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Chapter I

PRELIMINARIES

Throughout, let ¢ be a prime power, F, the finite field of ¢ elements and F; :=

Fy \ {0}.

1.1 Basic knowledge in Graph Theory

Let g : F; — F; be a function. The iterates of g are defined by ¢'(z) =
g(g"(z)) for all i € N, where ¢°(z) = z. The graph from the iteration of g is
defined to be a directed graph G, = (V, E) whose vertex set is V' C F; and whose
directed edges in E are given by (z, g(x)) for all = € F;. The reverse graph of the
graph G, denoted by (G,)r, is the graph (V, Eg), where ER := {(z,y) : (y,z) € E}.
For general reference on graph theory, we refer to ?.

Let z € F;. An orbit of « is a directed path in a graph G, of the map g starting
at z, see Figure 1. Since F, is finite, there exists the least positive integer s := s(z)
such that ¢°(z) € {¢°(2),g'(x), ...,¢° 1 (x)}. Lett :=t(x) € {0,1,...,s— 1} be the least
non-negative integer such that ¢*(z) = ¢*(z) and let ¢ := ¢(z) = s(x) — t(z). We then
have c is the smallest positive integer such that ¢'(x) = ¢*™¢(x). The tail for z is the
list of elements z, g(z), ¢*(z), ..., g~ (z) in the orbit of x and the cycle for z is the
list of elements g*(x), ..., g'™"!(x) in the orbit of z. Note that the tail length of x is

t(z) and the cycle length of z is ¢(z), see Figure 1.
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Figure 1. The orbit of z, tail and cycle for x.

Example 1.1.1. The graph from the iteration of g(x) = z? over Fyy is shown as

follows.

We can see that
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Definition 1.1.2. ? Let p,h € N. A complete p—tree of height &, denoted by B, is
a directed graph with p° nodes at depth i, for 0 < i < h, with the property that every

non-leaf node has exactly p children.

Example 1.1.3. A complete 3—tree of height 2 is shown as follows.

1.2 Basic knowledge in Number Theory

Definition 1.2.1. ? Let a,m € Z with m > 0 and gcd(a,m) = 1. The order of a

modulo m, denote by ord,,(a), is the least positive integer i such that a’ = 1 (mod m).

Definition 1.2.2. ? Let p be a prime, and » an integer. The exponent of the largest

power of p which divides n is denoted by v,(n).




Definition 1.2.3. ? Let o € F;. The order of «, denoted by ord(«), is the least

positive integer i such that o = 1.
Theorem 1.2.4. ? Let o € F; and | € N, o! =1 if and only if ord(a) | L.

Theorem 1.2.5. ? Let o € F} and k € N. Then ord(o*) = #&ng.

Theorem 1.2.6. ? If d|(q — 1) then there exist ¢(d) elements of order d, where ¢(d)

is the Euler phi function.

Theorem 1.2.7. ? Let F be a field. For f € F|x], the residue class ring F[z]/(f) is

a field if and only if f is irreducible over F.

Theorem 1.2.8. ? Let K be a field and F its field extension. Let 6 € F be algebraic
of degree n over K and let g be the minimal polynomial of 6 over K. Then K () is

isomorphic to K[x]/(g).

Theorem 1.2.9. ? Let F be a finite field. Then F has p" elements, where the prime

p is the characteristic of F and n is the degree of F over its prime subfield.

Example 1.2.10. We have Fs = <]§f(£f)}> where f(z) = 2® + = + 1 is irreducible. Let
a be a root of 23 + x + 1. From Theorem 1.2.8, Fg = {0,1,a, 0%, a +a? 1+ a,1 +

a?,1+a+a?}.

Theorem 1.2.11. ? For every finite field F, the multiplicative group F;, of nonzero

elements of F, is cyclic.

Definition 1.2.12. ? A generator of cyclic group F; is called a primitive element

of F,.

1.3 Our objectives

In 1996, T.D. Rogers ? studied some properties of the graphs obtained from

iterating the quadratic map g(z) = 2 over F,, where p is a prime number. The



formula of the number of cycles relative to g was derived as follows.

Theorem 1.3.1. ? For any positive integer n, let v(n) denote the number of cycles

in the graph relative to the quadratic map. Then

_ pld)
v(n) = ord;2

dlm

where n = 28m, m odd. The number of cycles then depends only on the odd factor
m of n, so that v(n) = v(m) and d(m) < v(m) < &, where d(m) is the number of

divisors of m.

In 2004, T. Vasiga and J. Shallit ? studied some properties of the graph ob-
tained from iterating the quadratic map g(r) = 2% over a finite field F,, where p is an
odd prime. They characterized the vertices of the directed graph G,_,, in terms of

primitive elements as follows.

Theorem 1.3.2. ? Let v be a primitive root mod p. Then
(a) {a €F}:t(a) =0} = {1 : 0 <i<pandvy(i) > va(p—1)};

(b) For 1 <k <wy(p—1), we have

{aeIF;:t(a):k}:{’yi:0<i<pandv2(i):vg(p—l)—k}.

Next, they gave the formulas for the length of tail ¢(z) and the length of cycle

c(z) for particular z in the vertex set V as follows.

Theorem 1.3.3. ? For each x € F};, we have t(x) = va(ord,x) and c(x) =ord,2, where

ord,x = 2°l and e, | are non-negative integers with | is odd.

Theorem 1.3.4. ? Let p—1 = 27p, where p is odd. For each positive integer divisor

d of p, the graph G,; g(x) = x? contains fr&% cycles of length ord,2. There are p

elements in all these cycles, and off each element in these cycles there hang reversed

complete binary trees of height T — 1 containing 2™ — 1 elements.



Theorem 1.3.5. ? The structure of the digraph G,_..> for a prime p when p = 22" +1,
a Fermat prime, is a reversed complete binary tree of height 28 — 1 with root —1,
attached to a cycle of length 1 on the integer 1. The elements x € F, with t(z) = a

for 0 < a < 2F are given by 36‘22&“, 0 <e < 2% where e is odd.

Theorem 1.3.6. ? When p = 2¢ — 1, a Mersenne prime, the digraph G,_.,: consists
of cycles whose length divides q — 1. Off each element in these cycles there hangs a

single element with tail length 1.

Some statistics about tail and cycle lengths for the iteration of = — 22 over F},

were also studied in ?.

Definition 1.3.7. ? For iterates of z — z> mod p, define

* TC(p) := total number of cycles;

* To(p) := total number of elements in all cycles, i.e., the number of a € F;, with

* AC(p) := average length of a cycle;
* C(p) := average value of c(a) for all a € FZ;

p’

* T(p) := average value of t(a) for all a € F;,.

Then they found the following result.

Theorem 1.3.8. ? Let p — 1 = 27p, where p is odd and consider the iteration of

z+— 22 mod p. Then

1. TC(p) =S e(d) .

ordy2’
dlp



Next, for a positive integer N, consider some quantities over all odd primes

p < N.

Definition 1.3.9. ? With respect to the iteration of x — 22> mod p, define

* STo(N) = pepen To(p);
* ST(N) = > gcpen 2i<acp t(@)-

Definition 1.3.10. ? Let z, k,[ be positive integers. Denote = (x,[, k) the number of

primes p < x which are congruent to & mod I.

Definition 1.3.11. ? Let f, g be functions from non-negative real numbers to non-
negative real numbers, f = O(g) if there exist constants ¢ > 0 and ng > 0 such that

f(n) < cg(n) for all n > ny.

Definition 1.3.12. ? Let function f(z) and g(z), define f(z) ~ g(x) as z — oo if and
only if

lim 2\ — 4
Z—r00 g(;c)

Lemma 1.3.13. ? Extended Riemann Hypothesis (ERH) :

Let k and | be relatively prime integers. Then for any e > 0, we have

lZ(.CU) + 0(1‘1/2+6),

m(x,l k) = =0

where li(z) = ¢ (1 + O(loéx))



Lemma 1.3.14 (?). Assume the ERH. Then, if the logarithmic integral li(x) is de-

fined by li(z) = [, @dt and k,1 are integers with gcd(k,1) = 1, then

li(x)

m(x,l k) = =0

+ O(Vz(logz + 2logl)).

By assuming ERH, they established the asymptotic estimates for the sums of

some average quantities as follows.

Theorem 1.3.15. ? Assume the ERH. Then

N2

STo(N) ~ 6log N’

Theorem 1.3.16. ? Assume the ERH. Then

2 N2

In this thesis, we study the graphs obtained from the iteration of a certain
map g : + — xP, where p is prime, over F; extending the ideas of ? and ?. In
Chapter II, structures of the graphs, characterization of vertices of the graphs in
term of primitive elements in F; and numerical values for the number of cycles with
specific length are investigated. In the last chapter, statistical estimates about the

tail and cycle lengths such as the approximation S7y(N) and ST (N) are shown.



Chapter 11

STRUCTURE OF A GRAPH G, . »

In this chapter, for a fixed prime p, we consider the graph over a finite field F;,
where ¢ is a prime power, obtained by the iteration of the map g : F; — F; defined
by g(x) = 2P. The formulas of the tail length and cycle length of each element in F;,

are shown as follows.

Theorem 2.0.17. Let o € F; and ord(a) = p°l where e € NU {0} and | € N with
gcd(p,l) = 1. If t := t(«) is the tail length for o and c := c(«) is the cycle length for

«a, then t = v,(ord(a)) and ¢ =ord,p.

Proof. Let o € F;. We have g'(a) = g!*(a). Then o' = o?"* and so

e o [ c__
P TPt — Pt —

Therefore, we obtain p¢/|pf(p¢ — 1). Since ged(p®,p¢ — 1) = 1 = ged(l, p'), p¢|p’ and
I|(p® — 1). We first show that ¢t = e = vy(ord(«)). Obviously, e < t. If e < ¢, then
p¢ < pt. Since ¢ is the smallest nonnegative integer such that ¢'(a) = ¢*¢(a), we

have ¢¢(a) = g°*¢(a) and so

e(me_ etc__ e
o (P71 — PPt 2

which contradicts with the fact that p¢l|pf(p¢ — 1). Hence the first part of the theorem

is done. Next, we will show that ord;p = ¢. Since I|(p® — 1),
p¢=1(mod ).
Then ord;p < c¢. Suppose that there exists d € N such that 1 < d < c and

p? =1(mod 1).
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Then I|(p? — 1) and so p°l|p*(p® — 1). This implies that

t+d__ ot t(opd__
QP Pt = 1) —

Consequently, ¢'*%(a) = ¢*(«) which contradicts the minimal of c. ]

Note that, from the above theorem, ¢(a) = v,(d) for some d|(g — 1).

Example 2.0.18. Consider the graph of g(z) = 22 for ¢ = 8.

Here Fs = Fa(a) where o € Fj saitisfying o + o +1 = 0.

O F—E @

By Theorem ??, the tail length and the cycle length for all = € F, are shown as

follows.

x ord(z) =2¢ | t(z) =wvy(ord(z)) | c(z) =ord;2

L
w
-3
I
N}
=]
~J
o o o o o o o
(9] (98] (98] (98] (98] (98]
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Example 2.0.19. Consider the graph of g(z) = 23 over F¥,.

23)

52) (103 (58) (1)

Figure 2. The graph of g(z) = 2 over F%,.

By Theorem ??, we compute the tail length and the cycle length of each element in

.9, as shown in the following table.
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x ord(z) | t(z) | c(o) x ord(z) | t(z) | c(x) x ord(x)
26 27 3 1 62 108 3 2 98 108
27 9 2 1 63 3 1 1 99 108
28 o4 3 1 64 6 1 1 100 o4
29 o4 3 1 65 108 3 2 101 12
30 108 3 2 66 9 2 1 102 o4
31 o4 3 1 67 108 3 2 103 108
32 36 2 2 68 12 1 2 104 54
33 4 0 2 69 108 3 2 105 9
34 18 2 1 70 108 3 2 106 o4
35 27 3 1 71 18 2 1 107 36
36 54 3 1 72 108 3 2 108 2

Example 2.0.20. Consider the graph of g(z) = 23 for ¢ = 9.

Here, Fy = F3(a) where « € F} satisfying o + 1 = 0.

O @ O O @O

By Theorem ??, the tail length and the cycle length for all = € F§ are as in the

following table.



x ord(z) =3¢l | t(z) =wvs(ord(z)) | c(z) =ord;3
1 1=3%1 0 1
a 8§=3%.8 0 2
a? 4=3%-4 0 2
ol 8§=3%.8 0 2
ot 2=230.2 0 1
ad 8§=3%.8 0 2
ab 4=30-4 0 2
a’ §=3".8 0 2

Example 2.0.21. Consider the graph of g(z) = z° for ¢ = 9.

OO O T O

14

By Theorem ??, the tail length and the cycle length for all = € Fj are as in the

following table.

x ord(z) =5° | t(z) =wvs(ord(z)) | c(z)=ord;5
1 1 =59 0 1
a §=5"-8 0 2
a? 4=50.4 0 1
o? §=5"-8 0 2
at 2=750.2 0 1
a® §=5"-8 0 2
ab 4=5%4 0 1
a’ §=5".8 0 2
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Example 2.0.22. Consider the graph of g(z) = 23 for ¢ = 27.

Here, Fo7; = F3(a) where o € F3, satisfying o3 + 2a? + 1 = 0.

O e 0 e e

By Theorem ??, the tail length and the cycle length for all # € F;, are as in the

following table.

x ord(z) | t(z) | c(x) x ord(z) | t(z) | c(z)
a 26 0 3 olt 13 0 3
a? 13 0 3 ald 26 0 3
ol 26 0 3 alb 13 0 3
at 13 0 3 al? 26 0 3
a® 26 0 3 al8 13 0 3
af 13 0 3 al? 26 0 3
o’ 26 0 3 a?20 13 0 3
x ord(z) | t(z) | c(z) x ord(z) | t(z) | c(z)
b 13 0 3 a2l 26 0 3
a? 26 0 3 a?? 13 0 3
al0 13 0 3 a?3 26 0 3
all 26 0 3 a2t 13 0 3
al? 13 0 3 a?? 26 0 3
al3 2 0 1 a6 =1 1 0 1
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The next theorem provides the characterization of vertices of the graph in

terms of primitive elements in F;.

Theorem 2.0.23. Let ~ be a primitive element of F;. Then
I {aeF;:tla) =0} ={y" :1<i<g—1andv,(i) > vy(q—1)};

2. For 1 <k <wvy(q—1), we have

{a€F;:t(a) =k} ={y":1<i<q—1andv,(i) = vp(q—1) — k}.

Proof. Let ¢ — 1 =p"p, where ged(p, p) = 1.

1. Let a € F} with ¢(a) = 0. Then a = ' for some 1 < i < ¢ — 1, and there is

! > 1 such that
a=¢'(@) = ¢"(a) = o

Then we have ! = 1 and so (/)P ' = 1. Therefore p7p|i(p' —1). Since

gcd(pT, p) = 1, p7|i. Hence v, (i) > 7 =v,(g —1).

Conversely, consider o' € F;, where 1 < i < g —1 and v,(i) > v,(¢ — 1) = 7.
We get p7|i. Choose [ = ord,p. Then p' = 1 (mod p); that is, p|(p' — 1). Therefore
pTpli(pt — 1). Thus (v/)*'~1 = 1. Now we have 4*' = ~7. It follows that ¢g'(v") = ¢°(~%).

By the definition of the length of tail, t(y*) = 0.

2. Letk € Nbesuch that 1 < k < v,(¢ —1). Let a € F, with t(a) = k. Then

a =" for some 1 < i < ¢ — 1 and there exists [ > 0 such that

g"(a) = ¢"*(a) and ¢* ' (a) # ¢" ().

Then we have

k—141

# ()P
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Consequently, we get

k—1

()PP =1and ()PP £ L
Then (g — 1)ip*(p' — 1) and (¢ — 1)ipF—1(p! — 1).

We claim that p7ip*—1). To prove claim, write i = p"w, where gcd(p, w) = 1.

Suppose that p7|ip*—1). Then p”|p wpF—1.

Since ged(p,w) = 1, p"|p"p*~'. From
p”plp"wp®(p' —1) and ged(p, p) = 1, we have p|w(p' —1). Therefore p™p|p"wp"~ (p —1);

that is, (¢ — 1)|ip*~!(p' — 1) which is a contradiction. Note that p7|ip*.
By claim, we get v,(p”) = v,(ip*). Now we obtain 7 = v, (i) + k and so
vp(i) =17 —k=vp(¢—1) — k.

Conversely, consider v € F; where 1 <i < ¢ —1 and v,(i) = vy(¢ — 1) — k. Then we
have
vp(ip*) = vp(q — 1) = wp(p"p).

Therefore p7|ip* but pTiph=J for all 1 < j < k. By the first claim, there exists [ > 1
such that p|(p' —1). Then (¢—1)}ip*(p' —1) and (¢—1)ip* 7 (p' —1) forall 1 < j < k. So
(v)P" @' =1 = 1 and (4/)P" @' =D £ 1 forall 1 < j < k. We then have ¢*(7%) = gFt! (%)
and ¢*~1(y%) # ¢~ (4%). Hence k is the smallest such that g*(1*) = ¢**!(y%). By

the definition of the tail length ¢(+%) = k. O
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Theorem 2.0.24. Let ¢ — 1 = p™p, where 7 € NU {0} and p € N with gcd(p, p) = 1.

1. The total number of elements in all cycles is p.

2. For each positive integer divisor d of p, G,—_.» contains % cycles of length

ordp.

3. Off each element in these cycles there hang reversed complete binary p—tree

of height T — 1 containing E=+ elements.

Proof. Let v be a primitive element over F;. Let x € F; and ¢ — 1 = p7p with

ged(p, p) = 1.

1. If z is in the cycle, we have ¢(z) = 0. By Theorem ?? (1), x = ' where
1 <i<qg—1andv,(i) > vy(g — 1) = 7. So z must be of the form = = 177", where

1 < j < p. Hence the total number of elements in all cycles is p.

2. Note that ord(y?") = % = p. From (1) we have

{(y:1<i<qg—1andv,(i) > vplg— 1)} =<7 >,

a cyclic group of order p. We know that if d|p, there are ¢(d) elements of order d.

Note that ord(y*" 4) = = d. Then, for all 1 < j < d and ged(j,d) = 1, then

_p
ged(p, %)

ord(y%p)j = m = d. Therefore, the elements of order d are given by ~7? @ for

1 < j < dand ged(j,d) = 1. Since ord(17?" %) = p°d, by Theorem 2?2, ¢(y/P 4) =

ordgp. Hence for all d|p, G,_.,» contains (jjc(li)p cycles of length ord,p.

3. Anelement x € F} with ¢(z) = 1, which P = 477" in cycle is one of those of
the form 477" "' where 1 < j < p — 1. In general, if 4 is an element with tail length ¢
(1 <t <), the element with tail length ¢ + 1 are

iti(g—1)

v » foro<ji<p-1
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Since the longest tail length is 7, we have the reversed complete binary p—tree of

height 7 — 1 containing 1 +p+p> +...+p" ! = 7%_11 elements. O

Example 2.0.25. The graph of g(x) = 23 over F},,. We have 108 = 334 with p = 4.
Moreover, it is easily seen from Figure 2 that the total number of elements in all

cycles is p = 4. The table shows the number of cycles of length ord,3 for each d|p.

d | o(d) | c=ordy3 | cycle

1 1 1 1
2 1 1 1
4 2 2 1

From Figure 2, off each element in the cycles there hang reversed complete 3-tree

of height 2 containing =L =13 elements as in the following figure.
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Chapter 111

SOME STATISTICAL RESULTS

3.1 Averages of some quantities

In this section, we consider some statistics about tail and cycle lengths for the

iteration of the map x — P over F;.

Definition 3.1.1. With respect to the iteration of = — 2, we define

* T(C(q) := total number of cycles;

* To(q) := total number of elements in all cycles, i.e., the number of a € F;, with

* AC(q) := average length of a cycle;
* C(q) := average value of c(a) for all a € F};

* T(q) := average value of t(a) for all a € F;,.

Then we have the following results.

Theorem 3.1.2. Let q — 1 = p”p where gcd(p, p) = 1,7 > 0. We have
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Proof. 1. By Theorem ?? (2), for each positive divisor d of p, the graph G,_,.»

contains Oﬁfid cycles. Then

d
IYj(Q) ::;;: gié;;'
P

2. It follows directly from Theorem ?? (1) that

To(q) = p-

3. By Definition ?? and (2), we have

Tola) _ _p
TC(q) TC(q)

AC(q) =

4. By Definition ??, we have

1

Clg) = -1 ().
ol

Note that for each positive divisor d of p, the corresponding subgraphs have the same
cycle lengths. Let d € N be such that d|p. Consider a subgraph corresponding to
d, by Theorem ?? (2), there are ordgp elements in each cycle. Each element in the
cycle has £ = L elements in the p—tree reversed graph and p — 1 elements of height 0.

Then there are ordgp + (p — l)gorddp elements in this subgraph. By Theorem ??

(1) there are subgraphs whose cycle length is ord;p. This implies that

mﬂ ap
1 o(d) B pr—1
C0 =13 ordyOrdar (0rdap + (0~ )T —Fordup)
— d)ord,
= pp "> e(d)ordap

dlp

= - Z (d)ordap

dlp
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5. By Theorem ??, we have ¢(a) = v,(d), for some d|(q — 1). Then

T(q) = —— = 1 Y @) = = 3w

q—1
acly dlg—1 dlpTp

722 dp vpdp

dlp 0<i<T

0<i<t
1 d /ptt -1
1)d7p( p—1 )
) - +1)p" - -1)
(p— 1)
(p—V(rp" +p7) = (p""' = 1)
(p—1)
pr—1
p—l)
—¥ pT_l
prp—1)

| I
ﬂ"_l @ﬂ‘

SN
|

=

3
%

I
S -
/N
=

\]

3.2 Asymptotic estimates of some quantities

In this section, we consider sums of average quantities over all primes ¢ < N

where N € N.

Definition 3.2.1. With respect to the iteration of map = — z? over F?, we define

o STo(N) = ZqSN TO(Q);
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* ST(N) =3 ,cn 21<acq tal@), Where ty(a) is a tail length of « over ;.

Next, we assume the extended Riemann hypothesis (ERH) and recall the following

lemma.

Lemma 3.2.2. ? Assume the ERH. Let k, [ be integers with gcd(k,l) = 1. Then

S = wb) (QIngx) (1+ o(b;x)) L0 (log + 2logl)).
<x
p=k (mod 1)

pzsprlme

We now consider the behaviour of STy(N) and ST(N) as follows.

Theorem 3.2.3. Assume the ERH. Then

1 N2

TR 2(p2 —1)log N~

Proof. We know that STy(N) = 3y To(q). From Theorem ??, Ty(q) = 42

pUp(Q*l) *

‘We then have

STo(N) =) To(q
q<N
q—1
T’ q<Z pUp 9 1)

-y ¥

0<i<log, N ¢<N
p'll(g—1)

Claim 1. For each i € Ny, if p||(¢ — 1) ,then there exists » € N such that » < p and
q—1=rp" (mod p*t).

Proof of Claim 1. Let i be a non-negative integer.

Assume that p’||(¢—1). Then p’|(¢—1) and p"*'(q—1). So there exists [ € N such that
q — 1 = p'l. Since p'*1(q — 1), there are k,r € Ny such that 1 <r < p and [ = pk + r.
Then

g—1= pi(pk +7r)= Pk 4 rpt.



25
Hence we have ¢ — 1 = rp’ (mod pi*!) as required.

Now we have

STHN) = Y 3 ¢—1

pi
0<i<log, N Cg<N
g=rp’+1 (mod pit?)

= > 5 X @

0<i<log, N ~gSN
g=rp‘+1 (mod pit?t)

- (X - X )

OgiglogpN - gSN v - g<N ‘
g=rp'+1 (mod p'*t) g=rp‘+1 (mod p*tt)

Note that, by Lemma ??,

Z ! _cp(piﬂ) (2110VgQN> (1 3 O(@)) + O(N3%(log N + 2log(p'™1)))
a=rpi 1 S(rgod piH)
2
:cp(pl”l) (21](:[g N) (1 7 O<10;N>) +O(N*?(log N)

and by Definition 2?2,

"N 1=n(N,pt rp’ +1).
q<N
g=rp'+1 (mod pit!)

We have, by using Lemma ??, that

W(N,pi+1’rpi +1) :(p(pliﬂ) <10]gVN + O<(10N )2>) 4 O(\/]V(logN n 210g(pi+1)))

gnN
1 N N
:gp(piﬂ) <logN + O((logN

)2>) + O(VNlogN).



We have ¢(p't!) = pi(p — 1). Then

+0

ST(N) = 3, ;[go(pi"‘l)(?ljo\z]\f(l <10$N))+O(N3/2(10gN))

- ((,0( 1+1) (10]ng + 0(<10;VN>2)) +O(VNlog )|

2
- lz ;[p(pl 1)(21]§gN<1+O(10g1N)>+0(N3/210gN)]

0<i<log N
2
- 3 5 (ategw (4 0ligw))
2
:}ilm]\ng(lJrO(lo;N)) Z plm

0<i<log, N

Claim 2. $c;cioq, x 7 = 57 (1 0(F))-
Proof of Claim 2. We have

|~

24 A%
Ogiglogp N p

9 L_(l‘ )

1
p?

Hence, by Claim 2, we have

STy(N) :pimliv;zv( <logN>> +1< o(x))

“r =170y (1 Oigw)) (1+0())

Consider the following limit, we have

1 1 1 1
. SToN . p—1p+1 2log <1+O<logN)>(1+O(W))
lim — = lim 2
N—o0 N N—o0 1 N
(p—1)(p+1) 2log N 2(p?—1) log N
=1.
Therefore

2
STo(N) ~ g

26
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as desired. ]

Now, we turn to ST(N).

Theorem 3.2.4. Assume the ERH. Then

p+2 N?
20— 1)%(p+1) logN’

ST(N) ~

Proof. By Theorem ?? (5), we have

-3 Y 4

g<N 1<a<q
1 pvrla—1)
=Y - Ylpla-1) - —= + ]
<N p p
qp_”p(q_l)
=X pla ) -3 A+ 3 T
4<N ot g<n P
1 pvrla—1)
=D wlgm D =D
q<N qSNp q<N p
s
= anpa=L =3 =D e -+ > 1
q<N q<N q<N q<N
1 q—1
"1 2 D
We have
g—1 1 1 N?
STo(N) ~ .
p—1 Z et D p—1 o(N) 2(p—1)2(p+1)logN
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Consider

-1 =) ( > q)

q<N 1<i<log, N g<N
g=1 (mod p?)

= Y (G (regw (1 +0(iogw)

lgiglogp N

+ O(N*?(log N + 210gpi)>

= 2 (pil(;— 1) (21gg2N> (1 * O(lo;N))

1<i<log, N
LN gy oy L
p—12logN log N/7 o v V'

Claim 1.

1§i§10gp N p

Proof of Claim 1. We have

1
I
= _l
lgiglogpr ¥ p
N—1
—_N_
p—1
P
mPafpag
Tp—1 N

Then, by Claim 1, we have

2
> avplg—1) = pi1210NgN<1 +o(b;N))pfl(1 +0(%)).

g<N



29

Consider
Sua-n=Y (X 1)
g<N 1<i<log, N g<N
g=1 (mod p*)
— Z W(N,pi,l)

1§i§logp N

> (M(Ap +O(VN(log N + 210gpi))) by Lemma ??
1§i§logpN So(p )

—i(N) Y — L O(VN(log N?)).

i—1 _
1§z’§10gp N p (p 1)

Thus, by Claim 1 and 1i(N) = %(1 + O(W)), we have

> e =1 = g 5 (4 0 (i) ;=1 21 (14 0(5)),

q<N

By [1.p-28-29], 3 oy a ~ spgw and by [22], 30,y 1 ~ o2y

Now, we get

ST(N) =3 qupla =) =~ S a= Y vpla =D+ 5= -1

g<N g<N g<N
1 1 N?
p—12(p2—1)logN

) 2
(0 ) (o) -

i (e GE 00 (7)) + g

N 1 N2
2(p—1)2(p+1)logN"

Thus,
1 1 1 N2
. ST(N)  izlogN (1+O< ))%<1+Oﬁ>_zﬁ210gN
Jim ———— = lim = prz N
2(p—1)%(p+1) logN 2(p—1)%(p+1) logN
1 1 1
- lim _ﬁ<1 + O(log(N)) logN( (1 + O(W))) T p—Tlog
N—o00 pt2 N2
2(p—1)%(p+1) logN
1 N2
: 2(p—1)*(p+1) log N
R —"

2(p—1)2(p+1) logN
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Therefore,
p+2 N?
20— 1)2%(p+1) logN’

ST(N) ~

Next, we consider sums of average quantities over all primes ¢ that ¢> < N.

Definition 3.2.5. With respect to the iteration of the map = — =P over F,, we define

* STo(N) = X<y To(q?), where Ty(¢?) is the number of elements in cycles

over IF;Q.

We first consider the graph obtained by iteration of x — 2P, where p = 2.

Theorem 3.2.6. Assume the ERH. Then

1 N3/2

Proof. Write ¢*> —1 =27 - p where 7 = v2(¢?> — 1) and gcd(2, p) = 1. We have, using

Theorem ?? (2), that

2
von Mamd
TO(q ) b= Qvg(qul)'
Therefore
2 2
_ -1 - —1
STO(N)_ 2v2(q271) - Z 2v2(q271)
q?<N g<N1/?

_ ¢*—1

= > >

0<i<log, N ¢<N?/2
2*(¢*-1)

Claim 1. For each i € Nq. If 2¢[|(¢? — 1), then ¢ — 1 = 2’ (mod 2/*1).

Proof of Claim 1. Let : be a non-negative integer.
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Assume that 2¢||(¢? — 1). Then 2¢|(¢® — 1) and 2/ (¢% — 1). So there exists I € N such

that ¢ — 1 = 2¢(2( + 1) which gives
@ —1=2"149

Hence ¢> — 1 = 2 (mod 2i*1). This completes the proof of Claim 1.

By Claim 1, we have

¢ -1
STo(N) = Z Z 9

0<i<log, N g<N'?
¢*>=2°+1 (mod 2¢t1)

- Y 5 X @y

0<i<log, N g<N'/2
¢*°=2"+1 (mod 2i+1)

- Y X - X 1) 62

0<i<log, N g<N1/2 g<N1/2
¢*’=2'+1 (mod 2¢+1) ¢*>=2°+1 (mod 2¢+1)

Next, we will find the estimates the sum Eq. (??).

We first consider the congruence ¢ = 2¢ + 1 (mod 2:!) for all nonnegative integers
1.

Case i = 0. The congruence becomes ¢?> = 2 (mod 2). The only solution for this case
is ¢ = 2.

Case i = 1. The congruence ¢ = 3 (mod 4) has no solution.

Case i = 2. The congruence ¢ = 5 (mod 8) has no solution.

Case i > 3. Since i > 3,we have 2! = 0(mod 8). Then 2! + 1 = 1(mod 8). So ¢ =

20 +1 (mod 2°™!) has 4 solutions. We know that
(271412 =2""24+2"4+1=2"+1 (mod 2),
and we set ¢; = 27! 4 1(mod 2'*1). Therefore, the other solutions are

—q=-2""1—1=2"142" — 1 (mod 2i*1),
@ +2'=2"1 42"+ 1 (mod 2)

and — (q +2)) = —2""' =2 —1=2""1 — 1 (mod 2°").
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Consequenetly, if i > 3, we get

> ¢ = > ¢ + > ¢

qSN”Z q§N1/2 q§N1/2
¢?=21+1 (mod 2i+1) q=2/"141 (mod 2¢+1) q=2¢"1—1 (mod 2+1)
2 2
+ > ¢+ > 1
q§N1/2 q§N1/2
q=21"142i11 (mod 2i+1) q=21"142i-1 (mod 2i+1)

Claim 2. Let f be a real valued function. Then

> /log + flz /f t)dt + O(1).

q<N
g=k (mod 1)
ged(k,l)=1

Proof of Claim 2. Let

1; nis prime, n = k (mod 1), ged(k, 1) =
a(n) =

0 ; otherwise.

So,
A@)=>am)y= Y 1=n(x1k)
n<x n<x
n=k (mod [)
ged(k,l)=1

Then, by Stieljes integral, we have

NULALQNG / £(t) dA(t

q<N 1<n<$
g=k (mod 1)
ged(k,l)=1
/ ft) dA(t / f(t) dA(t
_/ £(#) dn(t, 1 k) + O(1).
2
By Lemma ??,
li(z) 1/2
m(x, 1 k) = 0 + O(z/*(logz + 21og(1)))

lz(w)

=0 T
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where €(z) := O(z'/?(log = 4+ 21og(1))). Then

0= [ 1wa(%) + ) + o)

q<N
g=k (mod [)
ged(k,l)=1
—/gﬁf(t)dli(t)+/$f(t)de(t)+0(1)
2 o(l) 2 .
Note that
| foyac = rrecol - / 7)) dt + 0(1)
and li(z) = [, 10gtdtJrO( ). Hence,
log / F(0)e(t) di + 0(1).
q<:E
g=k (mod 1)
ged(k,l)=1

Then we have Claim 2. By putting f(a) = o for all « > 2 and Claim 2, for all
positive integers k, ! with gcd(k,1) = 1, we have

T D T
Z (]2:()0:(11)/2 1Otgwalt—1—31326(:(:)—/2 2te(t) dt + O(1).

q<z
q=k (mod 1)

By [??, p.28], we have

/ log(t) logx O((logx)Q)'

lhlS lmphes that,
/ / z? du
log 23 log u

_/IB du  [* du
)y logu J, logu

3 73

= oz * O fog )

3 3

= tog * O (iog )

+O(1)
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So, we obtain the following approximation.

1 3 3
> = g liogs O (ogarp) | + o0 A loga + 210g1))
q<zT
g=k (mod 1)

_ /x 2t0(t*/2(logt + 21og(l))) dt + O(1)
2
3

1 T 3
(1) [log a3

1

(

X
(loga3)
xS

+O< 2)} + 220(z'*(log = + 21og(1))) + O(1)

3

+0( ;)| +220(z"(log = + 210g(1)).

(1) {log x3 (log x3)

By letting « = N'/2, 1 = 2+! (; > 3) and ged(k,2) = 1, we have

9 1 N3/2 N3/2 ” 12 "
2 7= G g O iogwmp) | VO dog N2 4210g(2+1)
q>

g=k (mod 2:*1)
Since the sum does not depend on % , we have

> # 2 TSP | g%

q<N'/? q<N/2
¢®’=2°+1 (mod 2¢+1) g=k (mod 2¢+1)

3/2 3/2
— 4[90(;“) [1027]\73/2 T O((IOQVN?)/Q)Q)}

+ NO(NY4(log NV/? 4 2 1og(2i+1)))} .

Consider the estimates of the second term in the Eq. (??)

> 1=4 > 1

» qSNl/z » q§N1/2‘
¢*=2"+1 (mod 2i+1) g=k (mod 2¢+1)

— 47T<N1/2, 2i+17 k’)

i(N1/2 A
:4|:ZS0((];C+1)) +O(N1/4(10gN1/2+210g(2z+1)))}

1/2 1/2
- 4[()0(21%1) <IO]gVN1/2 t O<(10;VN1/2)2)>

+ O(NV4(log NV? + 2 1og(2i+1)))] .
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We have p(2¢+1) = 2¢, Then, by Eq. (??), we have

STH(N) = Y %( > ¢* - > 1)

0<i<log, N g<N1/2 g<N1/2
¢*=2"+1 (mod 2¢+1) ¢?=2'+1 (mod 2¢+1)
1 9 1
SCESD YRE T SRS B (PR DRI SRS DIN)
1<i<log, N g<N1/? 1<i<log, N q<N1/2
¢°=2'+1 (mod 2'+1) ¢°=2'+1 (mod 2°*1)
4 2
= > 5 DD DR I
3<i<log, N g<N1/2 g<N1/2
g=k (mod 2¢+1) g=k (mod 2¢+1)
4 1 N3/2 1
= 2 2i [@(2”1) (log N3/2 (1 J O(log N3/2)>)
3<i<log, N

+ NO(NY4(log N'/2 + 21og(2'+1)))

1/2 1/2
- (@(21”1) (1o]gVNl/2 7 O((—logNN—wy)))

+O(NY4(log NV2 4+ zlog(zi“)))ﬂ +3

3/2
= Y lioern (1 O(eg )] +3

3<i<log, N

3/2
I CRT] s i) B

3<i<log, N
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Claim 3. 510, n 7 = 4 (1+0(%))-

Proof of Claim 3. We have

3<i<log, N

- 5(1+0(3))
This completes the proof of Claim 3.
Hence
3/2
5100 ~4(55(1+0(5))) (g o (1+ 0 g 7))
3/2
:1181](\)[W<1 +0(5)) (1 + O(logj\ﬁ*/?)'
Since
tim S i (140(5)) (1+0( ) =
og N
we get

When p is an odd prime, we have the following result.

Theorem 3.2.7. Assume the ERH. Then

4p2 N3/2
STo(N) ~ 3(p—12(p+1)logN"

Proof. Write ¢*> — 1 = p™ - p where 7 = v,(¢*> — 1) and ged(p,p) = 1. We, using

Theorem ?? (2), have that
2
oy ¢ —1
TO(q ) - pvp(q2—1)'
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Then, by Definition 3.2.9, we have

STo(N) = 3 To(e?)

¢><N

_y oL

_ i}
q2§N pv (‘1 )

_ ¢ —1

o ;/ p”p(q2_1)
q_ 1/2

-~y oy !
0<i<log, N ¢<N'/2 p

p||(¢*—1)

Claim 1. For each i € Ny, if p’[|(¢* — 1), then there exists 0 < r < p such that ¢ — 1 =
rp® (mod pitt).

Proof of Claim 1. Let i be a non-negative integer and assume that p‘||(¢> — 1). Then
p'|(¢> — 1) and pit'(¢®> — 1). So there exist € Nand 0 < » < p such that ¢*> — 1 =

p'(pl +7) = p'*til + p'r. Then
¢® = 1=rp* (mod p'™)

as desired.

Hence, by Claim 1, we have

sty = 3 GKORN Eiiid

P
0<i<log, N g<NV?
g®>—1=rp* (mod pit!)

1
= E = E (qz —1)
0<i<log, N p g<N1/?
g’=rp'+1 (mod pit?)

1 2
= > Z;( > ¢ - S ). (322
Ogiglogp N g<N1/? g<N/2
¢’>=rp'+1 (mod pit?) ¢*=rp'+1 (mod p*t1)

Next, consider the congruence ¢ = rp' + 1 (mod p**!) for all i > 0.
If i = 0, we will consider the solution of congruence ¢?> = » + 1 (mod p). We have

(%) = 1, where <5> is the Legendre’s symbol, if and only if ¢*> = r + 1 (mod p)
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has 2 solutions. Then

o £ =2 > .

q<N'/? q<N'/?
g?=r+1 (mod p) g=(r+1)1/> (mod p)
r+l )1

P

Now we may assume that ; > 1.

Case r is odd, we have

e 2 — N2 L . . .
(p 5 Tpl — 1) = (p 5 r) p?— (p—r)p+1=rp'+1 (modp”l).

So, g = 25%pt — 1 (mod p™!) or ¢ = — 5 p! + 1 = Ef7pi 4+ 1 (mod p'+).

Consequently, we get

Z 7+ Z 2+ Z el

qSNl/z q<N1/2 q§N1/2

¢*=rp'+1 (mod pit?) q=2"p'—1 (mod p**1) q=2£pi+1 (mod pit?)

Case r is even, we have

r 2 = i i i+1
(51? —i—l) :(§>p +rp'+1=rp'+1 (modp'™).

SO, q= % P+ 1 (modpz‘+1) orq= _%pz‘ == (p— %)pz -1 (mOdpi'H) )

This implies that

2 2 2
2. = ) I 2 ¢
qSNl/Z qSNl/Q qSNl/Z

¢*=rp’+1 (mod p*t?) q=%p'+1 (mod pi*t) a=(p—%)p’'—1 (mod p'*')

By the same proof as in Theorem ??, for all positive k£ with gcd(k, p) = 1, we have

1 N3/2 N3/2
2, = p(p'th) <10gN3/2 +O((logN3/2)2>>

qSN1/2
g=k (mod p*tt)

+ NO(NY*(log N'/? 4 21og(p'th))).

Since the estimate of the sum does not depend on %, we have

> =2 Y ¢ (i20)

,q§N1/2 v q§N1/2v
g*=rp'+1 (mod pitt) g=k (mod pit?)



Similarly, for all i > 0, we have

2.

q§N1/2
¢*>=rp'+1 (mod pit?)

1=2
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oo

g<N'/2
q=k (mod pi+1)

= 2n(NY2, k)

We have o(p'™!) = p'(p —

M= Y

0<i<log, N

S/ F

0<i<log, N p

D

0<:<log N

P

STo(

= =

1
0<i<log, N

_QLP(

o

p'L

‘so(l“{

N1/2

N1/2

1
i+1) (10g N1/2 +

)

+ O(NYA(log N'/2 + 21og(p' 1)) .

1). Then, by Eq. (??), we have

C, s

2.

qSNl/z
g*’=rp'+1 (mod pit?)

>
§N1/2
g=k (mod pit1)

1)
q<N?1/?

g’=rp'+1 (mod pit?)

¢ =2

q§N1/2
g=k (mod pit1!)

2 @

<N1/2
q=k (mod p'th) q=

3/2
= (

+ NO(NY4(log N'/2 + 21og(p'*1)))

N1/2

- <90(

tﬂ)( N1/2

log N'1/2 O((log]\ﬂ/Q)?))

+O(NYi(log N'/2 + 21og(p*1)) )|

N3/2

D

lgiglogp N

N3/2

2
(p _ 1)p2i [(10g N3/2

(1+0(gwer)]

O - 1) [<10g N3/2

= (10(3))

. 1 _
Claim 2. 3o ;cioq v 777 =

(1+0(gmm))] >

Ogiglogp N



40

Proof of Claim 2. We have

Ogiglogp N

Now, we ready to find the estimate of STy (V).
Consider

2

3/2
STo(N) :(pz 1) KlogN?’/2 (1 it O(log}\f?)/?))} p2p— 1 (1 + O(%))
2 3/2
T - ?])D(p £1) logN3/2 (1 N O(log?\ﬂﬂ)) (1 + O(%))

2 3/2
~3(2 —Zi];((p ) l](;rgN (1 O<log;\73/2)) (1+ O(%))

Thus,

lim SToN

S — Jm (1+0(5))(1+0 (W)

L,

which gives
4p2 N3/2

SO~ 302 1~ 1) log &

as required. Il
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