PR CF3S NMe,
N _N PhO” “CI 20
O O
18 19

Scheme 1.11 The thiocarbonylation of amine with various thiocarbonyl transfer
reagent

1.3.1.2 Reviews on oxidative desulfurization

The alternative method is treatment of amine with carbon disulfide in
presence of base to form dithiocarbamate salt (X) following by desulfurization to give
isothiocyanate in two pot fashion (Scheme 1.12). Although, it required two steps
synthesis. However, the carbon and sulfur atom in final product came from CS,
which is cheap and highly available. Therefore, this method is more atom economy
and has been studied extensively. The desulfurization can be divided into two

processes including the use of 1) non-metal oxidizing agents and 2) metal oxidizing

agents.
+
CS,, base H BH1  gesulfurization
R—NH; R’N\n/s » R-NCS
reaction
S
X

Desulfurizing agents : 1) non-metal oxidizing agent 2) metal oxidizing agent

Scheme 1.12 Desulfurization of dithiocarbamate salt with desulfurizing agent
1.3.1.2.1 Reviews on non-metal oxidative desulfurization (Table 1.1)

In 1997, Li and coworker® reported the use of hydrogen peroxide (21) as an oxidizing

agent for desulfurization of dithiocarbamate salt (X) in stoichiometric amount to

produce corresponding aromatic isothiocyanate in good to excellent yields as shown

in Table 1.1, entry 1. Llater, in 2005, Su and cosorker”?  used

bis(trichloromethyl)carbonate (BTC) (22) and trichloromethyl chloroformate (TCF) (23)
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as activator to provide isothiocyanate product in low to excellent yield as shown in
Table 1.1, entry 2. In 2007, Wong and Dolman® utilize tosyl chloride (TsCl) (24) for
oxidative desulfurization of dithiocarbamate salt (X) as seen in Table 1.1, entry 3.
Under this condition, intermediate dithiocarbamate salt (X) reacted with tosyl
chloride to provide isothiocyanate in moderate to excellent yields. In 2008, Much
and coworker® reported the use of tertiary butyl dicarbamate (Boc,0) (25) as reagent
for desulfurizing agent in one-pot fashion to provide isothiocyanate product in
moderate to quantitative yields as shown in Table 1.1, entry 4. In 2007, Lai and
coworker” demonstrated the desulfurization using chlorosilane derivatives (26) as
decomposition reagent of dithiocarbamate salt (X) via one-pot and two-pots
methods as shown in Table 1.1, entry 5. In 2008, Patel and coworker® reported the
use of (diacetoxyiodo)benzene (DIB) (27) for oxidative desulfurization of
dithiocarbamate salt (X) as seen in Table 1.1, entry 6. This process provided the
desired isothiocyanates in moderate to excellent yields. Later, same group®’ reported
similar method but used iodine (28) as an activator to produce corresponding
isothiocyanate in good to excellent yields as shown in Table 1.1, entry 7. Moreover,
the same group® also reported the utilization of 1,10-(ethane-1,2-diyl) dipyridinium
bistribromide (EDPBT) (29) for oxidative desulfurization of dithiocarbamate salt (X) as
shown in Table 1.1, entry 8. Under this condition, 1,10-(ethane-1,2-diyl) dipyridinium
bistribromide (EDPBT) (29) can generate bromine (Br,) in situ then reacted with
dithiocarbamate salt (X) following by desulfurization to provide isothiocyanates in
good to excellent yields. Similarly, Jamir and coworker®® reported the use of ethyl
triphenyl  phosphonium tribromide (ETPPTB) (30) as activator to produce
corresponding isothiocyanate in good to excellent yields as shown in Table 1.1,
entry 9. Recently, in 2017, Kuotsu and coworker®® demonstrated the similarly
method using tetrapropylammonium tribromide (TPATB) (31) as activator to provide
isothiocyanates in good to excellent yields as shown in Table 1.1, entry 10. In
addition, the reactions on water for desulfurization were developed by Patel* and
Fu using methyl arylate (32) and Na,S,05 (33), respectively to provide
isothiocyanates in good to excellent yields as seen in Table 1.1, entries 11 and 12.

Moreover, the desulfurization in the absent of desulfurizing agents were
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demonstrated using ball milling* under solvent-free condition (Table 1.1, entry 13)
and microwave irradiation® in dichloromethane at 90 ° C (Table 1.1, entry 14). In
contrast, ball milling method limited to only aromatic isothiocyanate substrates
while microwave irradiation method provided low to excellent vyields of
isothiocyanate substrates.

Table 1.1 Review on non-metal oxidative desulfurization

+
1.CS,, base H BH1 2 Desulfurizing
R_NH2 R/N\n/s ’ R—NCS
S agent
X
Entry | Desulfurizing agent Condition Process Yield
1 H,0, 21 (1-6 eq.), THF, 0-40 °C, one-pot 84-95%
21 (Hydrogen peroxide) 2h
O
2 C'sconLO/CC% 22 or 23 (0.3 eq.), CH,CL,, one-pot 25-86%
22 (bis-(trichloromethyl) 4-6 h., 0°Crt or
carbonate) 65-95%
or
1 CClI
IR
23 (Trichloromethyl
chloroformates)
3 Cl—g O 24 (1.1 eq)), THF, 1h, rt one-pot 34-99%
o)
24 (Tosyl chloride)
O O _30 - -
a4 >L0JL0)LOJ< 25 (1.0 eq.), DMAP (1-3% one-pot 63-quant.
25 (ditert-butyl mol), EtOH, 20 min, rt
carbamate)
5 R%4.,SiCl, 26 (2.0 eq.), DABCO or one-pot 31-92%
hlorosil
26 (Chlorosilane Et,N (2.0 eq.), 4-20 h, and
derivatives)
0°C-rt two-pots
6 ?AC 27 (1.0 eq)), THF, 1h, rt two-pots 34-99%
@/ “OAc
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27 ((Diacetoxyiodo)

benzene)
7 I, 28 (1.0 eq.), H,O/EtOAC, two-pots 77-92%
28 (lodine) NaHCOs, 15-30 min, rt
8 O Brs 29 (0.5 eq.), EtsN (2.0 eq.), | two-pots 70-96%
Z N\/\ﬁ AN
t_ O CH5CN, 10 min, 0°C
Br3 Z
29 (dipyridinium
bistribromide)
9 @ 30 (1.0 eq), EGN (15 eq), | two-pots |  65-87%
CH4CN, 0°C
30 (ethyltriphenyl
phosphonium tribromide)
10 /\/\Brg\/\ 31 (1.0 eq.), NaHCO; (2.0 two-pots 77-92%
/\/ A\ eq.), EtOAc/H,0, 10-15
31 min, 0°C
(tetrapropylammonium
Tribromide)
11 /\n/o'\/'e 32 (1.6 eq.), H,0, 1.5 h, rt | two-pots 67-91%
0]
32 (Methyl acrylate)
12 Na,S,0q 33 (1.0 eq.), K,CO4 one-pot 20-99%
33 (Sodium persulfate) (1.0 eq_)’ H,O, 1h, rt and
two- pots
13 - Ball milling, KOH (1.0 eq.), | one-pot 52-97%
vibrated around 1,800
round per minute, rt.
14 - Microwave irradiation, 20 | two-pots 25-98%

min., 90°C
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From literature review, although there are many reports on the synthesis of
isothiocyanate using various reagents in desulfurization process in one-pot or two
pots fashion, most of them required the stepwise reaction or stochiometric amount
of strong oxidizing agents or harsh condition.

1.3.1.2.2 Review on metal catalyst as an oxidizing agent (Table 1.2)

Besides, the use of organic activators, there are report on metal catalyst as an
oxidizing agent for desulfurization of dithiocarbamate salt (X). The dithiocarbamate
salts (X) were prepared in situ from reaction of amine and CS, in presence of base
following by the addition of metal catalysts such as cobalt (Il) chloride** (CoCl,) (34)
(Table 1.2, entry 1), copper (Il) sulfate™ (CuSO,) (35) (Table 1.2, entry 2), iron (Ill)
sulfate® (Fe,(SO,)s) (36) (Table 1.2, entry 3) and iron(lll) chloride®’ (FeCls) (37) (Table
1.2, entry 4). Although, all reactions proceed at room temperature to provide
corresponding isothiocyanates in moderate to excellent yields. However, those
reactions required large amount of metal catalyst at 50% mol.

Table 1.2 Review on metal catalyst as an oxidizing agent.

R—NH 1.CS,, base H S—BH 2.Metal catalyst> RNCS
N My -
S
X
Entry Condition Yield
1 1. CS, (10 eq), NaHCO; (2.0 eqy), 1h., rt. 50-95%
2. CoCl, (50 mol%), EtOAc, 3h., rt.
2 1. CS,(10 eq), Et;N (1.0 eq.), EtOAC/H,O 1h,, rt. 34-99%
2. CuSO4 (50 mol%), EtsN (1.0 eq.), 2 h., rt.
3 1. CS, (10 eq.), NaOAc (1.0 eq.), DMSO, 1h,, rt. 60-97%
2. Fey(SOy);3 (50 mol%), NaOAc (1.0 eq.) H,0O, 2h., rt.
4 1. CS, (10 eq.), NaOAc (1.0 eq.), Acetone, 2h., rt. 65-98%
2. FeCl; (50 mol%), NaOAc (1.0 eq.), 2h., rt.
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1.4 Introduction to Carbon tetrabromide

Carbon tetrabromide (CBrg), also known as tetra bromomethane, is a
commercially available white solid which is stable at room temperature, easy to
handle and low toxic reagent. In addition, carbon tetrabromide has been reported as
a brominating agent, catalyst or mediator to prepare various chemicals. For example,
in combination of carbon tetrabromide with tertiary phosphine, it has been used for
the bromination of various functional groups such as alcohol (Appel reaction)®>!, N-
heterocycle®® and ether’®. Moreover, carbon tetrabromide was reported as a catalyst
in many organic transformation reactions including, acetalization and
tetrahydropyranylation®,

1.4.1 Reviews for carbon tetrabromide with organosulfur

From above benefits, carbon tetrabromide also has been utilized to
functionalize various organosulfur. In 2007, Wu and coworker® reported the use of
carbon tetrabromide in catalytic amount to promote the acetylation of phenol,
alcohol and thiol derivatives with acid anhydride in low to excellent yields as shown

in Scheme 1.13.

+
XH Qi CBry (5 mol%) X Re
4 0
» R \"/
R»]O RZ/U\O)LRZ 10 0O

Solvent free
X = 078 3‘6 h X = O,S

Scheme 1.13 Acetylation using CBry as a catalyst

In 2008, Yuan and coworker®® reported the multi-component reaction
between secondary amine (1°), CS, and active methylenes (2’) using carbon
tetrabromide as a mediator to provide dithiocarbamates (3’) in good to excellent
yields as seen in Scheme 1.14. The key step reaction is the treatment of amine with
CS, to generate dithiocarbamate salt (X) following by nucleophilic attack of sulfur on

CBry4 to form sulfenyl bromide (4°) electrophilic species.
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R1
EWG CBrs (1.0 eq.) |
R~ N S EWG
SNH + €S, + ( > Ry
R2 1 EWG Et3N, CH20|2, rt S EWG
2 3', 70-96%
X
R1\ + Et3N R -
R NH," CS; —= g 1;N s ltlHEt
2 1l R 3
X
CBI'4
Ri s
N S EWG EWG
S (i g R | L
3 Sulfenyl 2
bromide
4|

Scheme 1.14 Synthesis of dithiocarbamates (3’) using CBry.

In 2015, Yadav and coworker®’ reported the use of carbon tetrabromide as a
mediator for preparation of 2-aminobenzothiazole (7°) from the reaction of ketones
(5’) and thioureas (6’) in moderate to excellent yields as shown in Scheme 1.15.
From proposed mechanism, it is important to note that CBry, can promote the
formation of sulfenyl bromide (4’) which is the key step in the present of hetero-

cyclization reaction to provide target products.

NH,
0] S CBry (1.0 equiv.)
- HaN & NH,  CH3CN, Et3N, rt R
7', 67-94%

HoN NH HoN

Sulfenyl
bromide
4'

| . T
Substution
SH CBry g-Br R1)j\ /Cyclization
— A
NH

Scheme 1.15 Synthesis of 2-aminobenzothiazole using CBrg
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In addition, carbon tetrabromide also has been reported in desulfurization
reaction. In 2008, liu and coworker”® reported the preparation of symmetrical
thioureas (8”) and thiuram disulfide (9’) from amine (Scheme 1.16). In this work, CBr,
was used as mediator to prepare sulfenyl bromide (4’). The addition of primary
amine led to target thioureas in good to excellent yields (Scheme 1.16, eq. 1) while
the addition of secondary amines led to thiuram disulfides in moderate to excellent

yields (Scheme 1.16, equation 2).
s

RiRNTNRRy =777

S 60-91%
o
2R,R—NH 1.CS, (O.5quuiv-)’ Ri. S CBry(1.0eq) Ri. Seg 7~
DMF, 5 min, 0 °C /N~< , /N~\< r
Rs 18-30 min - Ry N Subst,'t s
oo Utj

Dithiocarbamate i Sulfenyl ‘on )]\ _S_NHRRy ~----

gnign bromide RoRIN™ 877

4 9 s

48-96%

Scheme 1.16 Synthesis of symmetric thioureas and thiuram disulfides using CBr,4
1.4.2 Reviews for carbon tetrabromide with Vilsmeier-Haack reagent
Besides, the use of carbon tetrabromide as a mediator, there are reported the
use of carbon tetrabromide under photochemical method to prepare carboxylic

g% €0

aci and dibromo acetophenone® under aerobic condition. Later, carbon

tetrabromide has been used to replace conventional Vilsmeier-Haack reaction.

6263 is a chemical reaction of a substituted amide

Typically, Vilsmeier-Haack reaction
with phosphorus oxychloride to generate Vilsmeier-Haack reagent (Y) in situ and
reacted with an electron-rich aromatic hydrocarbon to produce an aryl aldehyde or
ketone as shown in Scheme 1.17a. However, generating of the Vilsmeier-Haack
reagent (Y) required toxic phosphorus oxychloride and high temperature condition.
For the past decade, the new Vilsmeier-Haack reagents (Y) were modified by the
reduction of CX4 to form the intermediate such as carbene, radical reacting with

amide derivatives to generate Vilsmeier-Haack reagent (Y) as demonstrate in Scheme

1.17b.
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a.) Previous method
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Scheme 1.17 The comparison of a) traditional and b)new Vilsmeier-Haack reagent

In 2011, Stephenson and Coworker® first reported a visible-light-mediated
conversion of alcohols into halides with Vilsmeier-Haack type reagent (Y) from the
reaction between CBrq and DMF in good to excellent yield as shown in Scheme 1.18,
Route A. Later, in 2012, the same research group® reported a visible light mediated
for preparation of acid anhydride derivatives with Vilsmeier-Haack reagent (Y) from
cross-coupling of carboxylic acid derivatives as shown in Scheme 1.18, Route B.
Similarly, in 2014, Yadav and coworkers® provided the new preparation of amide
derivatives from the activation of keto oximes by using eosin Y as photocatalyst via
Beckmann rearrangement as shown in Scheme 1.18, Route C. In 2015, Mccallum
and Barriault®’ reported the preparation of amides from corresponding carboxylic
acids with amines via Vilsmeier-Haack reagent using only UVA light ( 365 nm. LED)
without any photocatalyst in moderate to excellent yields as shown in Scheme 1.18

(route D)
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Scheme 1.18 Light-mediated Vilsmeier-Haack reagent for synthesis of organic
compounds.

Based on above review on oxidative desulfurization to prepare isothiocyanate
derivatives from amines, most of them require stepwise synthesis, large amount of
strong oxidizing agents and harsh condition. To avoid the use of strong oxidizing
agent and harsh condition, we intended to replace the process with carbon
tetrabromide under 1) photo-organic synthesis mediating by Vilsmeier-Haack reagent
or 2) mediating agent due to their low toxic reagent and easy to handle which has

never been reported before.

1.5 Objective of this research

In this research, we aim to develop one-pot synthesis of isothiocyanates from
amines via the oxidative desulfurization of dithiocarbamate salt (X). We plan to use
two oxidative desulfurization process including 1) photo reaction with Vilsmeier-
Haack reagent (Method I) and 2) carbon tetrabromide mediator (Method II) as shown
in Scheme 1.19.
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Scheme 1.19 Synthesis plan of isothiocyanate from amines in our research
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For Method |, various parameters such as light source and amount of DMF

will be investigated. For Method Il, the reaction parameters including solvent, base,

amount of carbon disulfide, amount of carbon tetrabromide, temperature and

reaction time will be studied to determine the optimized condition. Then, the

substrate scope of amines including aryl amines, benzylamines, aliphatic amines,

chiral amine, phenolic amines and NH-protected or OH-protected amines will be

tested to grade reaction generality. Finally, the mechanistic studies will be

conducted to propose the mechanism process of oxidative desulfurization process

using nuclear magnetic resonance spectroscopy (NMR) and scanning electron

microscope (SEM) equipped with x-ray spectroscopy (EDX).
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CHAPTER Il
EXPRIMENTAL

2.1 Chemical reagents, equipment and instrument for synthesis and
Characterization

All chemicals and solvents were obtained from commercially available
suppliers such as Sigma-Aldrich and TCl (Japan) and were used without further
purification, unless otherwise stated. Analytical thin layer chromatography (TLC) was
performed with precoated Merck silica gel 60 F254 plates(0.25 mm for thick layer)
and visualized at 254 nm using an ultraviolet lamp. Column chromatography was
performed with Silicycle silica gel 60-200 tm. (70-230 mesh). "HNMR, >C-NMR and
F spectra were obtained with JEOL JNM-ECZ500R/S1 NMR spectrometers operating
at 500 MHz for *H or 125 MHz for *C or 470 MHz for *F nuclei. High-resolution mass
spectra (HRMS) were recorded using electron spray ionization (ESI) with a MicroTOF
Bruker mass spectrometer and electron spray ionization (ESI) with Gas
chromatography mass spectrometer. White LED (Philip LED 19W Durable Brightness
Daylight E27) and green LED (SMD 5050 LED, 12W) were used as the visible light
source. 254 nm. UV and 365 nm. UV LEDs (8X6W) were used as the ultraviolet light

source.

2.2 General procedure for synthesis of isothiocyanate via light mediated
Vilsmeier-Haack reagent
2.2.1 General procedure for synthesis of isothiocyanate from amines (1a)

under visible light source

/©/NCS
Br

1-Bromo-4-isothiocyanatobenzene (2a) A mixture of 4-bromoaniline 1a (1.0 eq, 0.58
mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq.,, 1.74 mmol) were
dissolved by acetonitrile (20 mL.) in Pyrex glass tube. The mixture was stirred at room
temperature for 4 hours. Then, carbon tetrabromide (1.0 eq.,, 0.58 mmol) and N, N-

dimethyl formamide (2.0 eq., 1.16 mmol) were added and stirred at room
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temperature under white or green LED irradiation for 16 hours. After reaction
complete, the reaction mixture was washed with water (1x4 mL) and the organic
portion was extracted with EtOAc (3x5 mL). The organic layer was eliminated water
by Na,SOy. After filtration and removal of the solvent under reduced pressure, the
crude product was purified by silica gel column chromatography to afford 2a the
results were summarized in Table 3.1. 'H-NMR (500 MHz, CDCLs): O (ppm) 7.55 — 7.37
(m, 2H), 7.19 - 6.99 (m, 2H). *C-NMR (125 MHz, CDCLl,): & 137.0, 132.8, 130.6, 127.3,
120.9. GC-MS: m/z: 215.0 (calced for C;H4BrNS: 214.9).

2.2.2 General procedure for synthesis of isothiocyanate from amines (1a)

under ultraviolet light source

/©/NCS
Br

1-Bromo-4-isothiocyanatobenzene (2a). A mixture of 4-bromoaniline 1a (1.0 eq,
0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were
dissolved by acetonitrile (20 mL.) in Pyrex glass tube. The mixture was stirred at room
temperature for 4 hours. Then, carbon tetrabromide (1.0 eq.,, 0.58 mmol) and N, N-
dimethyl formamide (2.0 eq., 1.16 mmol) were added and stirred at room
temperature under 254 nm or 365 nm. UV LED irradiation for 2-6 hours. After reaction
complete, the reaction mixture was washed with water (1x4 mL) and the organic
portion was extracted with EtOAc (3x5 mL). The organic layer was eliminated water
by Na,SOq. After filtration and removal of the solvent under reduced pressure, the

crude product was purified by silica gel column chromatography to afford 2a and the
results were summarized in Table 3.1. *H-NMR (500 MHz, CDCLs): O (ppm) 7.55 — 7.37

(m, 2H), 7.19 - 6.99 (m, 2H). BC-NMR (125 MHz, CDCls): o 137.0, 132.8, 130.6, 127.3,
120.9. GC-MS: m/z: 215.0 (calced for C;H4BrNS: 214.9).
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23 General procedure for synthesis of isothiocyanate using photocatalysts

/O/NCS
Br

1-bromo-4-isothiocyanatobenzene (2a) A mixture of 4-bromoaniline 1a (1.0 eq,
0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) was
dissolved by acetonitrile (20 mL.) in Pyrex glass tube. The mixture was stirred at room
temperature for 20 hours. Then, photocatalysts (0.05 eq., 0.029 mmol) was added
and at room temperature under green or white LEDs for 16 hours. After reaction
complete, the reaction mixture was washed with water (1x4 mL) and the organic
portion was extracted with EtOAc (3x5 mL). The organic layer was eliminated water
by Na,SOq. After filtration and removal of the solvent under reduced pressure, the
crude product was purified by silica gel column chromatography to afford 2a and the
results were summarized in Table 3.2. 'H-NMR (500 MHz, CDCls): O (ppm) 7.55 — 7.37
(m, 2H), 7.19 — 6.99 (m, 2H). *C-NMR (125 MHz, CDCL,): & 137.0, 132.8, 130.6, 127.3,
120.9. GC-MS: m/z: 213.0 : 215.0 (1:1) (calced for C;H4BrNS: 212.9 : 214.9 (1:1)).

2.4 General procedure for synthesis of isothiocyanates and unsymmetric
thioureas using carbon tetrabromide
2.4.1 Reaction optimization

We studied optimized condition by working reaction on different parameter
which were listed below
Solvent: Ethyl acetate, Ethanol, i-propanol, Acetone, N, N-dimethyl sulfoxide,
acetonitrile
Base: DBU, TEA, DIPEA, K,CO3, Cs,CO5 NaOAc
Amount of carbon disulfide: 1.5-3 equivalent

Amount of carbon tetrabromide: 0-2 equivalent
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2.5 The substrate scopes of isothiocyanates and unsymmetric thioureas

2.5.1 General experiment procedure A: isothiocyanates 2a — 2ff

A mixture of amine (1) (1.0 eqg, 0.58 mmol), carbon disulfide (3.0 eq., 1.74
mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex
glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon
tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1
hour. After reaction complete, the reaction mixture was washed with water (1x4 mL)
and the organic portion was extracted with EtOAc (3x5 mL). The organic layer was
dried over anhydrous Na,SO,. After filtration and removal of the solvent under
reduced pressure, the crude product was purified by silica gel column
chromatography to afford isothiocyanates 2a — 2ff

2.5.2  General experiment procedure B: unsymmetric thioureas 3a - 3i

A mixture of p-toluidine (1f) (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74
mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex
glass tube. The mixture was stirred at room temperature for 4 hours. Then, carbon
tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1
hour. Next, secondary amine (1.5 eq., 0.87 mmol) was added in the mixture and
stired for 3 hours. After reaction complete, the reaction mixture was washed with
water (I1x6 mL) and the organic portion was extracted with EtOAc (3x10 mL). The
organic layer was dried over anhydrous Na,SO,. After filtration and removal of the
solvent under reduced pressure, the crude product was purified by silica gel column

chromatography to afford unsymmetric thioureas 3a - 3i

2.5.3  Synthesis of isothiocyanate derivatives

/©/NCS
Br

1-bromo-4-isothiocyanatobenzene (2a). According to the general experiment
procedure A, the reaction was performed by using 4-bromoaniline (1a, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile

2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
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stirred at room temperature for 1 hour afford 2a in 105.4 mg, 85% yield as a white
solid: *H-NMR (500 MHz, CDCls): O (ppm) 7.55 — 7.37 (m, 2H), 7.19 — 6.99 (m, 2H). 1*C-
NMR (125 MHz, CDCl,): 0 137.0, 132.8, 130.6, 127.3, 120.9. GC-MS: m/z: 213.0 : 215.0

(1:1) (calced for C;H4BrNS: 212.9 : 214.9 (1:1)).

F

1-fluoro-4-isothiocyanatobenzene (2b). According to the general experiment
procedure A, the reaction was performed by using 4-fluoroaniline (1b, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stired at room temperature for 1 hour to afford 2b in 79.8 mg, 90% vyield as a
colorless oil: 'THNMR (500 MHz, CDCly): 6 7.23 — 7.12 (m, 2H), 7.08 - 6.96 (m, 2H). 1*C-
NMR (125 MHz, CDCly): & 162.1, 160.2, 136.0, 127.4, 116.7. F-NMR (470 MHz, CDCL3):

0 -110.19. GC-MS: m/z: 153.0 (calced for C7H4CINS: 153.1).

/©/NCS
Cl

1-chloro-4-isothiocyanatobenzene (2c). According to the general experiment
procedure A, the reaction was performed by using 4-chloroaniline (1c, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2c in 73.5 mg, 75% yield as a white
solid: 'HNMR (500 MHz, CDCLy): & "HNMR (500 MHz, CDCLy): & 7.23 - 7.12 (m), 7.08 -
6.96 (m). *C-NMR (125 MHz, CDCLy): & 136.9, 133.0,130.0, 123.0, 127.0. GC-MS: m/z:

169.1 : 171.1 (3:1) (calced for C;HaFNS: 169.0 : 171.0 (3:1)).
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/©/NCS
I

1-iodo-4-isothiocyanatobenzene (2d). According to the general experiment
procedure A, the reaction was performed by using 4-iodoaniline (1d, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2d in 142 mg, 94% yield as a white
solid: *HNMR (500 MHz, CDCly): & 7.23 — 7.12 (m), 7.08 — 6.96 (m). *C-NMR (125 MHz,
CDCly): 6 138.8, 137.1, 131.3, 127.5, 92.0. GC-MS: m/z: 261.0 (calced for C;H4INS:
260.9).
NCS

L

1-iodo-2-isothiocyanatobenzene (2e). According to the general experiment
procedure A, the reaction was performed by using 4-iodoaniline (1d, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2d in 113.5 mg, 75% yield as yellow
oil: 'THNMR (500 MHz, CDCly): & 7.92 - 7.65 (m, 1H), 7.32 (td, 1H, J = 7.9, 1.3 Hz), 7.28
- 7.21 (m, 1H), 6.96 (td, 1H, J = 7.6, 1.5 Hz). *C-NMR (125 MHz, CDCl,): 0 162.2, 160.2,

136.0, 127.4, 116.7. GC-MS: m/z: 261.0 (calced for C;H4INS: 260.9).

©/NCS

isothiocyanatobenzene (2f). According to the general experiment procedure A, the
reaction was performed by using aniline (1f, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74
mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then,
carbon tetrabromide (1.0 eq, 0.58 mmol) was added and stirred at room
temperature for 1 hour to afford 2f in 75 mg, 84% yield as colorless oil: 'HNMR (500

MHz, CDCls): O 7.37 - 7.31 (m, 2H), 7.31 - 7.23 (m, 1H), 7.23 - 7.18 (m, 2H). *C-NMR
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(125 MHz, CDCly): & 135.4, 131.3, 129.6, 127.4, 125.8. GC-MS: m/z: 135.1 (calced for
C,HsNS: 135.0).

/©/NCS

1-isothiocyanato-4-methylbenzene (2g). According to the general experiment
procedure A, the reaction was performed by using p-toluidine (1g, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq.,, 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2g in 82.1 mg, 95% yield as colorless
oil: 'HNMR (500 MHz, CDCls): & 7.11 (m, 4H, J = 6.2, 5.2 Hz), 2.34 (s, 3H). "*C-NMR (125
MHz, CDCly): & 137.6, 134.5, 130.2, 128.4, 125.6, 21.3. GC-MS: m/z: 149.1 (calced for

C,HaNS: 149.2).

NCS

2-isothiocyanato-1,3-dimethylbenzene (2h). According to the general experiment
procedure A, the reaction was performed by using 2,6-dimethylaniline (1h, 1.0 eq,,
0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq.,, 1.74 mmol) in
acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was
added and stirred at room temperature for 1 hour to afford 2h in 89.7 mg, 95% vyield
as colorless oil: 'HNMR (500 MHz, CDCLy): & 7.16 — 6.94 (m, 3H), 2.37 (s, 6H). >C-NMR
(125 MHz, CDCly): o 136.6, 135.1, 129.6, 128.0, 127.0, 18.8. GC-MS: m/z: 163.1 (calced

for CgHgNS: 1632)

MeO

1-isothiocyanato-4-methoxybenzene (2i). According to the general experiment

procedure A, the reaction was performed by using p-anisidine (1i, 1.0 eq., 0.58
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mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2i in 84.3 mg, 88% yield as yellow
oil: 'HNMR (500 MHz, CDCL): O 7.18 = 7.05 (m, 2H), 6.87 - 6.69 (m, 2H), 3.79 (s, 3H).
BC-NMR (125 MHz, CDCL,): o 158.6, 134.0, 127.0, 123.6, 114.9, 55.6. GC-MS: m/z: 165.1
(calced for CgH,NOS: 165.0).

NCS
©iOMe
1-isothiocyanato-2-methoxybenzene (2j). According to the general experiment
procedure A, the reaction was performed by using o-anisidine (1j, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2j in 89.1 mg, 93% yield as colorless
oil: 'HNMR (500 MHz, CDCls): O 7.24 - 7.18 (m, 2H), 7.09 (dd, 1H, J = 7.8, 1.6 Hz), 6.93

- 6.78 (m, 1H), 3.89 (s, 3H). BC-NMR (125 MHz, CDCls): o) 156.0, 139.8, 128.3, 125.5,
120.7, 111.5, 56.0. GC-MS: m/z: 165.1 (calced for CgH,NOS: 165.0).

F3C

1-isothiocyanato-4-(trifluoromethyl) benzene (2k). According to the general
experiment procedure A, the reaction was performed by using 4-(trifluoromethyl)-
aniline (1j, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq.,
1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58
mmol) was added and stirred at room temperature for 1 hour to afford 2j in 89.1 mg,
93% yield as white solid: 'HNMR (500 MHz, CDCLs): 0 7.61 (d, 2H, J = 8.8 Hz), 7.37 -
7.27 (m, 2H). C-NMR (125 MHz, CDCLls): o 138.3, 135.0, 129.5, 129.2, 129.0, 128.8,
126.9, 126.1, 124.7, 122.5, 120.4. F-NMR (470 MHz, CDCI3): 0 -62.5, GC-MS: m/z:
203.1 (calced for CgHyFsNS: 203.0).
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©/NCS

NO,

1-isothiocyanato-3-nitrobenzene (2l). According to the general experiment
procedure A, the reaction was performed by using 3-nitroaniine (1, 1.0 eq.,, 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2l in 65.8 mg, 63% yield as yellow
solid: "HNMR (500 MHz, CDCL,): & 8.14 - 8.09 (m, 1H), 8.06 (d, 1H, J = 1.9 Hz), 7.68 -
7.41 (m, 2H). *C-NMR (125 MHz, CDCL;): O 148.8, 139.7, 133.3, 131.6, 130.6, 121.9,
120.8. GC-MS: m/z: 180.1 (calced for C;H;N,0,S: 180.0).

EtOOC

ethyl 4-isothiocyanatobenzoate (2m). According to the general experiment
procedure A, the reaction was performed by using 4-ethylamino benzoate (1m, 1.0
eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq.,, 1.74 mmol) in
acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was
added and stirred at room temperature for 1 hour to afford 2m in 90.0 mg, 75%
yield as colorless solid: *HNMR (500 MHz, CDCLs): 0 8.02 (dd, 2H, J = 8.7, 2.1 Hz), 7.36
- 7.07 (m, 2H), 4.36 (g, 2H), 1.37 (t, 3H). *C-NMR (125 MHz, CDCly): & 165.5, 137.8,
135.6, 131.1, 129.1, 125.7, 61.4, 14.3. GC-MS: m/z: 207.1 (calced for C;yHsNO,S: 207.0).

NC

4-isothiocyanatobenzonitrile (2n). According to the general experiment procedure
A, the reaction was performed by using 4-aminobenzonitrile (1n, 1.0 eq., 0.58 mmol),
DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL

for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at



39

room temperature for 1 hour to afford 2n in 37.2 mg, 40% yield as white solid:
'HNMR (500 MHz, CDCly): & 7.67 — 7.60 (m, 2H), 7.31 - 7.27 (m, 2H). *C-NMR (125
MHz, CDCls): O 139.8, 136.2, 133.7, 126.6, 118.0, 110.7. GC-MS: m/z: 160.0 (calced for
CgHaN,S: 160.0).

NCS

CN

3-isothiocyanatobenzonitrile (20). According to the general experiment procedure
A, the reaction was performed by using 3-aminobenzonitrile (1o, 1.0 eq., 0.58 mmol),
DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq.,, 1.74 mmol) in acetonitrile 2 mL
for 4 hours. Then, carbon tetrabromide (1.0 eqg., 0.58 mmol) was added and stirred at
room temperature for 1 hour to afford 20 in 58.4 mg, 63% yield as white solid:
'HNMR (500 MHz, CDCLy): & 7.56 — 7.51 (m, 1H), 7.49 — 7.45 (m, 2H), 7.45 — 7.41 (m,
1H). *C-NMR (125 MHz, CDCL,): 0 139.4, 133.1, 130.8, 130.5, 130.1, 128.9, 117.3, 114.0.

GC-MS: m/z: 160.1 (calced for CgHaN,S: 160.0).

©/\NCS

(isothiocyanatomethyl)benzene (2p). According to the general experiment
procedure A, the reaction was performed by using benzylamine (1p, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2p in 63 mg, 73% yield as white
solid: 'THNMR (500 MHz, CDCL,): & 7.41 — 7.37 (m, 2H), 7.34 (dd, 1H, J = 6.2, 3.9 Hz),
731 (dt, 2H, J = 7.3, 1.5 Hz), 4.70 (s). *C-NMR (125 MHz, CDCL,): O 134.3, 131.6, 129.0,
128.4,126.9, 48.7. GC-MS: m/z: 149.1 (calced for CgH;NS: 149.0).
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/©/\NCS
MeO

1-(isothiocyanatomethyl)-4-methoxybenzene (2q). According to the general
experiment procedure A, the reaction was performed by using 4-methoxy
benzylamine (1q, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0
eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq.,
0.58 mmol) was added and stirred at room temperature for 1 hour to afford 2q in
67.5 mg, 65% yield as yellow oil: HNMR (500 MHz, CDCLy): & 7.24 — 7.21 (m, 2H), 6.98
- 6.80 (m, 2H), 4.62 (s, 2H), 3.80 (s, 3H). *C-NMR (125 MHz, CDCly): & 134.3, 131.6,
129.1, 128.5, 126.9, 48.7. GC-MS: m/z: 179.1 (M), 121.1 (M-NCS) (calced for CgHgNOS:
179.0).

NCS

(isothiocyanatomethylene) dibenzene (2r). According to the general experiment
procedure A, the reaction was performed by using diphenylmethanamine (1r, 1.0 eq,,
0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in
acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was
added and stirred at room temperature for 1 hour to afford 2r in 92.3 mg, 71% vyield
as yellow oil: HNMR (500 MHz, CDCls): & 7.40 - 7.34 (m, 4H), 7.34 — 7.29 (m, 6H), 5.99
(s, 1H). ®C-NMR (125 MHz, CDCly): & 139.3, 134.6, 132.0, 130.2, 129.0, 128.4, 126.7,
64.7. GC-MS: m/z: 224.1 (M-1), 167.1 (M-NCS) (calced for Ci4H;3NS: 225.1).

NCS

o

(1-isothiocyanatoethyl) benzene (2s). According to the general experiment
procedure A, the reaction was performed by using 1-phenylethan-1-amine (1s, 1.0

eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in
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acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was
added and stirred at room temperature for 1 hour to afford 2s in 79.4 mg, 84% vyield
as colorless oil: "HNMR (500 MHz, CDCL): O 7.41 - 7.35 (m, 2H), 7.33 (dd, 3H), 4.91 (g,
1H), 1.67 (d, 3H). *C-NMR (125 MHz, CDCL): 6 140.3, 132.4, 129.0, 128.3, 1255, 57.1,
25.1. GC-MS: m/z: 163.1 (M), 105.1 (M-NCS) (calced for CoHgNS: 163.0).

O/NCS

isothiocyanatocyclohexane (2t). According to the general experiment procedure A,
the reaction was performed by using cyclohexylamine (1t, 1.0 eq., 0.58 mmol), DBU
(3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4
hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at
room temperature for 1 hour to afford 2t in 65.4 mg, 80% vyield as colorless oil:
'HNMR (500 MHz, CDCly): & 3.74 — 3.58 (m, 1H), 1.96 — 1.81 (m, 2H), 1.79 — 1.57 (m,
4H), 1.52 - 1.42 (m, 1H), 1.43 — 1.30 (m, 3H).”’C-NMR (125 MHz, CDCls): & 127.2, 55.5,
33.3,29.8, 25.1, 23.3. GC-MS: m/z: 141.1 (calced for C;H;;NS: 141.1).

~o~_~_NCs

1-isothiocyanatohexane (2u). According to the general experiment procedure A, the
reaction was performed by using hexylamine (1u, 1.0 eq., 0.58 mmol), DBU (3.0 eq.,
1.74 mmol), carbon disulfide (3.0 eq.,, 1.74 mmol) in acetonitrile 2 mL for 4 hours.
Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room
temperature for 1 hour to afford 2u in 78.8 mg, 95% yield as colorless oil: *HNMR
(500 MHz, CDCly): & 3.48 (t, 2H), 1.71 — 1.61 (m, 2H), 1.43 — 1.35 (m, 2H), 1.35 - 1.21
(m, 4H), 0.91 - 0.84 (m, 3H).">’C-NMR (125 MHz, CDCl): 0 129.5, 45.1, 31.0, 30.0, 26.3,
225, 14.0. GC-MS: m/z: 115.1 (M-C,Hg) (calced for C;Hy3NS: 143.1).
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OMe
NCS

Methyl (S)-2-isothiocyanato-3-phenylpropanoate (2v). According to the general
experiment procedure A, the reaction was performed by using L-phenylalanine
methyl ester hydrochloride (1v, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol),
carbon disulfide (3.0 eq.,, 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon
tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1
hour to afford 2v in 43.6 mg, 34% yield as orange oil: *HNMR (500 MHz, CDCls): O
7.38 - 7.28 (3H, m), 7.24 — 7.21 (2H, m), 4.48 (1H, dd, J = 8.4, 4.8 Hz), 3.80 (3H, s), 3.25
(1H, dd, J = 13.8, 4.7 Hz), 3.13 (1H, dd, J = 13.8, 8.4 Hz). >C-NMR (125 MHz, CDCLy): &
168.5, 138.0, 135.1, 129.4, 128.8, 127.7, 60.9, 53.2, 39.8.

SCN N
(:[ Y

N

H

5-Isothiocyanato-1H-benzo[d]imidazole (2w). According to the general experiment
procedure A, the reaction was performed by using 5-aminobenzimidazole (1w, 1.0
eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in
acetonitrile 2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was
added and stirred at room temperature for 1 hour to afford 2w in 72 mg, 71% vyield
as yellow oil: 'HNMR (500 MHz, DMSO-d6): 8.34 (s, 1H), 7.68 (d, 1H), 7.60 (d, 1H), 7.24
(dd, 1H, J = 85, 1.3 Hz). *C-NMR (125 MHz, DMSO-d6): & 144.7, 138.2, 137.0, 132.5,
124.6, 121.3, 116.7, 113.6. GC-MS: m/z: 175.1 (calced for CgHsN5S: 175.0).

SCN
m
N

H

5-isothiocyanato-1H-indole (2x). According to the general experiment procedure A,
the reaction was performed by using 5-aminoindole (1w, 1.0 eq.,, 0.58 mmol), DBU

(3.0 eq.,, 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4
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hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at
room temperature for 1 hour to afford 2w in 81.7 mg, 81% yield as yellow solid:
'HNMR (500 MHz, CDCls): & 8.28 (s, 1H), 7.51 (t, 1H), 7.33 (d, 1H), 7.28 — 7.25 (m, 1H),
7.07 (dt, 1H, J = 8.6, 4.4 Hz), 6.53 (t, 1H).”*C-NMR (125 MHz, CDCl,): & 134.4, 128.1,
126.2, 123.1, 120.2, 118.1, 112.0, 103.1. GC-MS: m/z: 174.1 (calced for CoHgN,S: 174.0).

NCS

1 -isothiocyanatonaphthalene (2y). According to the general experiment procedure
A, the reaction was performed by using napthelene-1lamine (1y, 1.0 eq., 0.58 mmol),
DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL
for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at
room temperature for 1 hour to afford 2y in 82.6 mg, 77% yield as white solid:
'HNMR (500 MHz, CDCLs): & 8.09 (dd, 1H, J = 8.4, 0.5 Hz), 7.86 (dd, 1H, J = 8.1, 0.6 Hz),
7.76 (p, 1H, J = 3.5 Hz), 7.62 — 7.51 (m, 2H), 7.42 - 7.36 (m, 2H). *C-NMR (125 MHz,
CDCly): 0 136.1, 134.1, 129.3, 128.5, 127.8, 127.5, 127.5, 127.2, 125.5, 123.5, 122.8.
GC-MS: m/z: 185.1 (calced for CgHgNS: 185.0).

HO

4-isothiocyanatophenol (2z). According to the general experiment procedure A, the
reaction was performed by using 4-aminophenol (1z, 1.0 eq., 0.58 mmol), DBU (3.0
eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours
Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room
temperature for 1 hour to afford 2z in 68.3 mg, 78% vyield as yellow oil: 'HNMR (500
MHz, CDCLy): 8 7.18 — 7.00 (m, 2H), 6.87 — 6.65 (m, 2H).*C-NMR (125 MHz, CDCls): &
154.8, 134.0, 127.3, 123.8, 116.4. GC-MS: m/z: 151.1 (calced for C;HsNOS: 151.0).
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NCS

OH

3-isothiocyanatophenol (2aa). According to the general experiment procedure A,
the reaction was performed by using 3-aminophenol (1aa, 1.0 eq., 0.58 mmol), DBU
(3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4
hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at
room temperature for 1 hour to afford 2aa in 73.5 mg, 84% vyield as yellow oil:
'HNMR (500 MHz, CDCls): & 6.81 = 6.77 (m, 1H), 6.77 — 6.72 (m, 2H), 6.68 (t, 1H)."*C-
NMR (125 MHz, CDCls): & 156.4, 1355, 132.2, 130.6, 118.5, 114.9, 112.8. GC-MS: m/z:
151.1 (calced for C;HsNOS: 151.0).

Crb

benzo[d]oxazole-2(3H)-thione (2bb). According to the general experiment
procedure A, the reaction was performed by using 3-aminophenol (1aa, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile
2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
stirred at room temperature for 1 hour to afford 2aa in 71.0 mg, 84% yield as yellow
solid: HNMR (500 MHz, DMSO-d6): & 11.26 (s, 1H), 7.36 (d, 1H), 7.27 (dd, 2H, J = 10.6,
4.4 Hz), 7.24 (t, 1H)."*C-NMR (125 MHz, DMSO-d6): 0 180.6, 148.7, 131.8, 125.7, 124.3,
111.0, 110.5. GC-MS: m/z: 151.1 (calced for C;HsNOS: 151.0).

Jous

6-methylbenzo[d]oxazole-2(3H)-thione (2cc). According to the general experiment
procedure A, the reaction was performed by using 3-aminophenol (1aa, 1.0 eq., 0.58
mmol), DBU (3.0 eq., 1.74 mmol), carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile

2 mL for 4 hours. Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and
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stirred at room temperature for 1 hour to afford 2aa in 77.5 mg, 81% yield as yellow
solid: 'HNMR (500 MHz, DMSO-d6): 0 733 (d, 1H, J = 8.8 Hz), 7.02 (d, 2H, J = 7.1 Hz),
2.32 (s, 3H).">)C-NMR (125 MHz, DMSO-d6): 0 180.7, 146.9, 1354, 131.7, 124.9, 111.1,
110.0, 21.3. GC-MS: m/z: 165.1 (calced for CgH;NOS: 165.0).

NCS
©:NHTS
N-(2-isothiocyanatophenyl)-4-methylbenzenesulfonamide (2dd). According to
the general experiment procedure A, the reaction was performed by using N-(2-
aminophenyl)-4-methylbenzenesulfonamide (1dd, 1.0 eq., 0.58 mmol), DBU (3.0 eq.,
1.74 mmol), carbon disulfide (3.0 eq.,, 1.74 mmol) in acetonitrile 2 mL for 4 hours.
Then, carbon tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room
temperature for 1 hour to afford 2dd in 95.2 mg, 54% yield as white solid: *HNMR
(500 MHz, DMSO): 0 798-7.94 (m, 1H), 7.92 (d, 2H), 7.41 (d, 2H), 7.31 — 7.24 (m, 2H),
7.16 — 7.11 (m, 1H), 2.40 - 2.27 (s, 3H).">)C-NMR (125 MHz, CDCls): 169.1, 146.8, 134.1,

131.5, 131.2, 130.3, 128.8, 126.0, 124.1, 114.0, 110.7, 21.7. HRMS: [M+2H+Na] 329.1654
(Catced for C14H12N20252: 3040340)

/©/NCS
TBSO

tert-butyl(4-isothiocyanatophenoxy) dimethylsilane (2ee). According to the
general experiment procedure A, the reaction was performed by using d-((tert-
butyldimethylsilyl)oxy)aniline (1ee, 1.0 eq., 0.58 mmol), DBU (3.0 eq.,, 1.74 mmol),
carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon
tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1
hour to afford 2ee in 133.7 mg, 87% yield as dark-brown oil: ‘HNMR (500 MHz,
CDCLy): 6 7.16 - 6.98 (m, 2H), 6.85 — 6.65 (M, 2H), 0.96 (M, 9H), 0.18 (M, 6H).”*C-NMR
(125 MHz, CDCl,): o 155.0, 134.0, 127.0, 124.2, 121.1, 25.7, -4.38. GC-MS: m/z: 265.2
(calced for Cy3H;gNOSSI: 265.1).
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TsO

4-isothiocyanatophenyl 4-methylbenzenesulfonate (2ff). According to the general
experiment procedure A, the reaction was performed by using 4-(tert-
butyldimethylsilylloxy)aniline (1ff, 1.0 eq., 0.58 mmol), DBU (3.0 eq., 1.74 mmol),
carbon disulfide (3.0 eq., 1.74 mmol) in acetonitrile 2 mL for 4 hours. Then, carbon
tetrabromide (1.0 eq., 0.58 mmol) was added and stirred at room temperature for 1
hour to afford 2ee in 122.1 mg, 69% yield as yellow solid: 'HNMR (500 MHz, CDCL):
0 7.67 (d, 2H, J = 8.3 Hz), 7.32 — 7.29 (m, 2H), 7.18 — 7.04 (m, 2H), 7.02 — 6.85 (m, 2H),
2.44 (s, 3H).C-NMR (125 MHz, CDCly): & 147.9, 145.9, 137.1, 132.0, 130.4, 130.0,
128.6, 127.0, 123.9, 21.8. HRMS: [M+Na] 328.0084 (calced for Ci4Hi;NNaOsS,:
328.0078).

2.5.4  Synthesis derivatives of unsymmetric thiourea
H H

N\[]/N

YA,

1-(4-methoxyphenyl)-3-(p-tolyl)  thiourea (3a). According to the general
experiment procedure B. A mixture of p-toluidine (1.0 eg, 0.58 mmol), carbon
disulfide (3.0 eq.,, 1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by
acetonitrile (2 mL) in Pyrex glass tube. The mixture was stirred at room temperature
for 4 hours. Then, carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at
room temperature for 1 hour. Next, p-anisidine (1.5 eq., 0.87 mmol) was added in the
mixture and stirred for 3 h to afford 3a in 138.8 mg, 88% vyield as yellow solid:
'HNMR (500 MHz, DMSO): 0 7.80 (s, 1H), 7.27 —= 7.21 (m, 4H), 7.17 (d, 2H, J = 8.2 Hz),
6.98 — 6.80 (m, 2H), 3.79 (s, 3H), 2.33 (s, 3H). "C-NMR (125 MHz, CDCls): 180.1, 158.7,
137.7, 134.7, 130.2, 127.7, 125.6, 114.8, 55.6, 21.1. HRMS: [M+Na] 295.0866 (calced for
Ci5H1gN,NaOS: 295.0881).
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1-phenyl-3-(p-tolyl) thiourea (3b). According to the general experiment procedure
B. A mixture of p-toluidine (1.0 eqg, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol)
and DBU (3.0 eq,, 1.74 mmol) were dissolved by acetonitrile (2 mL.) in Pyrex glass
tube. The mixture was stirred at room temperature for 4 hours. Then, carbon
tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1
hour Next, aniline (1.5 eq., 0.87 mmol) was added in the mixture and stirred for 3 h
to afford 3b in 92.6 mg, 66% yield as white solid: 'HNMR (500 MHz, DMSO-d6): 0 9.64
(s, 2H), 7.44 (d, 2H, J = 7.9 Hz), 7.34 — 7.21 (m, 4H), 7.16 — 7.01 (m, 3H), 2.24 (s, 3H).
BC-NMR (125 MHz, DMSO-d6): 180.1, 140.6, 137.4, 133.6, 129.4, 128.9, 124.8, 124.4,
124.1, 21.0. HRMS: [M+Na] 265.0769 (calced for Cy4H,4N,NaS: 265.0775).

1-(4-chlorophenyl)-3-(p-tolyl) thiourea (3c). According to the general experiment
procedure B. A mixture of p-toluidine (1.0 eg, 0.58 mmol), carbon disulfide (3.0 eq.,
1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL.) in
Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then,
carbon tetrabromide (1.5 eq, 0.87 mmol) was added and stirred at room
temperature for 1 hour. Next, 4-chloroaniline (1.5 eq., 0.87 mmol) was added in the
mixture and stirred for 3 hours to afford 3c in 112 mg, 70% yield as white solid:
'HNMR (500 MHz, DMSO-d6): 5974 (s, 1H), 9.71 (s, 1H), 7.52 - 7.42 (m, 2H), 7.33 (dd,
2H, J = 9.3, 2.4 Hz), 7.28 (d, 2H, J = 8.3 Hz), 7.09 (d, 2H, J = 8.2 Hz), 2.24 (s, 3H). »*C-
NMR (125 MHz, DMSO-d6): 180.1, 148.2, 139.0, 137.1, 134.4, 129.5, 129.0, 128.8, 128.6,
125.8, 125.8, 124.4, 119.1 115.6, 20.8. HRMS: [M+Na] 299.0375 (calced for CyqH;3CIN,-
NaS: 299.0386).
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1-(4-bromophenyl)-3-(p-tolyl) thiourea (3d). According to the general experiment
procedure B. A mixture of p-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq.,
1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in
Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then,
carbon tetrabromide (1.5 eq, 0.87 mmol) was added and stirred at room
temperature for 1 hour. Next, 4-bromoaniline (1.5 eq., 0.87 mmol) was added in the
mixture and stirred for 3 hours to afford 3d in 112 mg, 70% vyield as white solid:
'HNMR (500 MHz, DMSO-d6): & 7 9.74 (s, 1H), 9.71 (s, 1H), 7.52 — 7.42 (m, 2H), 7.33
(dd, 2H, J = 9.3, 2.4 Hz), 7.28 (d, 2H, J = 8.3 Hz), 7.09 (t, 2H, J = 8.3 Hz), 2.24 (s, 3H).
BC-NMR (125 MHz, DMSO-d6); 180.2, 139.5, 137.1, 134.4, 129.5, 128.8, 125.8, 124.6,
21.0. HRMS: [M-H] 319.0578 (calced for CyqH1,BrN,NaS: 318.9905).

o

1-benzyl-3-(p-tolyl) thiourea (3e). According to the general experiment procedure
B. A mixture of p-toluidine (1.0 eqg, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol)
and DBU (3.0 eq.,, 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass
tube. The mixture was stirred at room temperature for 4 hours. Then, carbon
tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1
hour. Next, benzylamine (1.5 eq., 0.87 mmol) was added in the mixture and stirred
for 3 hours to afford 3e in 111.4 mg, 70% vield as white solid: HNMR (500 MHz,
CDCLy): 8 7.91 (s, 1H), 7.34 — 7.28 (m,2H), 7.26 (dd, 3H, J = 9.4, 4.5 Hz), 7.18 (d, 2H, J =
8.2 Hz), 7.10 - 7.05 (m, 2H), 6.28 (s, 1H), 4.84 (s, 2H), 2.32 (s, 3H). "C-NMR (125 MHz,
CDCls): 181.0, 137.9, 137.3, 133.0, 130.9, 128.9, 127.8, 127.7, 125.7, 49.5, 21.1. HRMS:
[M+K-2H] 293.1091 (calced for Cy5H4KN,S: 293.0515).
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1-(1-phenylethyl)-3-(p-tolyl) thiourea (3f). According to the general experiment
procedure B. A mixture of p-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq.,
1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in
Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then,
carbon tetrabromide (1.5 eq, 0.87 mmol) was added and stirred at room
temperature for 1 hour. Next, 1-phenylethylamine (1.5 eq., 0.87 mmol) was added in
the mixture and stirred for 3 hours to afford 3f in 90.8 mg, 58% vyield as yellow oil:
'HNMR (500 MHz, CDCly): & 7.77 (s,1H), 7.34 — 7.30 (m, 2H), 7.29 — 7.22 (m, 3H), 7.18
(d, 2H, J = 8.1 Hz), 7.05 (d, 2H, J = 8.2 Hz), 6.27 (s, 1H), 5.64 (s, 1H), 2.33 (s, 3H), 1.51
(d, 3H, J = 6.9 Hz). ®C-NMR (125 MHz, CDCls): 179.5, 142.3, 137.6, 133.3, 130.8, 130.4,
129.2, 128.2, 129.1, 127.6, 126.1, 126.0, 125.6, 125.5, 54.4, 21.4. HRMS: [M+Na]

293.1091 (calced for Cy4H;gN,NaS: 293.1088).

1 4
oY A
1-benzhydryl-3-(p-tolyl) thiourea (3g). According to the general experiment
procedure B. A mixture of p-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq.,
1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in
Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then,
carbon tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room
temperature for 1 hour. Next, diphenylmethanamine (3.0 eq., 1.74 mmol) was added
in the mixture and stirred for 3 hours to afford 3g in 80.8 mg, 42% yield as white
solid: "HNMR (500 MHz, CDCl,): & 7.74 (s, 1H), 7.31 (t, 4H, ,J = 7.3 Hz), 7.29 — 7.22 (m,
3H), 7.18 (dd, 5H, J = 7.3, 5.3 Hz), 7.07 (d, 2H, J = 8.3 Hz), 6.83 (s, 1H), 6.56 (s, 1H), 2.33
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(s, 3H). C-NMR (125 MHz, CDCls): 180.4, 140.8, 137.7, 133.2, 130.9, 129.0, 128.8,
128.7, 127.7, 127.5, 127.4, 127.3, 127.2, 125.5, 62.5, 21.2. HRMS: [M-H] 331.1264

(calced for CyHyoN,S: 332.1347).

1-cyclohexyl-3-(p-tolyl) thiourea (3h). According to the general experiment
procedure B. A mixture of p-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq.,
1.74 mmol) and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in
Pyrex glass tube. The mixture was stirred at room temperature for 4 hours. Then,
carbon tetrabromide (1.5 eq, 0.87 mmol) was added and stirred at room
temperature for 1 hour. Next, cyclohexylamine (3.0 eq., 1.74 mmol) was added in the
mixture and stirred for 3 hours to afford 3h in 103.5 mg, 72% vyield as yellow solid:
'HNMR (500 MHz, CDCls): & 7.63 (s, 1H), 7.21 (d, 2H, J = 8.1 Hz), 7.05 (d, 2H, J = 8.2
Hz), 5.83 (s, 1H), 4.24 (s, 1H), 2.35 (s, 3H), 2.00 (m, 2H), 1.68 — 1.54 (m, 3H), 1.48 - 1.30
(m, 2H), 1.15 - 1.04 (m, 3H). *C-NMR (125 MHz, CDCly): 178.9, 137.5, 133.3, 130.9,
125.4, 54.1, 32.8, 32.6, 25.5, 24.7, 21.1. HRMS: [M+Na] 271.1237 (calced for
CaHooN,NaS: 271.1245).

H H
N

1-butyl-3-(p-tolyl) thiourea (3i). According to the general experiment procedure B.
A mixture of p-toluidine (1.0 eq, 0.58 mmol), carbon disulfide (3.0 eq., 1.74 mmol)
and DBU (3.0 eq., 1.74 mmol) were dissolved by acetonitrile (2 mL) in Pyrex glass
tube. The mixture was stirred at room temperature for 4 hours. Then, carbon
tetrabromide (1.5 eq., 0.87 mmol) was added and stirred at room temperature for 1
hour. Next, butylamine (3.0 eq., 1.74 mmol) was added in the mixture and stirred for
3 hours to afford 3i in 109.4 mg, 85% vyield as yellow solid: *HNMR (500 MHz, CDCLl,):

0 8.01 (s), 7.25 - 7.16 (m, 4H), 7.06 (d, 2H, J = 8.2 Hz), 5.95 (s, 1H), 3.58 (t, 2H, J = 7.2
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Hz), 1.55 — 1.44 (m, 2H), 1.34 — 1.24 (m, 2H), 0.88 (t, 3H, J = 7.4 Hz). >C-NMR (125
MHz, CDCLy): 180.3, 137.6, 133.3, 130.8, 125.6, 45.3, 31.1, 21.1, 20.1, 13.7. HRMS: [M+H]
223.1224 (calced for Cy,HigN,S: 222.1191).

2.5.5 Gram-scale synthesis
2.5.5.1 Gram-scale synthesis of isothiocyanate

General procedure A was followed, the reaction was performed by 4-
bromoaniline (1a, 1.0 eq., 5.8 mmol), DBU (3.0 eq., 17.4 mmol), carbon disulfide (3.0
eq., 17.4 mmol) in acetonitrile 20 mL for 4 hours. Then, carbon tetrabromide (1.0 eq,,
5.8 mmol) was added and stirred at room temperature for 1 hour afford 2a in 980
me, 79% vyield as a white solid: *H-NMR (500 MHz, CDCls): O (ppm) 7.55 = 7.37 (m,
2H), 7.19 - 6.99 (m, 2H). *C-NMR (125 MHz, CDCL):: & 136.9, 132.8, 130.5, 127.2,
120.8. GC-MS: m/z: 213.0 : 215.0 (1:1) (calced for C;H4BrNS: 212.9 : 214.9 (1:1)).

2.5.5.1 Gram-scale synthesis of unsymmetric thiourea

General procedure B was followed, A mixture of p-toluidine (1f) (1.0 eq, 9.33
mmol), carbon disulfide (3.0 eq.,, 28.0 mmol) and DBU (3.0 eq.,, 28.0 mmol) were
dissolved by acetonitrile (20 mL) in Pyrex glass tube. The mixture was stirred at room
temperature for 4 hours. Then, carbon tetrabromide (1.5 eq., 14 mmol) was added
and stirred at room temperature for 1 hour. Next, p-anisidine (1i) (1.5 eq., 14 mmol)
was added in the mixture and stirred for 3 h to afford 3a in 1.75 ¢, 69% vyield as
yellow solid: 'HNMR (500 MHz, DMSO): 6 9.64 (s, 2H), 7.44 (d, 2H, J = 8.2 Hz), 7.34 -
7.21 (m, 4H), 7.16 - 7.01 (m, 3H), 2.24 (s, 3H). ®C-NMR (125 MHz, DMSO): 180.1, 140.6,
137.4, 133.6, 129.4, 128.9, 124.8, 124.4, 124.1, 21.0. HRMS: [M+Na] 265.0769 (calced
for Cy4H14N,NaS: 265.0775).



52

CHAPTER 1lI
RESULT & DISCCUSION

In this work, we developed the synthesis of isothiocyanate from amines in
one pot fashion. The first step involves the formation of dithiocarbamate salt (X) via
the treatment of CS,. The second step is the desulfurization of dithiocarbamate salt
(X) into the target isothiocyanate. Our work will focus on developing the method for

desulfurization process using various desulfurizing agents.

+
BH Desulfurization
R-NH, —CS2Base H & » R-NCS
R~ \n/ reaction
S
L X -

Scheme 3.1 Synthesis of isothiocyanate via desulfurization process.
3.1 Synthesis of isothiocyanate via light mediated Vilsmeier-Haack reagent

The first desulfurization method that we plan to use was photochemical
reaction via Vilsmeier-Haack reagent. Therefore, we first built our photoreactors
equipped by either 1) Visible light or 2) Ultraviolet (UV) bulb. There are two light
sources for visible photo reactor including 19W white LED (Picture 3.1, A) and SMD
5050 LED, 12W green LED (Picture 3.1 ,B). The reaction vessel that used for visible
lisht photo reaction was made from simple borosilicate glass. On the other hand, the
UV photo reactor were equipped with either 254 nm UV lamp (Picture 3.1 ,C) or 365
nm UV lamp (Picture 3.1 ,D). Importantly, the quartz was used as reaction vessel

due to it excels at transmitting UV light.
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‘ 365 nm. UV LED |

Picture 3.1 Our photoreactor in this study A,B) Visible light. C,D) Ultraviolet light.
3.1.1 Effect of light sources for desulfurization via Vilsmeier-Haack reagent
4-Bromoaniline (1a) was used as a model substrate for optimized study for
preparation of isothiocyanate (Scheme 3.2). The first step was the formation of
dithiocarbamate salt (X) from the reaction between 4-bromoaniline 1a and CS, in
presence of DBU as base. The second step was desulfurization via Vilsmeier-Haack
light- mediated by using carbon tetrabromide and N,N-dimethyl formamide (DMF) to

provide isothiocyanate 2a. The parameter that we focus on this study was the light

source.
NH, CS,(3.0eq.), SeHu | CBra(2.0eq) NCS
/©/ DBU (3.0 eq.) H - DMF (2.0 eq.) /©/
—_— N_ _S —_—
Br CH3CN, , 4h, rt \ﬂ/ light source Br
1a S time, rt. 2a
Br
X

Scheme 3.2 The study for synthesis of isothiocyanate from 4-bromoaniline

First, we tested the light source irradiation including white LED, green LED,

254 nm. UV. and 365 nm. UV. The treatment of CS; in the presence of DBU to 1la
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leaded to the complete consume of starting material (1a) within 20 hours. Under
visible light irradiation for 16 hours by white LED (Table 3.1, entry 1) and green LED
(Table 3.1, entry 2) with the addition of 2.0 equivalences of CBr; and 2.0
equivalence of DMF in acetonitrile, the isothiocyanate 2a was isolated in 61% and
51% vyields, respectively. The low yield of product 2a was probably due to the
decomposition of product under the long irradiation time. Switching the visible light
sources to ultraviolet light sources, after the reaction provided product 2a in 65-80%
yields in case of 254 nm UV irradiation (Table 3.1, entry 2-4). While using 365 nm UV
irradiation, the product 2a was received in slightly better yields (70-77%, Table3.1,
entry 6-8 ) under the same irradiation time. To test the stability of product 2a under
UV irradiation, we irradiated isothiocyanate 2a under both ultraviolet light sources for
4 hours. Both reactions were monitored by 'HNMR spectroscopy to check the
decomposition of isothiocyanate product (Figure 3.1). From NMR result, we found
newly unidentified peak at aromatic region (7.4-7.5 ppm) and down field peak at 9.97
ppm indicating the composition from 254 nm. UV irradiation case (Figure 3.1, TOP).
while UV 365 nm. gave clean NMR spectrum of isothiocyanate 2a (Figure 3.1,

Bottom). Therefore, UV 365 nm. LED light is suitable light source for further study.

Table 3.1 light source screening®

NH, CS; (3.0 eq.), SeHU | CBra (2.0 eq.) NCS
/©/ DBU (3.0 eq.) ] Y DMF (2.0 eq.) /©/
— Nd NS —
Br CH3CN, , 20 h, rt /©/ \ﬂ/ light source Br
1a B S time, rt 2a
;
X
Entry Light source Time %Yield®

1 White LED 16 61

2 Green LED 16 51

3 UV 254 nm 2 68

4 UV 254 nm 4 80

5 UV 254 nm 6 65

6 UV 365 nm 2 70
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7 UV 365 nm 4 14
8 UV 365 nm 6 76

Reaction condition: 4-bromoamiline (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol),
DBU (1.74 mmol), CBrg (2.0 eq., 1.16 mmol), DMF (2.0 eq., 1.16 mmol), MeCN (2

mL), Isolated yield.

/©/NCS 254 nm. UV light source NCS
Br Vs Br~ :

254 nm. 2a 365 nm. UV light source ’a

7.4-7.5 ppm ‘
9.91 ppm PP

l

|

365 nm.

—_—
—_—n

6.0 5.5
f1 (ppm)

Figure 3.1 Comparison "HNMR spectrum from irradiation of isothiocyanate using UV
254 nm (TOP) and UV 365 nm (Bottom) light source
Next, we tested the necessity of the ligsht source and CBr,/DMF. We therefore

ran the control experiment when the reaction test tube was covered by aluminum
foil and carried in parallel with the reaction irradiated by 365 nm UV LED (Table 3.2,
entry 1-2). Moderate yield of isothiocyanate 2a was obtained. This result suggested
that light had little effect on the reaction. When we carried in the absence of CBry
and DMF under irradiation by 254 nm and 365 nm UV LED, isothiocyanate 2a was
isolated in 16% and 26% vyields respectively (Table 3.2, entries 3, 4). This finding
that suggested that CBr, and DMF is crucial factor in our reaction. Next, we ran the

reaction under dayligsht condition and reduced the equivalence of CBr, from 2.0
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equivalence to 1.0 equivalence. Isothiocyanate 2a was isolated in good yield (Table
3.2, entry 5). This information indicated that light source has no effect and 1.0
equivalent of CBry is sufficient. Moreover, we reduced the time of dithiocarbamate
salt (X) formation from 20 hours to 4 hours. The target isothiocyanate 2a was
isolated in 78% vyield (Table 3.2, entry 6). Finally, we carried the reaction without
the addition of DMF at the second step. As expected, isothiocyanate 2a was isolated

in 76% vyield (Table 3.2, entry 7).

Table 3.2 Effect of light and DMF®

Entry Light Source CBr, (eq.) DMF (eq.) %Yield?
1 UV 365 nm. 2.0 2.0 7
2 Covered with 2.0 2.0 52

Aluminium foil

3 UV 254 nm . 2.0 16
4 UV 365 nm - 2.0 26
5 Daylight 1.0 2.0 76
6° Daylight 1.0 2.0 78
7 Daylight 1.0 - 76

°Reaction condition: 4-bromoamiline (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol),
DBU (1.74 mmol), CBr4 (2.0 eq., 1.16 mmol), DMF (2.0 eq., 1.16 mmol), CH;CN (2 mL),
isolated yield. °1 h. in first step

This observation suggested two knowledges. The first one is the use of CBry
under visible light is not required. Therefore, in section 3.2 we studied the possibility
to use other photocatalysts in the absence of CBrs. On the other hand, such result
suggested that CBrq can use for desulfurization directly. We therefore turned our
attention to use CBry as only reagent without the need of light and DMF (Vilsmeier-

Haack) and the result will be discussed further in Section 3.3.
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3.2 Synthesis of isthiocyanate using photocatalysts

In this section, we planed to study the synthesis of isothiocyanate via
photochemical using dye as photocatalyst. In recently years, our group reported the
funtionalization of organosulfur using photocatalysts to perform oxidative cross
coupling thiol to disulfide compounds® and oxidative desulfurization to convert thiol
to 2-aminobenzoxazole® and guadinine™ derivatives (Scheme 3.3). For disulfide
synthesis, the singlet oxygen as act as an oxidizing agent to generate the
corresponding thiol radical (A) which can undergo homocoupling to provide disulfide
products (Scheme 3.3, eq. 1). Interestingly, in oxidative desulfurization reaction, the
transformation of thiol in to thiol radical (A) via singlet elctron transfer which can
undergo coupling with superoxide to produce peroxysulfur (B) intermediate. The
elimination of organosulfur took place by substitution by amines to obtaine target 2-

aminobenzoxazole or guadinine derivatives (Scheme 3.3, eq. 2 and 3 ).

Previous methods from our group

. R-S’
Ry—S . Ry—S=S-Ry =~—-- ™

A Homocoupling
A Disulfide

1

02 PC/\

Q 1pc*
30 3 |
2 F’C‘Jlsc
R,—SH
Thiol
_____
SET O rc @EO - NReRa
-7 Ri= Y
N A
PC / 2-Aminobenzoxazole
Y g
0, -
R—S ———  » R—S0,0 111
A B
NR,R3
RoR3NH
2R3NHo xRy

N N e
Ry = Phs i\ _Ry

N N Guadinine
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Scheme 3.3 Reviews on organosulfur of previous where method from our group

Based on above idea, we planned to investigate the synthesis of
isothiocyanate using photocatalyst. We hypothesized that under photochemical and
photocatalytic system, the dithiocarbamate radical A was formed via by singlet
electron transfer (SET) under photochemical reaction and generating superoxide.
Then, the coupling reaction of superoxide and dithiocarbamate radical A produces
peroxysulfur (B) intermediate followed by desulfurization to obtain target

isothiocyanate (Scheme 3.4).

Probably to my work

CS,, Base, -
R-NH, — 2 "' 3 |R \[S]/ » R-NCS

Flcrr o} Y (50.0°
_N S 2 R’ n
RO T
S
c B

Scheme 3.4 Synthesis of isothiocyanate using photocatalyst

3.2.1 Photocatalyst and light sources screening

4-Bromoaniline (1a) and carbon disulfide were used as a model substrate for
optimized study for preparation of isothiocyanate under visible light irradiation in
presence of photocatalysts. We tried the reaction using Ru(bpy);Cl, as catalyst with
white LED. After the formation of dithiocarbamate salt (X), we added 5 mol% of
Ru(bpy)sCl, and irradiated by white LED for 16 hours. The product 2a was formed in
38% (Table 3.3, entry 2) along with recovered staring material 1a 31% yield. With
this promising result, other photocatalyst including Eosin Y, Rose Bengal, Safranin O
and pyrene (Table 3.3) were screened under similar condition. We found that
Safranin O gave the best result providing compound 2a in 48% vyield (Table 3.3,

entry 5). We would like to note that the recovering starting material 1a was received
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in 30-40% even though the formation of dithiocarbamate salt (X) was completely

occurred (observing from TLC). We therefore suspected that the dithiocarbamate salt

(X) was decomposed to starting material during the desulfurization. Moreover, we ran

the control experiment which Ru(bpy)sCl, was used as catalyst and carried the

photoreaction by covering with aluminium foil (Table 3.3, entry 1). Isothiocyanate

2a was isolated in 6% yield along with recovered starting material 1a 619%. Finally,

the control experiment in without photocatalyst was irradiated by white LED.

Isothiocyanate 2a was obtained in 9% yield along with recovered starting material 1a

in 52% (Table 3.3, Entry 3)

Table 3.3 Photocatalysts and light sources screening®

NH;  CS; (eq.), *
DBU (3.0 eq.) y o PBRUL Chotocatalyst (5 mol%) NCS
Br — N S -
. CH3CN, 20 h, rt /©/ \ﬂ/ light source, 16 h, rt Br
a Br R 2a
L X -
Entry | Photocatalyst Light source %Yield® (2a) | Starting material
(5 mol%) 1a (% recovery)
1 Ru(bpy),Cl, | Covered with aluminium foil 6 61
2 Ru(bpy),Cl, White LED 38 31
3 - White LED 9 52
a4 EosinY Green LED 29 35
5 Roes Bengal White LED 22 32
6 Safranin O White LED 48 mixture
compounds
7 Pyrene White LED 24 38
g° Ru(bpy),Cl, White LED 35 42

Reaction condition: 4-bromoamiline (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), DBU
(1.74 mmol), Photocatalyst (0.05 eq., 0.029 mmol), MeCN (2 mL), Isolated yield. 1% of

Ru(bpy),Cl,
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Although the moderate yields were received, this is the first example to
prepare isothiocyanate in catalytic version which we plan to further investigate in the

near future.

3.3 Synthesis of isthiocyanate by using carbon tetrabromide

Based on results from section 3.1, the use of CBry alone was possible as seen
in Table 3.1, entry 7. We hypothesized that the desulfurization of dithiocarbamate
salt (X) for prepration the corresponding isothiocyanate (2) can proceed through
Scheme 3.5. Therefore, we began to investigate this reaction as presented in the

following section.

CS; (eq.), H _BH CBry (eq.)
R-NH, _N__S R-NCS
1 solvent, base, 4h, rt R™Y time, rt 2
S
X

Scheme 3.5 Synthesis of isothiocyanate using CBrg
3.2.1 Optimized condition

The optimization of isothiocyanate was studied using 4-bromoaniline (1a) as a
model starting material for desulfurization operated with carbon tetrabromide as
desulfurizing agent. We planned to investigate various parameters including type of
solvents, amount of carbon disulfide, base, reaction times and amount of carbon
tetrabromide to provide 4-bromophenyl isothiocyanate (2a) as shown in Scheme 3.6.
The vyield of this reaction was obtained from the purification by column
chromatography and confirmed by mass spectroscopy which those data were shown

in next subtopic.

NH, + NCS
CS; (eq.), H II_)BHU CBry (eq.) /@/
_ N S —_—
Br solvent, base, 4h, rt \[]/ time, rt Br
1a Br S 2a
X

Scheme 3.6 The optimized condition with various parameters
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3.2.1.1 Solvent screening®
Various solvents such as CH;CN, EtOAc, EtOH, i-propanol, acetone and DMSO
were tested and the yields of isothiocyanate were presented in Table 3.4. Initially,
the formation of dithiocarbamate (X) were carried under various solvents in the
presence of CS, and DBU 3.0 equivalences followed by the treatment of CBry 1.0
equivalence for 2 hours. We found that CH,CN gave the best result and provide
isothiocyanate in 74% (Table 3.4, entry 6). In other solvent systems, the starting
material (1a) was remained due to the poor solubility in such solvent. Therefore,
acetonitrile was used for further study.

Table 3.4 Effect of solvent type?

NH, CS;(3.0eq.) i NCS
DBU (3.0 eq.) ho 2BRYL e (10eq)
Br 4 N_ _S -
solvent, 4h, rt \ﬂ/ 2h, rt r
1a Br S 2a

A X
Entry Solvent %Yield®
1 EtOAC 52
2 EtOH 10
3 i-Propanol 18
4 Acetone 22
5 DMSO a6
6 CH,CN 74

°Reaction condition: 4-bromoaniline
(1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74
mmol), CBr4 (1.0 eq., 0.58 mmol) DBU
(3.0 eq., 1.74 mmol), Solvent (2.0 mL).
PIsolated yield
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Next, organic and inorganic bases were investigated and summarized in Table

3.4. We performed the reaction in acetonitrile using carbon disulfide 3.0 equivalences

and CBry 1.0 equivalence. Among organic bases, DBU gave the high yield of

isothiocyanate (2a) in 74% (Table 3.5, entry 1-3). On the other hand, when we

switched to inorganic base such as K,COs;, Cs,CO5; and NaOAc, the isothiocyanates

were obtained in lower yields, respectively (43-0%, Table 3.5, entry 4-6). We found

that it is probably due to the poor formation of dithiocarbamate salt (X) in the first

step causing poor solubility of those bases. Based on these results, we selected DBU

(Table 3.5, entry 1) as base for further study.

Table 3.5 Effect of Base®

CBr4 (1.0 eq.

NH, CS,(3.0eq.) - ESH

/©/ Base (3.0 eq.) H ”
Br CH4CN, 4h, rt 7 /©/N\n/s
1a B S
- X -
Entry Base %Yield®

1 DBU 74

2 EtsN 58

3 DIPEA 22

a4 KoCOs a3

5 Cs,COs a8

6 NaOAc 0

*Reaction condition: 4-bromoaniline
(1.0 eq., 0.58 mmol), CS, (3.0 eq,
1.74 mmol), CBry (1.0 eq, 0.58
mmol) Base (3.0 eq., 1.74 mmol),

CH5CN (2.0 mL). Plsolated yield

2h, rt

NCS
Br

2a
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3.2.1.3 Amount of CS, and CBr,°

In this section, we would like to investigate the amount of CS, which used for
the formation of dithiocarbamate salt (X) and the amount of CBr, which used for
desulfurization during the second step (Table 3.6). We carried the reaction using 3.0
equivalences of DBU in acetonitrile. When only 1.5 equivalences of carbon disulfide
were used, we observed the remaining starting material 1la and only 53% of
isothiocyanate was produced (Table 3.6, entry 1). To ensure the complete
conversion of 1a into the corresponding thiocarbamate salt (X), 3.0 equivalences of
carbon disulfide was added (Table 3.6, entry 2). The product 2a was isolated in 74%
yield without the remaining starting material. On the other hand, increasing the
amount of CS, to 5.0 equivalences gave no significant improvement (Table 3.6,
entry 3). Therefore, the use of 3.0 equivalence of CS, was sufficient to convert amine
1a to dithiocarbamate salt (X) and was used for further study. Then, we studied the
amount of CBr, for desulfurization step using 3.0 equivalences of CS, (Table 3.6,
entry 4-6). When the reaction was performed without CBr4, only 12% of
isothiocyanate was isolated (Table 3.6, entry 4). Using 1.5 equivalence of CBry, the
isothiocyanate were produced in 85% after 2 hours (Table 3.6, entry 6). During the
addition of CBrq we observed the increase of temperature which could result in the
decomposition of the intermediate or product. Therefore, we carried the
desulfurization step at 0°C. However, the isothiocyanates was isolated in slightly
lower yield (78%) (Table 3.6, entry 7). We hypothesized that there were remaining
unreacted dithiocarbamate salt (X). Then, when we reduced the desulfurization time
from 2 to 1 hour, we received the similar yield of isothiocyanate 2a (Table 3.6, entry

8). Therefore, this condition was used as our optimize condition for further study.
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Table 3.6 The amount of CS,and CBr,®

NH, CS; (eq.) + NCS
/©/ DBU (3.0 eq.) y DBHU CBr, (eq.) /©/
> N_ _S >
Br CH4CN, 4h, rt hil 2h, rt Br
1a Br S 2a

Entry CS, (eq.) CBr, (eq.) %Yield?
1 15 1.0 53
2 3.0 1.0 74
3 5.0 1.0 75
4 3.0 S 12
5 3.0 0.5 53
6 3.0 1.5 85
7° 3.0 15 78
8¢ 3.0 15 85

°Reaction condition: 4-bromoaniline (1.0 eq., 0.58
mmol), CS, (1.5-5.0 eq., 0.87-0.29 mmol), CBr4 (0-1.5
eq., 0-0.87 mmol) DBU (3.0 eq., 1.74 mmol), CHsCN

(2.0 mL). “Isolated yield. “The reaction was perform

under 0-5 °C. %he desulfurization time for 1 h.

3.2.2 Substrate scope of amines
With the optimized condition in our hands as presented in Table 3.6, entry 8,
we next expanded the scope of our reaction. Various amines such as aryl amines,
benzyl amines, bicyclic amines, aliphatic amines and amino phenols were tested
under our optimized condition to prepare the corresponding isothiocyanates.
3.2.2.1 Aromatic amines carrying halogen groups®.
Aryl amines containing halogen atoms such as 4-bromo (1a), 4-fluoro (1b), 4-
chloro (1c), 4-iodo (1d) and 2-iodo (1e) were subjected to optimize condition and

isothiocyanates (2a-2e) were isolated in good to excellent yields (Scheme 3.7).
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NH, CS, (3.0 eq.) + NCS
DBU (3.0 eq) o PBRY cBr(15eq) g
> N__S
lade  CHiCN, 4h,rt R~©/ T h, it 2a-2¢
X
/©/NCS NCS /©/NCS
Br 7 C cl
2a, 85% 2b, 90% 2c, 75%

/©/NCS CENCS

| |
2d, 94% 2e, 75%

Reaction condition: amine (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr, (1.5
eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH;CN (2.0 mL), isolated yield.

Scheme 3.7 Aromatic amines carrying halogen groups®.

3.2.2.2 Aromatic amines carrying electron donating groups®

First, aniline (1f) was first tested, and we were able to isolate isothiocyanate

(2f) in 84% yield (Scheme 3.8). Then, various aryl amines carrying electron donating

groups such methyl (1g), 2,6-dimethyl (1h), 4-methoxy (1i) and 2-methoxy (1j) were

studied. The isothiocyanate derivatives (2g-2j) were isolated in 88-95% yields.

Interestingly, aromatic amine carrying NH-Ts (1dd) group tolerated under our

condition and provided the target isothiocyanate (2dd) in 54% yield (Scheme 3.8).

NH, CS, (3.0 eq.) + NCS
DBU (3.0 eq) DBHU | Ry, (15eq) R©/
> —_—

1f1dd ~ CHICN, 4h. rt. Th., 1. 2f-2dd

sa¥calce

2f, 84% 2g, 95% 2h, 95%

ool o
MeO OMe NHTs
2i, 88% 2j. 93% 2dd, 54%

H S
R T
SR

X
/O/NCS
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®Reaction condition: amine (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr, (1.5
eqg., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CHsCN (2.0 mL), isolated yield.

Scheme 3.8 Aromatic amines carrying electron donating groups®

3.2.2.3 Aromatic amine carrying electron withdrawing groups®

Aromatic amines containing with electron withdrawing groups such as 4-
triftuoromethyl (1k), nitro (10), ethyl benzoate (1m) and 4-cyano (1n) and 3-cyano
(1o) groups had strong effect on the reaction efficiency providing low to moderate
yields of isothiocyanates (2k-20) as shown in Scheme 3.9. We observed the
remaining starting materials in all cases indicating that the formation of
dithiocarbamate salt (X) is poor in our reaction. So, we increased the amount of CS,
from 3.0 equivalences to 5.0 equivalences. Fortunately, the yield of target
isothiocyanates (2k-20) were dramatically increased (Scheme 3.9). Therefore, we
hypothesized that the first step which is the formation of dithiocarbamate salt (X) is

the rate determining step in our process.

NHy CS; (3.0 eq.) DBHU NCS
R DBU (3.0 eq) H & CBr, (1.5 eq.) R
> N__S —_—
1k-1o  CHGCN, 4h,rt R~©/ T th, t 2k-20

S

X

: NCS NCS : NCS
FsC ; EtOOC
NO,

2k, 42%, 63%° 21, 44%, 62%P 2m, 52%, 75%°

: NCS NCS
NC ;
CN

2n, 29%, 40%° 20, 38%, 63%"

°Reaction condition: amine (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr, (1.5
eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH;CN (2.0 mL), isolated yield. ®5.0 eq. of
Cs,

Scheme 3.9 Aromatic amine carrying electron withdrawing groups®
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3.2.2.4 Benzylamines scope®
Next, we expanded amine substrates into benzylamine derivatives as shown
in Scheme 3.10. Under optimized condition, benzylamine (1p) can be converted into
isothiocyanate (2p) in 73% vyield as shown in Scheme 3.10. Similarly, 4-methoxy
benzylamine (1q), benzhydryl amine (1r) and 1-phenylethylamine (1s) were
subjected to the thiocarbamate formation following by desulfurization to provide

corresponding isothiocyanates (2g-2s) in 65-84% yields as shown in Scheme 3.10.

CS, (3.0 eq.), +
R@/\NHZ DBU (3.0 eq) R_@\/H DBHU| CBry (1.5 eq.) R@/\NCS
— —_—
N__S

1p-1s CH4CN, 4h, rt T Th, rt 2p-2s
S
X
©/\NCS /©/\NCS
MeO
2p, 73% 2q, 65%
NCS NCS
2r, 71% 2s, 84%

®Reaction condition: Amine (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr4 (1.5
eqg., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH;CN (2.0 mL), isolated yield.

Scheme 3.10 Benzylamines scope®

3.2.2.5 Aliphatic amines scope®

Then, we extended our methodology to prepare isothiocyanates from
aliphatic amines.  Primary  aliphatic amines such as cyclohexylamine (1t) and
hexylamine (1u) were converted into corresponding isothiocyanate in excellent
yields under optimized condition as shown in Scheme 3.11. Then, the chiral amino
acid L-phenylalanine methyl ester hydrochloride was carried under the optimal
condition and provided target isothiocyanate 2v in 34% as seen in Scheme 3.11.
Although, the yield of this transformation was moderate due to the poor solubility of

L-phenylalanine methyl ester hydrochloride in acetonitrile.



CS, (3.0 eq.), N
R-NH, DBU (3.0eq) DBHU | CBr, (1.5 eq.)
1t | N ¢ |————> RnNcs
CH4CN, 4h, rt R™ \ﬂ/ 1h, rt 2t-2v
S
X
0
NCS OMe
SN NES NCS
2v, 34%,
25
2t, 80% 2u, 95% e0.91%,[a |D= 53

Reaction condition: amine (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr, (1.5
eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CHsCN (2.0 mL), isolated yield.

Scheme 3.11 Aliphatic amines scope®

3.2.2.6 Hetero and homocyclic amines scope®
Next, we expanded amine substrates into bicyclic amine derivatives such

5-aminobenzimidazole (1w), 5-aminoindole (1x) and 1-napthylamine (1y) as shown
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as

in

Scheme 3.12. The corresponding isothiocyanates (2w-2y) were isolated in 71-81%

yields as shown in Scheme 3.12. We would like to note that the nitrogen containing

heterocycle in substrate 1w and 1x were easy to undergo oxidation.

CS, (3.0 eq.)

+
DBU (3.0 eq) y DBHU | GBr(15eq)

R-NH, > N 5 —— > R-NCS
1w-1y  CH4CN, 4h,rt Ry 1h, rt 2w-2y
S
X

NCS
SCN N SCN
Ty OO CC
N N
H H
2w, 71% 2x, 81% 2y, 77%

®Reaction condition: Amine (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr, (1.5
eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH;CN (2.0 mL), isolated yield.

Scheme 3.12 Hetero and Homocyclic amines scope®
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3.2.2.7 Amino phenols and its derivatives scope®

Next, we extended our scope into aryl amine bearing hydroxy group in
various positions such as 4-aminophenol (1z), 3-aminophenol (1aa), 2-aminophenol
(1bb) and 2-amino-5-methylphenol (1bb) as shown in Scheme 3.13. For 4-
aminophenol (1z) and 3-aminophenol (1aa) were reacted with CS,/CBr, providing the
corresponding isothiocyanates 2z and 2aa in good to excellent yields (Scheme 3.13).
This observation suggested that the phenolic group can tolerate to our reaction
condition. Interestingly, when 2-hydroxyaniline derivatives such as 1bb and 1lcc were
subjected to our reaction condition, we did not observe expected isothiocyanates
2bbx and 2ccx. Mercaptobenzoxales 2bb and 2cc were isolated in excellent yields
(Scheme 3.13). We believe that the intermediate of isothiocyanates 2bbx and 2ccx
were rapidly underwent intramolecular cyclization with adjacent phenolic groups.
Although, the phenol group can be survived in the reaction, we would like to test
our condition to other common alcohol protecting groups. Therefore, 4-
aminophenols with tert-butyl silyl (lee) and tosyl groups protecting (1ff) were
subjected to our reaction condition providing the expected isothiocyanates 2ee and
2ff in good to excellent yields. Importantly, we did not observed the free phenol
isothiocyanate (2z) indicating that such protecting groups are tolerated in our

reaction condition (Scheme 3.13).
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NH, CS; (3.0 eq.) BBHU NCS
HO DBU (3.0 eq) H & CBry(15ed)  ho
—_— N S —_—
R CHCN, 4h1t  |po e 1h, rt R
1z-1ee S 2z-2ff
R
X
NCS NCS NCS H
=5
AT oo
2z, 78% 2aa, 84% 2bbx 2bb, 81%
Not observed Observed
NCS
| | T
Joos
S
TBSO
OoH Q 2ee, 87% 70 2ff, 69%

2ccx 2cc, 82% 0l 70 , 69%

Not observed Observed

Reaction condition: 4-bromoaniline (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol),
CBry (1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CH;CN (2.0 mL), isolated yield.

Scheme 3.13 Amino phenols and its derivatives scope®

3.2.3 Substrate scopes for unsymmetric thiourea

With the successful in desulfurization of dithiocarbamate salt (X) to synthesize
isothiocyanates, we would like to extend our method to prepare unsymmetrical
thiourea in one-pot fashion from amines. The reason is because thiourea derivatives
are important for bioactive compounds and important building block in medicinal
chemistry. Following by our developed methodology, we plan to add amines into in
situ generated isothiocyanate to provide unsymmetric thioureas (Scheme 3.14). p-
toluidine (1f) was chosen as a model to convert into p-tolyl isothiocyanate (2f) in
situ which was future reacted with 1.5 equivalence of amines. Aromatic amines such
as p-anisidine (1i), aniline (1f), 4-choloroaniline (1c), 4-bromoaniline (1a), benzylamine
(1p), 1-phenylethylamine (1s) and benzhydryl amine (1r) and aliphatic amines such
as cyclohexyl amine (1t) and butylamine (1u) were reacted smoothly providing the
unsymmetrical thioureas (3a-3i) in 34-88% vyields (Scheme 3.14). However, bulky
amines such as benzhydryl amine and cyclohexylamine and poor nucleophile such

as butylamine gave low vyields of target thioureas. Therefore, the amount of amines
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was increased to 3.0 equivalences. Fortunately, we were able to prepare

unsymmetrical thioureas 3g-3i in much better yields ( 42-85%) (Scheme 3.14)

1.CS, (3.0 eq.)

NH, DBU (3.0 eq.), H H\
/@/ 4h.,rtt, CHCN Nes | 3. R—NH2(1.5eq.),3h=/©/ \[S]/ R
¥ 2.CBry (1.5 eq.), 1h, rt ,[ j 32.3i

2f
Isothiocyanate in situ
HoH H H H H
oY, gro Oord
S o S S Cl
3a, 88% 3b, 66% 3¢, 70%
H H
L Y Y
Br /©/ S /©/ s
0
3d,72% 3e, 75% 3f, 59%
\n/ N\n/N N\n/N\/\/
S S S
3g, 34%, 42%b 3h, 43% 72%" 3i, 41% 85%°

°Reaction condition: p-toluidine 1f (1.0 eq., 0.58 mmol), CS, (3.0 eq., 1.74 mmol), CBr,
(1.5 eq., 0.87 mmol), DBU (3.0 eq., 1.74 mmol), CHsCN (2.0 mL), secondary amine (1.5
eq., 0.87 mmol), Isolated yield. °1.74 mmol of second amine was perform.

Scheme 3.14 Unsymmetric thioureas scope®

3.2.4 Gram-scale synthesis of isothiocyanate and unsymmetric thiourea

After the successful preparation of isothiocyanates and unsymmetrical
thioureas in laboratory scale, the gram-scale preparation isothiocyanate was
considered (Scheme 3.15, eqg. 1). 1.0 gram of 4-bromoaniline 1a was subjected to
our optimized condition providing isothiocyanate in 79% yield. Moreover, 1.0 gram of
p-toluidine was converted into thiourea (X) in one-pot fashion via 1) formation of
dithiocarbamate with CS, 2) desulfurization with CBrgq and 3) addition with p-anisidine

to provide thiourea in 69% yield (Scheme 3.15, eq. 2).
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~o
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Scheme 3.15 Gram-scale synthesis

3.2.5 By-product detection by SEM/EDX

We hypothesized that the by-product of our reaction must contain sulfur which
came from desulfurization reaction under the optimized condition as shown in
Scheme 3.16. Therefore, we set the reaction and filtrate the solid precipitate. After
filtration, it washed with acetonitrile and dried over high vacuum. The solid was
exposed to characterize with scanning electron microscope (SEM) equipped with x-
ray spectroscopy (EDX). The SEM/EDX results indicated that the particles contain with
sulfur, carbon and bromine as a main element distributing in surface on particle
(Picture 3.2). Importantly, the element distribution revealed that carbon and
bromide elements bind together as they both are located in the same area while the
sulfur atom displayed independently in another surface area. The result suggests that

the formation of Sg atom as the most stable form’! as shown in Picture 3.2.
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NH DBHU NCS
CBry4 (1.5 eq.
Br/©/ CS, (3.0 eq.), DBU (30 eq),__ 0 o 4 (15 e9) ,Br/©/ + By-product

N
1h, rt .
i CH3CN, 4h, rt R*©/ lr d 2a Characterized by

SEM/EDX

Scheme 3.16 By-product detection

By-product particle Carbon Bromine Sulfur

SEM image EDX image
Picture 3.2 SEM-EDX results from by-product detection

3.2.6 Proposed mechanism
Based on the results from mechanistic study and reviews***® We proposed
the reaction mechanism of our reaction as shown in Scheme 3.17 . Initially, the
amine reacted with carbon disulfide in presence of DBU to generate dithiocarbamate
salt (X) intermediate which undergo nucleophilic attack to bromine atom of carbon
tetrabromide leading to the formation of intermediate of sulfenyl bromide (4°). Then,
sulfur atom that attached to bromine was eliminated to give isothiocyanate (Scheme
3.17). The by-product of this reaction is bromoform (CHBr3;) which was identified by
NMR spectroscopy (singlet at d =682 ppm.) along with Sg and DBU-Br salt were

detected in SEM/EDX experiment.
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Scheme 3.17 Proposed mechanism
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CHAPTER IV
CONCLUSION

In conclusion, we developed 2 methods including photocatalytic and
stoichiometry desulfurization process of dithiocarbamate salt (X). For photocatalysis,
we could prepare 4-bromophenyl isothiocyanate in 48% yield from 4-bromoaniline in
the present of safranin O as photocatalyst as shown in Scheme 4.1. However,
generality of this method was limited. Therefore, we decided to investigate this
photocatalytic method in the near future. For stoichiometry desulfurization process,
we successfully synthesize isothiocyanate derivatives by using CBr, as a mediator.
Under optimize condition, a various amine carrying halogen atom, electron donating,
electron withdrawing group, heterocyclic, aliphatic, phenolic and protecting group are
able to tolerate under our optimize condition. In addition, isothiocyanate derivatives
were obtained in moderate to excellent yield for 32 examples. Moreover, we also
prepare unsymmetrical thiourea from the generating of isothiocyanate in situ which
are able to react with aliphatic and aromatic amine in moderate to excellent yield
for 9 examples as shown in Scheme 4.1. Gram-scale synthesis of isothiocyanates and
unsymmetric thioureas are accomplished under optimize condition in good yield.
Based on mechanistic study including NMR monitoring and SEM/EDX, we proposed
the mechanism involving 1) the nucleophilic attack dithiocarbamate salt (X) to
bromine atom of carbon tetrabromide 2) the formation of intermediate of sulfenyl
bromide intermediate 3) desulfurization process. Importantly, our condition offers
several advantages such as the use of low toxic reagent, easy procedure in open-air

condition, one-pot fashion and gram scalability.
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Scheme 4.1 Synthesis of isothiocyanate using 1) photocatalyst 2) CBr, mediator
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x107

0.8
0.6

0.4

0.2

x107

1.5

0.5

x107

1.51

0.51

132

Benzonitrile, 4-isothiocyanato-: +El Scan (7.377 min) st07.D
160.0
1021
751
371 ) 1330 ) 2070 2531 327.1 405.1
50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475
Counts vs. Mass-to-Charge (m/z)
Figure A95 GC/MS spectrum of 2n
+El Scan (7.241 min) st08.D

102.1
75.1
|

160.1

133.0
[

| 2070 2529

(J

P .-MCS

«]:
C

N

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475

Counts vs. Mass-to-Charge (m/z)

Figure A96 GC/MS spectrum of 2o

Benzene, (isothiocyanatomethyl)-: +El Scan (5.046 min) st-10.D
91.2
1491
65.2
92 | 1211 207.0 253.1 327.1

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Counts vs. Mass-to-Charge (m/z)
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Figure A112 HRMS spectrum of 3a
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Figure A113 HRMS spectrum of 3b
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Figure A114 HRMS spectrum of 3c
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Figure A115 HRMS spectrum of 3d
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Figure A116 HRMS spectrum of 3e
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Figure A117 HRMS spectrum of 3f
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Figure A118 HRMS spectrum of 3g
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Figure A119 HRMS spectrum of 3h
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Figure A120 HRMS spectrum of 3i
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