

การระบุประเภทขององคประกอบหลักในสนามบินจากภาพรับรูระยะไกลโดยเครือขายที่มี
ประสิทธิภาพ

นางสาวพิมพิศา เจริญจิตตั้ง

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา
ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร
คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2563

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

CLASSIFICATION OF MAIN COMPONENTS IN AIRPORTS FROM REMOTE

SENSING IMAGES BY EFFICIENT NETWORK

Miss Pimpisa Charoenchittang

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2020

Copyright of Chulalongkorn University

Thesis Title CLASSIFICATION OF MAIN COMPONENTS IN AIR-

PORTS FROM REMOTE SENSING IMAGES BY EFFI-

CIENT NETWORK

By Miss Pimpisa Charoenchittang

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Associate Professor Nagul Cooharojananone, Ph.D.

Thesis Co-advisor Associate Professor Petarpa Boonserm, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

. Chairman

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

. Thesis Advisor

(Associate Professor Nagul Cooharojananone, Ph.D.)

. Thesis Co-advisor

(Associate Professor Petarpa Boonserm, Ph.D.)

. Examiner

(Thap Panitanarak, Ph.D.)

. External Examiner

(Suriya Natsupakpong, Ph.D.)

iv

พิมพิศา เจริญจิตตั้ง : การระบุประเภทขององคประกอบหลักในสนามบินจากภาพรับ
รู ระยะไกลโดยเครือขายที่มีประสิทธิภาพ. (CLASSIFICATION OF MAIN COMPO-

NENTS IN AIRPORTS FROM REMOTE SENSING IMAGES BY EFFICIENT NET-

WORK) อ.ที่ปรึกษาวิทยานิพนธหลัก : รศ.ดร.นกุล คูหะโรจนานนท, อ.ที่ปรึกษาวิทยานิพนธ
รวม : รศ.ดร. เพชรอาภา บุญเสริม, ?? หนา.

ในวิทยานิพนธฉบับนี้ ไดทำการระบุประเภทขององคประกอบหลักในสนามบิน จากภาพ
รับรูระยะไกล ซึ่งเปนชุดขอมูลที่มีความนาสนใจ เนื่องจากองคประกอบประเภทเดียวกันใน
แตละสนามบิน อาจมีความแตกตางกันทั้งในดานของรูปทรง ขนาด และสี สถาปตยกรรมเครือ
ขายที่มีประสิทธิภาพ (EfficientNet) เปนสถาปตยกรรมของการเรียนรูลึกที่ใชในงานวิจัยนี้
เนื่องจากมีการใชจำนวนพารามิเตอรนอย และใชเวลาในการคำนวณที่รวดเร็วกวา เมื่อเทียบกับ
สถาปตยกรรมอื่น ๆ ที่มีความแมนยำใกลเคียงกัน ในการทดลองจึงใช EfficientNet ในรุน B0

B1 B2 B3 และ B4 เพื่อระบุประเภทขององคประกอบหลักในสนามบินทั้งหมด 4 ประเภท
ไดแก อาคารผูโดยสาร หอบังคับการบิน ลานบิน และอาคารจอดรถ โดยการเก็บภาพสี RGB

ที่มีความละเอียด 560× 560 พิกเซล จากสนามบินทั้งหมด 322 แหงในทวีปเอเชีย และแบงชุด
ขอมูลสำหรับชุดการเรียนรู 70 เปอรเซ็นต ชุดการตรวจสอบ 10 เปอรเซ็นต และชุดการทดสอบ
20 เปอรเซ็นต ผลการทดลองสรุปไดวา EfficientNet รุน B4 เปนสถาปตยกรรมที่เหมาะสมกับ
งานนี้ที่สุด โดยมีความแมนยำสูงถึง 90 เปอรเซ็นต

ภาควิชาคณิตศาสตรและ. ลายมือชื่อนิสิต .

. .วิทยาการคอมพิวเตอร. ลายมือชื่อ อ.ที่ปรึกษาหลัก

สาขาวิชา .คณิตศาสตรประยุกต. ลายมือชื่อ อ.ที่ปรึกษารวม

. .และวิทยาการคณนา
ปการศึกษา2563. .

v

6172023023 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS : AIRPORT COMPONENTS / CLASSIFICATION / EFFICIENTNET / RE-

MOTE SENSING IMAGES

PIMPISA CHAROENCHITTANG : CLASSIFICATION OF MAIN COMPONENTS IN

AIRPORTS FROM REMOTE SENSING IMAGES BY EFFICIENT NETWORK. AD-

VISOR : ASSOC. PROF. NAGUL COOHAROJANANONE, Ph.D., COADVISOR : AS-

SOC. PROF. PETARPA BOONSERM, Ph.D., ?? pp.

In this thesis, we classify the type of main components in airports from the remote

sensing images. This datasets is considered as an interesting information since the same

type of component may have different shape, size, and color. EfficientNet architecture

is the deep learning architecture to use in this research due to the small number of

parameters and computational time compared to the other architectures with similar

accuracy. In our experiment, we apply the EfficientNet in versions B0, B1, B2, B3, and

B4 to classify four types of components in the airport; the passenger terminal, the radio

tower, the runway, and the car park. We collect the RGB format datasets of 322 airports

in Asia with a resolution of 560 × 560 pixels. Then, the datasets is partitioned into

70% for the training set, 10% for the validation set, and 20% for the test set. From the

experimental results, we conclude that EfficientNet-B4 is a suitable architecture for our

datasets, which provides a high accuracy up to 90%.

Department :Mathematicsand. Student’s Signature .

.ComputerScience. Advisor’s Signature .

Field of Study :Applied.Mathematics.and . Co-advisor’s Signature

.ComputationalScience. . . .

Academic Year :2020. .

vi

ACKNOWLEDGEMENTS

It is difficult to express my gratitude to my thesis advisor, Associate Professor Dr.

Nagul Cooharojananone and my co-advisor, Associate Professor Dr. Petarpa Boonserm

for their enthusiasm, inspiration and great efforts to explain things clearly and simply.

Throughout my thesis writing period comments, they provide sound advice, lots of good

ideas and kindness. This thesis would not have been completed without them.

I further would like to thank all of my dissertation committees: Assistant Professor

Dr. Krung Sinapiromsaran, Dr. Thap Panitanarak, and Dr. Suriya Natsupakpong, for

their insightful comments and suggestions which motivated me to extend my research

from various perspectives.

I wish to thank all of my teachers for sharing their knowledge and would like to

thank all other lecturers and staff of the Department of Mathematics and Computer

Science, Faculty of Science, Chulalongkorn University for their patience, encouragement

and impressive teaching.

I am greatly indebted to my beloved parents, my grandmother, my brother and my

friends for their love, support, understanding and encouragement.

Finally, I wish to thank Science Achievement Scholarship of Thailand (SAST) that

supports a scholarship for my study.

Pimpisa Charoenchittang

September 2, 2021

CONTENTS

viii

LIST OF TABLES

ix

LIST OF FIGURES

CHAPTER I

INTRODUCTION

Deep learning was discovered and favour to solve complicated problems for decades.

One problem that is important in digital age and required a lot of labour was image classifi-

cation. Convolutional neural networks, which is one type of deep learning, was commonly

used to solve image classification problems [?]. The airport components datasets were

challenging for image classification and useful for urban planning. As aforementioned

information, this is the main motivation of this thesis. Also, the objective, scopes and

assumptions were described in this chapter.

1.1 Motivation

In recently year, there are studied about aircraft recognition [?] and also detection

airport [?] and building in airport [?]. However, the images of components in airports

classification from remote sensing images has hardly been studied yet. Mostly of building

classification research were used 3D image datasets, which the data collection process

is complicated, such as IFSAR and LIDAR images [?], high resolution stereo satellite

images [?], and SAR images [?]. Meanwhile the remote sensing image datasets were

easily to collect and images of main components in airports are an interesting datasets

in term of applying with other types of components datasets. However, the same type of

component may have a different shape or vice versa, the same shape of component may

be classified as a different component type. The challenge of this problem is to classify

the same types of components in each airport with the shape, size, and color differences.

For instance, two passenger terminals in Figure ?? are expressed in the form of both

triangular shape and semicircular shape.

Image classification is a process in computer vision that attempts to classify an

image by its visual content. Recently, the number of research in this field of work has

rapidly increased. Most of the early studies apply machine learning (ML) to solve this

2

[The triangular shape] [The semicircular

shape]

Figure 1.1: Two passenger terminal examples
with different shapes [?]

problem. However, the ML system needs to manually extract features from the input data

before training a model to learn; therefore, an automatic extraction feature is required.

Deep learning (DL) is a modern learning technique which successfully classify im-

ages. The great number of DL approaches were proposed. Convolutional neural networks

(CNNs) is considered as a high performance DL model in computer vision. The deep

structure of CNNs encourages the model to capture and generalize filtering mechanisms

by performing convolutions in the image domain, leading to its high effective features.

The form of CNNs can appear in several architectures, such as Inception-v1 [?], Inception-

v3 [?], ResNet-50 [?], Xception [?], Inception-v4, Inception-ResNets [?], ResNeXt-50 [?]

and EfficientNet [?].

The EfficientNet concept was introduced by Tan and Le [?] in 2019. Comparing

3

with the other architectures, EfficientNet provides higher performance for classification

problem despite of its small number of parameters and computational time. With these

advantages, the EfficientNet architecture is selected in this thesis.

In this thesis, we manually collect datasets of international airport components

from 45 countries in Asia. Our collected images contain four types of main components

in each airport including the passenger terminal, the radio tower, the runway, and the car

park. Next, we classify those types of components by employing the five versions of this

EfficientNet architecture, i.e., B0, B1, B2, B3, and B4. Finally, we validate and analyze

all five versions of EfficientNet architecture performance.

1.2 Objective

To apply five versions of EfficientNet, including B0, B1, B2, B3, and B4 for classify

four types of main components in airports from remote sensing images; the passenger

terminal, the radio tower, the runway, and the car park, and compare their performance.

1.3 Scopes and Assumptions

1. The datasets are the remote sensing images of 322 international airports from 45

countries in Asia.

2. The whole components must be clearly visible from remote sensing images and

contain the surrounding area.

3. The resolution of the image is 560× 560 pixels.

4. There are four main types of components in the airport including the passenger

terminal, the radio tower, the runway, and the car park.

1.4 Thesis Overview

The remainder of this thesis consists of the following chapters. Chapter II explains

4

the necessary related background knowledge of this thesis. Chapter III describes the algo-

rithms of EfficientNet architecture and the experimental setup. Chapter IV demonstrates

results and discussions. The final chapter consists of the conclusions and the future work.

CHAPTER II

BACKGROUND KNOWLEDGE

The purpose of this chapter is to explain the necessary background knowledge

containing the basic of digital image processing, the remote sensing image, the image

classification problem, the convolutional neural networks, and the MobileNet architecture.

2.1 Basic of Digital Image Processing

Digital image processing is the technique using the computer process for dealing

with digital images such as acquisition, enhancement, restoration, etc. [?]. Moreover, it

also applies for object detection, object recognition, including image classification.

The image in computer vision is called a digital image. Digital image is a two

dimensional (width × height) image which is partitioned the whole image into a lot of

small units called pixels. It can be defined by function f(x, y), where x and y are discrete

coordinates, and the value of f(x, y) is called gray level or intensity for each pixel.

Figure 2.1: The two dimension image of a digital image

6

From Figure ??, the matrix contains M rows and N columns, where M and N are

not necessarily equal, starting with (0, 0) from the top left of an image. The matrix of

the image is

FM,N =



f0,0 f1,2 · · · f1,N−1

f2,1 f2,2 · · · f2,N−1

...
...

fM−1,1 fM−1,2 · · · fM−1,N−1


.

Figure 2.2: The intensity of 8× 9 pixels

For example, Figure ?? displays the intensity of each pixel in 8 × 9 image and

transformation into the matrix of image as

F8,9 =



f0,0 f1,2 · · · f1,8

f2,1 f2,2 · · · f2,8
...

...

f7,1 f7,2 · · · f7,8


=



0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 2 0

0 1 0 0 0 1 2 2 0

0 1 0 0 0 2 0 2 0

0 1 0 0 2 1 0 2 0

0 1 1 2 1 1 3 2 3

0 0 2 0 0 3 0 2 3

0 2 2 2 2 2 2 2 3



.

7

2.1.1 Grayscale Image

A grayscale image has only colors that are shades of gray. The intensity can be

1–bit, 2–bit, 4–bit, or 8–bit, etc., as shown in Figure ??. In general, every pixel consists

of an 8–bit integer. The range value of intensity is 0–255.

Figure 2.3: Color depth: bits and shades [?]

Figure ?? presents the example of the 2–bit grayscale image. The value of intensity

for each pixel is in the range of 0–3 as shown in Figure ?? and Figure ?? shows the

corresponding grayscale image.

8

[The intensity in each pixel] [The grayscale

image]

Figure 2.4: The example of the 2–bit grayscale image

9

Comparing the different number of bits in the same image, the results of higher

number of bit shown the better sharp and more details of the image as seen in Figure ??.

2.1.2 RGB Color Image

In the same number of bit, color image is more commonly used than grayscale

image because colors give more details and it is used to be an important feature in image

processing process. Each pixel of the color image consists of a 1× 3–matrix, representing

the three dimensions of color channels Red (R), Green (G), and Blue (B). For an 24–bit

color image, the intensity refers to the brightness of each color channel, with 0 and 255

being the darkest and the brightest version of the primary color, respectively.

10

Figure ?? displays the RGB channels of the color image. From the original image

in Figure ??, it can be separated into three channels. Color representation of the red,

green, and blue color channels are illustrated in Figures ??, ??, and ??, respectively. The

areas that have dominant tone of one color will give a high intensity of that color. For

example, in Figure ??, we can notice the high intensity of red color at the upper right of

the red channel image thanks to this area from the original image has a red tone.

11

2.1.3 Remote Sensing Images

Remote sensing images are representations of a part of the earth’s surface which are

normally collected from a satellite or an aircraft by the process of detecting and monitoring

the physical characteristics of the surface area. The following figures illustrate examples

of a remote sensing image, Figure ?? is a part of San Francisco and Figure ?? is the

Nanchang Changbei International Airport in China.

[A part of San Francisco]

[The Nanchang Changbei International airport]

Figure 2.7: The examples of remote sensing images [?]

12

2.2 Image Classification

Image classification is a process that tries to classify the type of an object in the

input image according to its visual content. Ordinarily, the input datasets in image

classification must appear only one type. For instance, an image classification process

may be designed to state whether an image contains a cat as shown in Figure ??.

Figure 2.8: The process of an image classification
source: Adapted from [?]

While it is trivial for humans to classify an image, robust image classification is still

a challenge problem in computer vision applications. However, training is a key to the

success of classification [?].

Traditionally, ML is used to solve the image classification problem. An important

process of ML is the feature extraction from an input image. The examples of notable

features are the dominant pixel, color histograms, textures, and shapes. However, for new

datasets the new key feature may be changed, we have to re-extract the new key feature

ourselves. Because the key feature in each datasets may be different.

Thus, we need a way to automatically extract the important feature. A break-

through in Deep Learning (DL) leading to the discovery of a Convolutional Neural Net-

works (CNNs) which is the automatically feature extraction.

13

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a form of feedforward neural networks.

The design of CNNs has shown in Figure ??. First, the convolutional and max-pooling

layers extract the feature from an input image. The next part performs non-linear trans-

formations. Finally, the fully connected layers classify images.

Figure 2.9: The process of Convolutional Neural Networks [?]

2.3.1 The Convolutional Layer

The convolutional layer (Conv layer) is the main concept of CNNs. A convolution

filter, or kernel, is applied to produce a feature map from the input image. The size of

the filter is depend on each architecture, typically 3× 3 or 5× 5 pixels.

14

[Input] [Filter/Kernel]

Figure 2.10: An example of the input image and the filter

Figure ?? shows an example of the input image and the 3 × 3 filter. The matrix

on the left is the input image and the matrix on the right is the convolution filter. To

perform the convolution operation, the filter will slide over the input image and perform

element-wise matrix multiplication. Then, the total sum will be placed in the feature

map, as demonstrate in Figure ??.

The activation function defines the output given input for the next layers. Then,

the output of the convolution layer is summed with a bias term and passed through

the activation function. Mostly Rectified Linear Unit (ReLU) is used because of efficient

computational and non-vanishing gradient issue. The MobileNet architecture was utilised

the ReLu6 activation function, which encourages the model to learn sparse features earlier

than regular ReLU with low computational precision [?]. The graph of ReLU and RuLU6

15

are represent in blue and yellow colors in Figure ??, respectively.

2.3.2 The Pooling Layers

The pooling layers are mostly used process for reducing the spatial size; width

and height. This process can be reduced the number of parameters, hence computation

requirement was decreased and this benefit to avoid overfitting.

16

The most common form of pooling layer is the max-pooling 2× 2 in figure ??. The

stride, which mean the number of pixels shifts over the input matrix from convolutional

layer at a time, of 2× 2 pixels were used to filter and selected the maximum intensity in

each submatrix as representative [?]. For instance, the 2 × 2 pixels in the upper left of

original image have the value 7, 2, 4, and 5, here, the maximum value is “7” which will

be selected to the value in the upper left of the output image.

Figure 2.13: Max pooling layer with the filter size 2×2 and stride 2 [?]

2.3.3 Fully Connected Layers

After the convolution and pooling layers, we add fully connected layers to classify

the class of input images. Since the output of both convolution and pooling layers are

3D structure, but a fully connected layer expects a 1D vector of numbers. Therefore, we

flatten the output of the final pooling layer to a vector and that becomes the input to the

fully connected layer, as shown in the following figure [?].

17

Figure 2.14: The process of fully connected layers [?]

The timeline of CNNs architectures are illustrated in Figure ??. The following

section will explain the MobileNet architecture, which is the main building block of the

EfficientNet architecture that used in this thesis. The algorithm of EfficientNet will be

described in Chapter III.

Figure 2.15: The timeline of CNNs architectures
source: Adapted from [?]

18

2.4 MobileNet Architecture

Figure 2.16: The Depthwise Separable Convolution [?]

The MobileNet architecture creates for using in mobile phone applications since

they have the lightweight network. The main concept is applying the depthwise separable

convolution to reduce the number of parameters. The depthwise separable convolution

is the combination of depthwise (Dwise) and pointwise convolution as shown in Figure

??. The Dwise is the channels DK ×DK spatial convolution which is a map of a single

convolution on each input channel separately. Therefore, the number of output and input

channels are similar. Then, the pointwise convolution combines the features created by

the Dwise by using Conv1×1 [?].

19

Figure 2.17: The algorithm of MobileNet V1–V2 [?]

Figure ?? has shown the difference between two versions of MobileNet, V1 and V2.

MobileNet–V1 have a depthwise convolution in the first layer. Then, the second layer is

the pointwise convolution with Conv1×1. Finally, ReLU6 is used due to its robustness

when used with low-precision computation. On the other hand, there are two types of

blocks in MobileNet–V2 as the residual block with stride of 1 and 2, which we called the

stride of 1 as inverted residual block (MBConv). There are three layers for both blocks,

namely Conv1×1 with ReLU6, depthwise convolution, and Conv1×1.

According to aforementioned knowledge, the EffcientNet was the lastest CNNs ar-

chitecture published in 2019 and seem to be great efficiency for the image classification

[?]. Along with complication of airport components datasets form remote sensing in RGB

color image with 24–bit, the EfficientNet was apply to classify airport components.

20

[1–bit grayscale image] [2–bit grayscale

image]

[4–bit grayscale image] [8–bit grayscale

image]

Figure 2.5: Grayscale images in 1, 2, 4, and 8 bits
source: Adapted from [?]

21

[The original image [?]] [The red

channel image]

[The green channel image] [The blue

channel image]

Figure 2.6: The RGB channels of the color image

22

[Input×Filter] [Feature Map]

Figure 2.11: An example of the feature map generation

Figure 2.12: ReLU and ReLU6 activation function
source: Adapted from [?]

CHAPTER III

METHODOLOGY AND EXPERIMENTS

This chapter explains the details of the datasets and the algorithms of the Effi-

cientNet architecture in five versions B0, B1, B2, B3, and B4. Moreover, the experimental

setup, and the evaluation metrics are described.

3.1 Datasets

Our datasets is gathered by Google Earth Pro in the type of remote sensing image,

from 45 countries in Asia (322 international airports). All images, which are RGB color

format with a resolution of 560×560 pixels, were manually collected. They can be divided

into four types, consisting image of the passenger terminal, the radio tower, the runway,

and the car park. Some examples were displayed in Figure ??.

3.2 EfficientNet Architecture

After the process of data preparation, we will apply the EfficientNet architecture.

The EfficientNet is a CNN architecture to solve the image classification problem.

Most of the previous CNN architecture use only single factor of three basic factors

to improve the accuracy and efficiency. The first factor is width scaling, when the width is

the number of channels in the fully connected layer. The next factor is depth scaling, when

the depth is the number of convolutional layers. And the last one is resolution scaling.

Figure ?? (a) is a baseline network example; (b)–(d) are conventional scaling that only

increases one dimension of the network width, depth, or resolution. The main idea of the

EfficientNet architecture is to use all of three factors; width, depth, and resolution with

a fixed ratio, namely compound scaling method as shown in Figure ?? (e).

24

Conventionally, MBConv of MobileNet–V2 was utilized to generate the algorithm

of EfficientNet–B0, as mentioned in Chapter II. The work flow of EfficientNet–B0 was

shown in Figure ??. It consisting of the input layer, the Conv3×3 layer, the MBConv

layer, the Conv1×1 layer, the pooling layer and the fully connected layer. Lastly, the

predicted type of the input image is obtained as the output.

Table 3.1: The details of EfficientNet B1–B4 [?]

Operator EfficientNet-B1 EfficientNet-B2 EfficientNet-B3 EfficientNet-B4
Resolution Width Depth Resolution Width Depth Resolution Width Depth Resolution Width Depth

Conv3×3 240×240 32 1 260×260 32 1 300×300 40 1 380×380 48 1
MBConv1, k3×3 120×120 16 2 130×130 16 2 150×150 24 2 190×190 24 2
MBConv6, k3×3 60×60 24 3 130×130 24 3 150×150 32 3 190×190 32 4
MBConv6, k5×5 30×30 40 3 65×65 48 3 75×75 48 3 95×95 56 4
MBConv6, k3×3 15×15 80 4 33×33 88 4 38×38 96 5 48×48 112 6
MBConv6, k5×5 15×15 112 4 17×17 120 4 19×19 136 5 24×24 160 6
MBConv6, k5×5 8×8 192 5 17×17 208 5 19×19 232 6 24×24 272 8
MBConv6, k3×3 8×8 320 2 9×9 352 2 10×10 384 2 12×12 448 2

EfficientNet–B0 was scaling up by the compound scaling method to get better

performance. In general, there are four versions of EfficientNet B1–B4. The comparison

of each version was illustrated in Table ??. The steps of each architecture are clearly

shown in Figure ??. The EfficientNet computational tool is based on the tensorflow

library with python3, the code is provided by P. Yakubovskiy [?].

3.3 Experimental setup

The numbers of batch size and epoch were set up to 12 and 50, respectively. Then,

the operation was run on Google Colaboratory with GPU. First, the input datasets were

divided into three parts following 70% of training, 10% of validation, and 20% of test

set. To generate the best performance model of EfficientNet B0–B4 the training set was

used to train each model. After training the model, the validation set used to determine

whether the model is able to perform on unknown images. Finally, we measured the

performance of the model obtained from both of two previous datasets by test set as

shown in Figure ??.

25

3.4 Evaluation Metrics

The performance metrics consist of Accuracy, Precision, Recall, and F1–Score are

used to evaluate the models. In Table ??, positive type is the type of considered com-

ponent and negative type includes all other components. For example, if we consider

the passenger terminal image, positive type is all images of the passenger terminal and

negative type includes all images of the radio towers, the runways and the car parks.

Table 3.2: Confusion matrix

Actual type
Positive Negative

Predicted Positive True Positive
(TP)

False Positive
(FP)

type Negative False Negative
(FN)

True Negative
(TN)

26

The performance metrics are defined as follows. First, Accuracy is a ratio of the

correctly predicted samples for each type to the total samples which is the summation of

diagonal in the confusion matrix, defined by

Accuracy =

∑
TP for each type
Total Samples .

Next, Precision is the ratio of the unmistakable predicted types to the total predicted

positive types, computed by

Precision =
TP

TP + FP .

Recall is the ratio of the correctly predicted positive types to all the samples in the actual

positive type

Recall =
TP

TP + FN .

Lastly, F1–Score is the harmonic mean of Precision and Recall which calculated by

F1–Score = 2× Precision × Recall
Precision + Recall .

To clarify, we demonstrate a calculation of Accuracy, Precision, Recall, and F1–

Score, by using the information from the confusion matrix that summarizes the results of

classifier as shown in Table ??. The following table shows the number of predicted and

the actual type for each component type.

Table 3.3: The example of predicted result

Actual type
Terminal Radio tower Runway Car park

Terminal 132 11 1 15
Predicted

type
Radio tower 4 81 1 4

Runway 8 7 122 6
Car park 1 2 1 150

27

If we consider the passenger terminal type to be a positive type, then the others

are negative types. We can calculate the value of true positive (TP), false positive (FP),

false negative (FN), and true negative (TN) as follows; TP = 132, FP = 11+1+15 = 27,

FN = 4 + 8 + 1 = 13, and TN = 81 + 122 + 150 = 374, which are displayed in Table ??.

Table 3.4: Confusion matrix for passenger terminal type

Actual type
Positive Negative

Predicted Positive 132 13
type Negative 27 374

Next, we can evaluate all of the performance metrics with the values from Table ??

as follow;

Accuracy =
132 + 81 + 122 + 374

546 =
485
546 = 0.89,

Precision =
132

132 + 27 =
132
159 = 0.83,

Recall =
132

132 + 13 =
132
145 = 0.91,

F1–Score = 2× 0.83 × 0.91
0.83 + 0.91 = 2× 0.7553

1.74 = 0.87.

From all of performance measures, Accuracy indicates the correctness of model and

F1–Score is the effective tool which is weighting between Precision and Recall. Then,

Accuracy and F1–Score are selected as the significant metrics to decide which is the most

suitable model for our datasets. In conclusion, we have already explained the datasets,

methodology and the performance metrics which will be applied in our experiment and

the result will be shown in the next section.

28

[The passenger terminal] [The radio

tower]

[The runway] [The car park]

Figure 3.1: The example images of four main component types [?]

29

Figure 3.2: The difference between EfficientNet scaling
and conventional methods [?]

Figure 3.3: The work flow of EfficientNet–B0 [?]

30

Figure 3.4: The work flow of EfficientNet B0–B4
source: Adapted from [?]

Figure 3.5: Schematic of the training, validation and test process [?]

CHAPTER IV

RESULTS AND DISCUSSION

In this chapter, we present the result of our collected datasets, the classification

performance of EfficientNet B0–B4 and discuss the outcome.

4.1 Collected Datasets

The collected datasets has 2, 720 images including four types of main components,

which details of each type were provided in Table ??. We randomly split the datasets

into 70%, 10%, and 20% percentages for training, validation, and test sets, respectively.

Table 4.1: The details of our datasets [?]

Class Terminal Radio tower Runway Car park Total
Training set 487 340 421 586 1,834
Validation set 90 63 78 109 340
Test set 145 101 125 175 546
Total 722 504 624 870 2,720

4.2 Result

First of all, the training and validation set were considered. For each epoch, the

training and validation sets are applied in the EfficientNet B0–B4. Then, the accuracy

and loss value are evaluated as shown in Figures ?? and ??. The x-axis is the number

of epoch, and the y-axis in Figures ?? and ?? are the accuracy and loss, respectively.

The blue line represents the accuracy of the training set and the pink line represents the

accuracy of the validation set.

32

We can observe from Figure ?? that in the higher version of EfficientNet, the blue

and pink lines are closer to each other. Thus, the approach of the training and validation

accuracy indicates that the model with the EfficentNet–B4 architecture has a tendency

to perform on unknown images as well as a test set.

Furthermore, from the graph of training and validation loss in Figure ??, the differ-

ences of the training loss between each epoch in EffientNetB0–B4 are not deceasing after

training more than 40 epochs. Thus, the large number of training epochs is not necessary.

33

Next, we compare among EfficientNet B0–B4 using the test set. The evaluated

results are illustrated in Table ??. The statistic results, consist of Precision, Recall, F1–

Score, and Accuracy, were calculated for four component types and five model versions

as follows;

Table 4.2: The statistic results from the test set [?]

EfficientNet
Components Indicators B0 B1 B2 B3 B4

Precision 0.92 0.96 0.76 0.88 0.92
Recall 0.63 0.89 0.92 0.79 0.90Terminal
F1-Score 0.75 0.78 0.83 0.84 0.91
Precision 0.81 0.71 0.92 0.73 0.92
Recall 0.46 0.81 0.60 0.87 0.72Radio tower
F1-Score 0.58 0.76 0.73 0.79 0.81
Precision 0.99 0.91 0.86 0.98 0.81
Recall 0.83 0.79 0.86 0.86 0.98Runway
F1-Score 0.90 0.85 0.86 0.92 0.89
Precision 0.61 0.96 0.86 0.88 0.95
Recall 0.98 0.73 0.90 0.93 0.94Car park
F1-Score 0.75 0.83 0.88 0.91 0.94

Accuracy 0.76 0.80 0.84 0.87 0.90
Time (s/epoch) 22.93 34.79 44.79 50.06 93.89

Total parameters 4,054,695 6,580,363 7,774,205 10,789,683 17,680,995

34

Passenger terminal: The highest Recall was occurred EfficientNet–B2 at 92%,

while the highest Precision was up to 96% in EfficientNet–B1. However, EfficientNet–B4

acquired the highest F1–Score at 91%.

Radio tower: The Precision of EfficientNet B2 and B4 provided the highest value

at 92%. Besides, EfficientNet–B3 showed the highest Recall at 87%, and the 81% highest

F1–Score was obtained by EfficientNet–B4.

Runway: This component type has the best classification result, which performed

the highest Precision at 99%, Recall at 98%, and F1–Score at 92%, from EfficientNet B0,

B4, and B3, respectively.

Car park: The Recall score reach to 98% in EfficientNet–B0, while the highest

Precision was happened in EfficientNet–B1 at 96%. However, EfficientNet–B4 gave the

highest F1–Score at 94%.

35

Additionally, the Accuracy of EfficientNet–B4 overcomes the other lower versions

EfficientNet with the value of 90%. However, almost twice of computational time and total

parameters of EfficientNet–B4 per epoch were increased from EfficientNet–B3. Similarly,

the computational time and total parameters of other versions tend to increase when the

accuracy and version are higher.

4.3 Discussion

From Table ??, Precision, Recall and F1–Score are performed. Most of the models

with higher Precision have lower Recall. F1–Score is the most effective measurement

to balance between the number of Precision and Recall. Comparing among EfficientNet

B0–B4, EfficientNet–B4 is the best architecture for classifying the passenger terminal, the

radio tower, and the car park, while EfficientNet–B3 is the best architecture for the runway

classification. In addition, we can also confirm from the Accuracy that EfficientNet–B4

is an appropriate architecture for our datasets.

In fact, the EfficientNet architecture has been developed continuously to the higher

versions for more accuracy, i.e., B5–B7, see [?], but they required immensely compu-

tational requirement. Furthermore, only 3.5 percentage of accuracy in EfficientNet–B4

was increased from EfficientNet–B3, it extremely consumes the average computational

time and total parameters. Accordingly, EfficientNet–B4 seems to be the most suitable

architecture for component classifications in this thesis.

To focus on the datasets, EfficientNet B0–B4 displayed some limitations. The

inaccurate classifications appear when the components have similar shapes, or when the

background color or objects are similar to the color of the target components. For example,

the radio tower displayed in Figure ?? has been classified as the passenger terminal.

The reason might be due to the complexity of the components. To fix this problem,

the datasets may be specified for some type of component or only some parts of that

component.

36

Another concern is that the model cannot detect and classify the specific charac-

teristics of each component type as shown as example in Figure ??. The jet bridge, which

is the main characteristic of the passenger terminal, are clearly visible but model has

been wrongly classified as the radio tower. The cause is that the background and the

component colors are relatively similar. This issue may be discussed and developed in the

future work.

37

[EfficientNet–B0] [EfficientNet–B1]

[EfficientNet–B2] [EfficientNet–B3]

[EfficientNet–B4]

Figure 4.1: The graph of accuracy in each version of EfficientNet B0–B4

38

[EfficientNet–B0] [EfficientNet–B1]

[EfficientNet–B2] [EfficientNet–B3]

[EfficientNet–B4]

Figure 4.2: The graph of loss in each version of EfficientNet B0–B4

39

[The radio tower [?]] [The terminal [?]]

Figure 4.3: The examples of the failure classification

CHAPTER V

CONCLUSION AND FUTURE WORK

In the last chapter, we will conclude over all of this thesis and introduce some idea

to solve the weakness of the model for future work.

5.1 Conclusion

In Chapter I, we introduced the strategies to solve the image classification prob-

lem, i.e., ML and DL. With its effectiveness, we are interested in convolutional neural

networks (CNNs) which is a type of DL. In this thesis, the goal is to classify four types

of main components in airports from remote sensing images; the passenger terminal, the

radio tower, the runway, and the car park using the EfficientNet architecture versions

B0, B1, B2, B3, and B4 and compare their performance. In Chapter II, we mentioned

the background knowledge of the digital image processing, the remote sensing image, the

image classification problem, the convolutional neural networks, and the MobileNet ar-

chitecture. The MobileNet–V2 contains two necessary blocks, convolutional layer (Conv)

and inverted residual block (MBConv), which are the initiate of EfficientNet architec-

ture. Next, the details of EfficientNet are described in Chapter III. EfficientNet has been

purposed for the compound scaling method with the great efficiency to balance network

in term of depth, width, and resolution. Moreover, we also explained our datasets, the

experimental setup and the evaluation metrics in this chapter. The datasets is manually

collected from Google Earth Pro in the form of 560×560 pixels RGB color remote sensing

image, which cover 322 international airports from 45 countries in Asia. Then, 70 percent

of all images in datasets were performed as the training set and another 20 percent for

testing through EfficienctNet B0–B4. Moreover, for validation of each version of Effi-

cientNet were performed through a partition of 10 percent of the datasets. In addition,

we evaluate the performance metrics of each model consisting of Accuracy, Precision,

Recall, and F1–Score. In Chapter IV, we exhibit the collected result of our 2, 720 images

datasets including four types of main components, which are 722 passenger terminals,

41

504 radio towers, 624 runways, and 870 car parks. Then, the accuracy and loss value of

the training and validation sets are evaluated for each epoch of EfficientNet B0–B4. The

highest F1–Score demonstrates that EfficientNet–B4 is suitable for classifying the passen-

ger terminal, the radio tower, and the car park, while EfficientNet–B3 is suitable for the

runway classification. Furthermore, the Accuracy of EfficientNet–B4 overcomes the other

lower versions EfficientNet with the value of 90%. Lastly, we suggested EfficientNet–B4

as the most appropriate architecture for classifying these four types of main components

in airports. However, based on this airport components datasets, the original Efficient-

Net B0–B4 architecture may be inaccurate classification especially when component had

similarly shapes, background colors or objects to interested component. In addition, it is

hard to detect and classify the peculiar characteristics of each components such as the jet

bridge of the passenger terminal.

5.2 Future work

In fact, EfficientNet still has some limitation. First, EfficientNet may have inaccu-

rately classification when we have the same type with different shape. Secondly, it cannot

detect and classify the peculiar characteristic of each components. Due to the weakness

of method, the EfficientNet architecture could be improved. Moreover, the surrounding

area of component containing in our datasets could bias the prediction. The process of

data preparation could be adjusted.

APPENDICES

43

APPENDIX A : Code for classification with EfficientNet-B0

1 #Import Library

2 import os

3 import sys

4 sys.path.append('..')

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import tensorflow as tf

8 from tqdm import tqdm

9 from sklearn.metrics import confusion_matrix,accuracy_score,

precision_score,recall_score,f1_score,classification_report

10 #Import Model

11 from keras.applications.imagenet_utils import decode_predictions

12 from efficientnet.tfkeras import EfficientNetB0

13 from efficientnet.tfkeras import center_crop_and_resize,

preprocess_input

14 model_B0 = EfficientNetB0(weights=None,classes=4,augmentation=True,

pre_process='normalize')

15 #Split Datasetss

16 image_size = model_B0.input_shape[1:3]

17 batch_size = 32

18 #Train Set

19 train_ds = tf.keras.preprocessing.image_dataset_from_directory("/

content/drive/MyDrive/ABdataset_split/train", labels='inferred',

image_size=image_size, batch_size=batch_size)

20 #Validation Set

21 val_ds = tf.keras.preprocessing.image_dataset_from_directory("/content/

drive/MyDrive/ABdataset_split/val", labels='inferred', image_size=

image_size, batch_size=batch_size)

22 #Test Set

23 test_ds = tf.keras.preprocessing.image_dataset_from_directory("/content

/drive/MyDrive/ABdataset_split/test", labels='inferred', image_size

44

=image_size, batch_size=batch_size)

24 train_ds = train_ds.prefetch(buffer_size=batch_size)

25 val_ds = val_ds.prefetch(buffer_size=batch_size)

26 test_ds = test_ds.prefetch(buffer_size=batch_size)

27 #Training Model

28 epochs = 50

29 model_B0.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='

sparse_categorical_crossentropy', metrics=['

sparse_categorical_accuracy'])

30 history = model_B0.fit(train_ds, epochs=epochs, validation_data=val_ds)

31 #Test Model

32 test_result = model_B0.evaluate(test_ds)

33 test_img = []

34 test_class = []

35 for X,y in test_ds:

36 test_img = test_img + list(X)

37 test_class = test_class + list(y)

38 test_img = np.array(test_img)

39 test_pred = np.argmax(model_B0.predict(test_img),axis=1)

40 print(classification_report(test_class,test_pred))

41 confusion_matrix(test_class,test_pred)

45

APPENDIX B : Code for classification with EfficientNet-B1

1 #Import Library

2 import os

3 import sys

4 sys.path.append('..')

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import tensorflow as tf

8 from tqdm import tqdm

9 from sklearn.metrics import confusion_matrix,accuracy_score,

precision_score,recall_score,f1_score,classification_report

10 #Import Model

11 from keras.applications.imagenet_utils import decode_predictions

12 from efficientnet.tfkeras import EfficientNetB1

13 from efficientnet.tfkeras import center_crop_and_resize,

preprocess_input

14 model_B1 = EfficientNetB1(weights=None,classes=4,augmentation=True,

pre_process='normalize')

15 #Split Datasets

16 image_size = model_B1.input_shape[1:3]

17 batch_size = 32

18 #Train Set

19 train_ds = tf.keras.preprocessing.image_dataset_from_directory("/

content/drive/MyDrive/ABdataset_split/train", labels='inferred',

image_size=image_size, batch_size=batch_size)

20 #Validation Set

21 val_ds = tf.keras.preprocessing.image_dataset_from_directory("/content/

drive/MyDrive/ABdataset_split/val", labels='inferred', image_size=

image_size, batch_size=batch_size)

22 #Test Set

23 test_ds = tf.keras.preprocessing.image_dataset_from_directory("/content

/drive/MyDrive/ABdataset_split/test", labels='inferred', image_size

46

=image_size, batch_size=batch_size)

24 train_ds = train_ds.prefetch(buffer_size=batch_size)

25 val_ds = val_ds.prefetch(buffer_size=batch_size)

26 test_ds = test_ds.prefetch(buffer_size=batch_size)

27 #Training Model

28 epochs = 50

29 model_B1.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='

sparse_categorical_crossentropy', metrics=['

sparse_categorical_accuracy'])

30 history = model_B1.fit(train_ds, epochs=epochs, validation_data=val_ds)

31 #Test Model

32 test_result = model_B1.evaluate(test_ds)

33 test_img = []

34 test_class = []

35 for X,y in test_ds:

36 test_img = test_img + list(X)

37 test_class = test_class + list(y)

38 test_img = np.array(test_img)

39 test_pred = np.argmax(model_B1.predict(test_img),axis=1)

40 print(classification_report(test_class,test_pred))

41 confusion_matrix(test_class,test_pred)

47

APPENDIX C : Code for classification with EfficientNet-B2

1 #Import Library

2 import os

3 import sys

4 sys.path.append('..')

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import tensorflow as tf

8 from tqdm import tqdm

9 from sklearn.metrics import confusion_matrix,accuracy_score,

precision_score,recall_score,f1_score,classification_report

10 #Import Model

11 from keras.applications.imagenet_utils import decode_predictions

12 from efficientnet.tfkeras import EfficientNetB2

13 from efficientnet.tfkeras import center_crop_and_resize,

preprocess_input

14 model_B2 = EfficientNetB2(weights=None,classes=4,augmentation=True,

pre_process='normalize')

15 #Split Datasets

16 image_size = model_B2.input_shape[1:3]

17 batch_size = 32

18 #Train Set

19 train_ds = tf.keras.preprocessing.image_dataset_from_directory("/

content/drive/MyDrive/ABdataset_split/train", labels='inferred',

image_size=image_size, batch_size=batch_size)

20 #Validation Set

21 val_ds = tf.keras.preprocessing.image_dataset_from_directory("/content/

drive/MyDrive/ABdataset_split/val", labels='inferred', image_size=

image_size, batch_size=batch_size)

22 #Test Set

23 test_ds = tf.keras.preprocessing.image_dataset_from_directory("/content

/drive/MyDrive/ABdataset_split/test", labels='inferred', image_size

48

=image_size, batch_size=batch_size)

24 train_ds = train_ds.prefetch(buffer_size=batch_size)

25 val_ds = val_ds.prefetch(buffer_size=batch_size)

26 test_ds = test_ds.prefetch(buffer_size=batch_size)

27 #Training Model

28 epochs = 50

29 model_B2.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='

sparse_categorical_crossentropy', metrics=['

sparse_categorical_accuracy'])

30 history = model_B2.fit(train_ds, epochs=epochs, validation_data=val_ds)

31 #Test Model

32 test_result = model_B2.evaluate(test_ds)

33 test_img = []

34 test_class = []

35 for X,y in test_ds:

36 test_img = test_img + list(X)

37 test_class = test_class + list(y)

38 test_img = np.array(test_img)

39 test_pred = np.argmax(model_B2.predict(test_img),axis=1)

40 print(classification_report(test_class,test_pred))

41 confusion_matrix(test_class,test_pred)

49

APPENDIX D : Code for classification with EfficientNet-B3

1 #Import Library

2 import os

3 import sys

4 sys.path.append('..')

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import tensorflow as tf

8 from tqdm import tqdm

9 from sklearn.metrics import confusion_matrix,accuracy_score,

precision_score,recall_score,f1_score,classification_report

10 #Import Model

11 from keras.applications.imagenet_utils import decode_predictions

12 from efficientnet.tfkeras import EfficientNetB3

13 from efficientnet.tfkeras import center_crop_and_resize,

preprocess_input

14 model_B3 = EfficientNetB3(weights=None,classes=4,augmentation=True,

pre_process='normalize')

15 #Split Datasets

16 image_size = model_B3.input_shape[1:3]

17 batch_size = 32

18 #Train Set

19 train_ds = tf.keras.preprocessing.image_dataset_from_directory("/

content/drive/MyDrive/ABdataset_split/train", labels='inferred',

image_size=image_size, batch_size=batch_size)

20 #Validation Set

21 val_ds = tf.keras.preprocessing.image_dataset_from_directory("/content/

drive/MyDrive/ABdataset_split/val", labels='inferred', image_size=

image_size, batch_size=batch_size)

22 #Test Set

23 test_ds = tf.keras.preprocessing.image_dataset_from_directory("/content

/drive/MyDrive/ABdataset_split/test", labels='inferred', image_size

50

=image_size, batch_size=batch_size)

24 train_ds = train_ds.prefetch(buffer_size=batch_size)

25 val_ds = val_ds.prefetch(buffer_size=batch_size)

26 test_ds = test_ds.prefetch(buffer_size=batch_size)

27 #Training Model

28 epochs = 50

29 model_B3.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='

sparse_categorical_crossentropy', metrics=['

sparse_categorical_accuracy'])

30 history = model_B3.fit(train_ds, epochs=epochs, validation_data=val_ds)

31 #Test Model

32 test_result = model_B3.evaluate(test_ds)

33 test_img = []

34 test_class = []

35 for X,y in test_ds:

36 test_img = test_img + list(X)

37 test_class = test_class + list(y)

38 test_img = np.array(test_img)

39 test_pred = np.argmax(model_B3.predict(test_img),axis=1)

40 print(classification_report(test_class,test_pred))

41 confusion_matrix(test_class,test_pred)

51

APPENDIX E : Code for classification with EfficientNet-B4

1 #Import Library

2 import os

3 import sys

4 sys.path.append('..')

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import tensorflow as tf

8 from tqdm import tqdm

9 from sklearn.metrics import confusion_matrix,accuracy_score,

precision_score,recall_score,f1_score,classification_report

10 #Import Model

11 from keras.applications.imagenet_utils import decode_predictions

12 from efficientnet.tfkeras import EfficientNetB4

13 from efficientnet.tfkeras import center_crop_and_resize,

preprocess_input

14 model_B4 = EfficientNetB4(weights=None,classes=4,augmentation=True,

pre_process='normalize')

15 #Split Datasets

16 image_size = model_B4.input_shape[1:3]

17 batch_size = 32

18 #Train Set

19 train_ds = tf.keras.preprocessing.image_dataset_from_directory("/

content/drive/MyDrive/ABdataset_split/train", labels='inferred',

image_size=image_size, batch_size=batch_size)

20 #Validation Set

21 val_ds = tf.keras.preprocessing.image_dataset_from_directory("/content/

drive/MyDrive/ABdataset_split/val", labels='inferred', image_size=

image_size, batch_size=batch_size)

22 #Test Set

23 test_ds = tf.keras.preprocessing.image_dataset_from_directory("/content

/drive/MyDrive/ABdataset_split/test", labels='inferred', image_size

52

=image_size, batch_size=batch_size)

24 train_ds = train_ds.prefetch(buffer_size=batch_size)

25 val_ds = val_ds.prefetch(buffer_size=batch_size)

26 test_ds = test_ds.prefetch(buffer_size=batch_size)

27 #Training Model

28 epochs = 50

29 model_B4.compile(optimizer=tf.keras.optimizers.RMSprop(), loss='

sparse_categorical_crossentropy', metrics=['

sparse_categorical_accuracy'])

30 history = model_B4.fit(train_ds, epochs=epochs, validation_data=val_ds)

31 #Test Model

32 test_result = model_B4.evaluate(test_ds)

33 test_img = []

34 test_class = []

35 for X,y in test_ds:

36 test_img = test_img + list(X)

37 test_class = test_class + list(y)

38 test_img = np.array(test_img)

39 test_pred = np.argmax(model_B4.predict(test_img),axis=1)

40 print(classification_report(test_class,test_pred))

41 confusion_matrix(test_class,test_pred)

53

BIOGRAPHY

Name Miss Pimpisa Charoenchittang

Date of Birth August 29, 1995

Place of Birth Bangkok, Thailand

Educations B.Sc. (Mathematics) (Second Class Honours), Kasetsart

University, 2018

Scholarships Science Achievement Scholarship of Thailand (SAST)

Publications

• P. Charoenchittang, P. Boonserm, K. Kobayashi, and N. Cooharojananone, “Airport-

buildings classification through remote sensing images using efficientnet,”2021 18thInter-

national Conference on Electrical Engineering/Electronics, Computer, Telecom-munications

and Information Technology (ECTI-CON), pp. 127–130, 2021.

