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CHAPTER 1

INTRODUCTION

1.1 Motivation and Literature Surveys

An integro-differential equation (IDE) is an equation that involves both integrals
and derivatives of an unknown function. It can be distinguished into two types, namely,
Volterra IDE (VIDE) and Fredholm IDE (FIDE) which each type is different depending on
the limits of integration, that we will detail them in the next section. Moreover, they have
many applications that can be found in various branches of science, engineering, physics,
biology and etc., see [1-6] for details of each application. Actually, many problems of the
IDE are often constructed to be a system. Anyway, the system of IDEs can be found
in the fields of science and engineering. It has a lot of applications such as modeling of
the competition between the tumor cell and the immune system [7], wind ripples in the
desert [8], dropwise condensation [9], glass-forming process [10], examining the noise term

phenomenon [11], nano-hydrodynamics [12] and so on.

The IDEs are usually difficult to solve analytically. Therefore, numerical meth-
ods are required to obtain a decent approximate solution. Several numerical methods
for approximating either VIDEs or FIDEs are well-known. Zhao and Corless [13] used
compact finite difference method (FDM) for IDEs. Brunner [14] applied a collocation-
type method to Volterra-Hammerstein integral equation as well as IDEs. Sepehrian and
Razzaghi [15] have been proposed a single term Walsh series method (STWS) for solving
VIDEs. Pour-Mahmoud et al. [16] considered Ortiz and Samara’s operational approach
to the Tau method for the numerical solution of the system of FIDEs. Suayip et al. [17]
have been proposed the collocation method with Bessel polynomials for solving a system
of FIDEs. Farshid and Seyede [18] also applied the collocation method to solve systems

of linear FIDESs in terms of Fibonacci polynomials.



A few years ago, the finite integration method (FIM) was firstly introduced in 2013
by Wen et al. [19] which has been developed to solve the linear boundary value problems
of differential equations. They use the linear approximation and radial basis functions
to build the first order integration matrix for representing a single-layer integration and
obtain directly the higher order integration matrix for a multi-layer integration. Their
FIM can just solve the one-dimensional linear differential equations. After that in 2015,
Li et al. [20] have been extended the FIM in order to solve multi-dimensional problems.
Then, Li et al. [21] have been improved the FIM by consuming the numerical quadrature
such as Simpson’s rule, Newton Cotes and Lagrange interpolation instead of trapezoidal
rule to handle the linear differential equations. Moreover, they demonstrate that their
improved FIM give highly accurate solutions compared with the FDM and the traditional
FIM. Recently, Boonklurb et al. [22] have been proposed the modified FIM using Cheby-
shev polynomial expansion (FIM-CPE) for solving the one- and two-dimensional linear
differential equations. The modified FIM-CPE also provides a much higher accuracy than

the FDM and those original FIMs with low computational nodes.

In this thesis, we apply the idea of FIM-CPE given by [22], but slightly modify it by
using the shifted Chebyshev polynomials which is called the FIM-SCP. Henceforth, our
idea will be referred to as FIM-SCP and use it to devise the efficiently numerical algorithms
for solving the system of linear ordinary differential equations (ODEs), especially, the stiff
system, the system of linear VIDESs, and the system of linear FIDEs. We assume that
under some given boundary conditions, the three types of our considered systems of linear
ODEs, VIDEs and FIDEs have a unique solution. Then, we express our approximate
solution in form of the linear combination of shifted Chebyshev polynomials. We use the
zeros of shifted Chebyshev polynomial of a certain degree to be the computational nodes
and construct the shifted Chebyshev integration matrices which are the main ingredient
for this devised algorithm. Finally, we implement our proposed algorithms with several
numerical examples in order to demonstrate our accurate results when compared with the

results obtained by other methods from literature or their analytical solutions.



1.2 Systems of Linear Differential Equations

In this section, we give the details of our three considered systems of linear differ-
ential equations in order to be the information for creating the numerical algorithms in
this thesis. They consist of the system of linear ODEs, the system of linear VIDEs and
the system of linear FIDEs. In addition, the facts and assumptions associated with each

considered system are provided as follows.
» System of Linear ODEs

A system of linear ODEs is a system of linear differential equations in one-dimension
which are equations containing a function of one independent variable and its derivatives.

Our considered system of m linear ODESs is in the form of
S Lijui(x) = filz), @€ (a,b) (1.1)
j=1

foralli € {1,2,3,...,m} and a,b € R be such that a < b. The linear differential operator

L; ; of order l; ; is defined as

li s P P e L ) b

Lij = piti (w)D" 4+ T (@) Dot pfy () DB 2 - pl () D+ (), (1.2)
where DF = % is the k™ order derivative with respect to = for k € {1,2,3,... it
pﬁj (x) for each k € {0,1,2,...,;;} are continuously differentiable functions up to the
highest order of derivative contained in (1.1), f;(x) are given continuous functions and
vj(z) are unknown functions to be solved. In this thesis, we assume that under some

given boundary conditions, then the system (1.1) has a unique solution.

In this study, we are interested in a stiff system of ODEs which is a system of ODEs
with a significant difference between the coefficients. There is no universally accepted
definition for stiffness. However, the numerical methods for solving the stiff system of
ODEs are numerically unstable. The numerical methods have to take small steps for

solving this problem to obtain satisfactory results comparing with the analytical solutions.



The system of linear IDEs appears in many types of situation and depends mainly on
the limits of integration appear therein. In this thesis, we study the system of linear IDEs
in both types of Volterra and Fredholm. Next, we mention some details for our studied

system of linear VIDEs and system of linear FIDEs that we study them as follows.
» System of Linear VIDESs

Next, we consider the system of linear VIDEs which contains both differential part
and integration part. For the system of linear VIDEs, at least one of the limits of inte-

gration is a variable. The system of m linear VIDEs, that we study, is given by
m m z
Zﬁi’jvj(x) = fz(x) + Z /\i,j/ ’Ci’j(l',t)vj(t)dt, WS (a, b) (1.3)
j=1 j=1 &

forall7 € {1,2,3,...,m}, where a < b are arbitrary real constants. The linear differential
operator L; j of order ; ; is defined as same as (1.2), \; ; are real constant coefficients,
Ki j(z,t) are continuously integrable kernel functions, f;(x) are continuous functions and
vj(z) are unknown functions to be solved. In this thesis, we assume that under some

given boundary conditions, the system (1.3) has a unique solution.
» System of Linear FIDEs

Finally, we consider the system of linear FIDEs which contains both differential
part and integration part. For the system of linear FIDESs, the limits of integration are

fixed numbers. The system of m linear FIDEs, that we study, can be written as follows
m m b
> Lijvi(z) = filz) + > Aij / Kij(z,t)o;(t)dt, =€ (a,b) (1.4)
j=1 j=1 a

for all © € {1,2,3,...,m}, where a < b are any real constants. The linear differential
operator L; ; of order [; ; is defined as well as (1.2), A; ; are real constant coefficients of the
integration parts, K; j(x,t) are continuously integrable kernel functions, f;(x) are contin-
uous functions and vj(x) are unknown functions to be solved. In this thesis, we assume

that under some given boundary conditions, the system (1.4) has a unique solution.



1.3 Research Objectives

The goal of the research is to obtain numerical procedures based on the FIM-SCP
for finding approximate solutions of the system of linear ODEs, the system of linear VIDEs

and also the system of linear FIDEs.

1.4 Thesis Overview

We divide this thesis into five chapters. Chapter 1 is an introduction of this work
including the motivation and literature surveys, the details of our considered systems
of linear differential equations, the research objectives and the thesis overview. Next,
the background knowledge concerning the shifted Chebyshev polynomial, including its
definition and some important properties are presented in Chapter 2 in order to construct
the shifted Chebyshev integration matrices. Chapter 3 presents the procedure for solving
the stiff system of linear ODEs and numerical examples. Then, we propose the numerical
procedures for solving the systems of linear IDEs which consist of VIDEs and FIDEs
and numerical examples in Chapter 4. Finally, conclusions and some future works are

presented in Chapter 5.



CHAPTER II

MODIFIED FIM-SCP

In this chapter, we provide the background knowledge on the definition and some
basic properties of the shifted Chebyshev polynomials which are important in the part of
the construction of our numerical algorithms. After that, we use these facts to construct
the shifted Chebyshev integration matrices. We first introduce the shifted Chebyshev

polynomials and some useful facts about them.

2.1 Shifted Chebyshev Polynomial

In some applications, the interval [0, 1] is more convenient to use than [—1,1]. Thus,
we transform the independent variable of Chebyshev polynomial T),(z) for n > 0 from the
interval [—1, 1] into [0, 1] by using the transformation s = 2z—1 or z = 3(s+1). Then, the
polynomial obtained after transforming is called a shifted Chebyshev polynomial T (x)

for z € [0,1]. Their definitions are provided as follows.

Definition 2.1. ( [23]) The Chebyshev polynomial of degree n > 0 is defined by

T, (x) = cos(narccosz) for x € [—1,1].

However, the shifted Chebyshev polynomial T)(x) of degree n > 0 can be defined by

Tr(x) =T,(2z — 1) for x € [0,1]. (2.1)

Moreover, the properties of shifted Chebyshev polynomial are given in Lemma 2.1
which will be used to construct the first and higher orders of the shifted Chebyshev

integration matrices in the next section.



Lemma 2.1. ( [23]) The followings are properties of shifted Chebyshev polynomials.

(i) The zeros of shifted Chebyshev polynomial T, (x) for z € [0,1] are

1 2k —1
xk—2<cos< 5 7T)+1>,k€{1,2,3,...,n}. (2.2)

(ii) The p™ order derivatives of T/ (x) at x =0 and x = 1 for p € N are

dr . p—1 (n2 _ k2>(_1)P+n

ar @, = 1:[ o%k+1 23)
ro e Ry ¥

2| T as =

(iii) The single integrations of shifted Chebyshev polynomial T)(x) for x € [0,1] are

fﬁ@ﬁ=A%W@M§=% 25)
ﬁwazﬂﬁﬁ@mgzﬁ—x, (2:6)
T (z) = /0 " Tie) de = % <T£++1(f) = Ti_i<f)) _ 2((71‘212”1), n>2. (27)

Moreover, the single integration of T)(x) atl the upper bound can be written as

1 =0 (m
T = [ T = S"zf;”:? onz’ 28)

(iv) The discrete orthogonality relation of shifted Chebyshev polynomials T and T} is

0 if i# 7,
T e)Ti(k) =S n if i=j=0,
k=1

Lo i=i#0,

where zy, for k € {1,2,3,...,n} is defined by (2.2) and 0 < i,j < n.



(v) The shifted Chebyshev matriz T* at each node {x1}}_, defined by (2.2) is

T5 (1) Ti(za) - T y(21)
Tz THx o TE (e
T — 0( 2) 1( 2) n 1( 2) (29)
_T(;k(xn) T (xp) -+ T;—l(xn)_
Then, it has the multiplicative inverse
1
(T*) ! = Zdiag(1,2,2,...,2)(T" . (2.10)
n

(vi) The recurrence relation of shifted Chebyshev polynomials T, Ty, and T}, is

n’ n

w1 (2) = 2(2e — )T (2) — T, (2)

with the starting values T (x) =1 and T} (z) = 2z — 1.

Proof. The proofs of this lemma can similarly prove corresponding to the proofs of the

properties of Chebyshev polynomial T}, (z) which can be found in [23]. O

Next, we apply the idea of FIM-CPE which is described in [22] to construct the first
order integration matrix based on the shifted Chebyshev polynomials. Then, the higher
order shifted Chebyshev integration matrix can be obtained easily by using the same idea

as the first order integration matrix.

2.2 Shifted Chebyshev Integration Matrices

First, we let uj(z) to be an approximate solution of the unknown function v;(x)
n (1.1), (1.3), and (1.4). Next, to construct the shifted Chebyshev integration matrices,
let M be a positive integer, u;(x) be a linear combination of the shifted Chebyshev

polynomials 7§ (z), Ty (x), T3 (x), ..., Ty;_;(x) and x be grid points generated by the



zeros of shifted Chebyshev polynomial T}, as defined in (2.2) for all k € {1,2,3,..., M},

where 0 < 21 <@g < w3 <--- <xpy < 1. Then, we approximate u; at node x;, by

M-1
uj(ee) = Y e, T (zn), (2.11)
n=0
where ¢,, is unknown coefficients to be considered. For k € {1,2,3,..., M}, it can be
express in the matrix form
uj(z1) T5(x1)  Ti(wa) - Ty_q(z1) co,
uj(we) || Tg(we)  Ty(w2) - Ty y(22) c1,
wiea)]| | Tilen) Ti(ear) - Tip_y(ean)] [eao,

which is denoted by u; = T*¢;. Since T* is invertible by Lemma 2.1(v), ¢; = (T*) tuy,

where T* and (T*)~! are defined in (2.9) and (2.10) for all j € {1,2,3,...,m}.

Now, for k € {1,2,3,..., M}, we consider the single-layer integration of u; from 0

to the zero x denoted by U]Q)(.’L‘k), we obtain

o M—1 > M-1
UM () = /0 ui(€)de =Y ca, /O Tr(€)de = > o Th(x) (2.12)
n=0 n=0

where T:L is the single-layer integration of shifted Chebyshev polynomial that can explic-
itly find by (2.5), (2.6), and (2.7) depending on its degree n. After substituting each node

T into U}l)(mk), it can be written in the matrix equation

U;l)(ml) T;(xl) T; (1) - T;J—l<x1) €0,
@ 7 i T,
U; (x2) _ TO(.I'Q) T (332) T TM—.I (z2) C.lj 7 (2.13)
_U;l)(mM)_ _TS(xM) Ti(zm) - Tjw—l(xM)_ | CM -1, |

which is denoted by Ug.l) =T c; =T (T*)'uj := Auj, where A = T (T*)"! is called



10

the first order shifted Chebyshev integration matriz for the FIM-SCP. If we defined the

matrix A := [aki]arxar, then (2.12) can be written another form

U () = / u;(€) € = ) _ ariu; (1)
0 i=1

for k € {1,2,3,..., M} or in the matrix form

U]O)(xl) air a2 o G1M (1)
U](l)(ajg) | @ a2 - aam u;j(x2)
_U]O)(J?M)_ aar anz c ann | | () |

Next, we consider the double-layer integration of u; from 0 to zx, k € {1,2,3,..., M}.

It is denoted by U]@)(azk). Then, we have

Ty &
e = [ [ e dsides

— [P den
0
M

=) ap Uj(l)(l“i)
=1

M M
§ QL Al u] $l

l

for k € {1,2,3,..., M} or in the matrix form

S - - -
Uj( (1) S anan Y auan o Yo aviain | | ()
2
Uj( () _ Sl agian M aniaz o Soiy agiai | | uj(wa)
- Y
2
_U; )(»TM)_ _Zi]‘il apiGi Y omy AMiGiz ot Yo arridin | | wi(Tar) |

which can be written in the matrix form as U;z) = AQuj. The matrix A2 is called the

second order shifted Chebyshev integration matriz for the FIM-SCP.
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Similarly, we can construct the m-layer integration of u; from 0 to x, by using the

same process of the double-layer integration, that is denoted by U ](m) (), we have

U™ () / /ém /&uj (€1) dEr - . Emr6m

=1 (&,) d

Qe Uj(m_l)(xz)

M
Z ay o i ()

i=1

Ut

M=

l

Il
i

for k € {1,2,3,..., M}, whose equation can be composed as Ug-m) = A™u;. The matrix

A™ is called the m* order shifted Chebyshev integration matriz for the FIM-SCP.

Next, we can further construct the shifted Chebyshev integration matrix at the
upper boundary x = 1 in order to benefit for devising a numerical algorithm to solve the
system of m linear FIDEs. Let us first consider the single-layer integration of u; from 0

to 1 denoted by U]Q)(l). Then, we have

=b(T*) 'u;, (2.14)

where b = |Tp(1), T7(1), To(1),... ,Tjw_l(l)] for its elements can be computed by (2.8),
(T*)~! is defined by (2.10) and u;j = [uj(x1), uj(z2), u;(x3),. . ., uj(a;M_l)]T.



CHAPTER I11

SYSTEM OF LINEAR ODES

We note that if the considered system of linear IDEs contains no integral terms,
then the system becomes the system of linear ODEs. In this chapter, the numerical algo-
rithm of solving the stiff system of m linear ODEs with the given boundary conditions is
constructed. Finally, we implement our numerical algorithm with several numerical ex-
amples to demonstrate the accuracy compare with the differential transformation method

(DTM) [24] and the Runge-Kutta fourth-order (RK-4) method [1].

3.1 Algorithm for Solving System of Linear ODEs

In this section, we can devise a numerical algorithm for solving the system of m
linear ODEs (1.1) with boundary conditions by hiring our proposed FIM-SCP. Let u; be

the approximate solution of v; in (2.11), then (1.1) becomes
> Lijuj(z) = fi(x), € (a,b) (3.1)
j=1

foralli € {1,2,3,...,m}. Then, we apply the idea of FIM-SCP in Chapter 2 to formulate

the numerical procedure for solving (3.1) as the following steps:

a

Step 1. We use the linear mapping z = =2 to transform x € [a,b] into Z € [0,1]. Let

k= 7. Then, (3.1) for z € (a,b) becomes

m

Z 105 (T) = fi(z), T€(0,1) (3.2)

~

where £;j := klip)'7 (z) Dl + ko Vgl ™! (2) Dl -kl (2) D40, () for DF =

dee BF (@) = pf, (b= a)T+a), 4;(7) = u;(b—a)T+a)) and fi(7) := fi(b—a)T+a).
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Step 2. We discretize our domain [0, 1] into M nodes which are the grid points 1, x2,
x3, ..., vy generated by the zeros of the shifted Chebyshev polynomial T, (x) defined
n (2.2), where 0 < x1 < xg <3< ---<apy < 1.

Step 3. Let h; = 1H;a)$n l;; for all i € {1,2,3,...,m}, where [;; is the highest order
derivative of u; for i*" equation of (3.2). We eliminate all derivatives from (3.2) by
taking h;-layer integral from 0 to Z on both sides of each i*" equation in (3.2) for all

i€{1,2,3,...,m}. Thus, the i*" equation of (3.2) becomes

T E ™M z & _
/0.--/0 ;Ei,juj(fl)dfl-”dghi:/o ) fi(&1) dé ... d&p,. (3.3)

We substitute z in (3.3) by each zero zj, of the shifted Chebyshev polynomial 7',
for k € {1,2,3,..., M} and use the technique of integration by parts for each term in

3.3). Then, for l; ; = h;, the left-hand side (LHS) of i*" equation in (3.3) becomes
7]

~ T2
k’hi [ ( ) / / pw u] dany .. d??g]
£=0
h;—1

o [ S [ [ s

B=0

Ly [T [ [ hi -2\ (G
o [ [ B L
B=0

g hi—1 -2 d] h;—3

Lk &2 & .z dJ .CC T ‘
0 - i1k 2 K 3%k j
g dEy ... dEp, v 3.4
+/0 /0 Prghy 081 G+ Gy~ (h1_3)1+ +djp,, (34)
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and for l; ; < h;, we have

y Ty &1y +2 li'j i &y
k/ / [ ( J>/ / 9P dny .. dnﬂ]dglm_l...dghi
0 0 520
5 li,j 1 &y 52 (M2 () -
(-1) 5 R A (pij VP ugdny ... dng|d&, ;2. .. dEp,
S Tk fl,m- lij— 511J 72 L
s [T [ (-1 ( ) [l dng} déi,,—s. .- d,

5=0

&2 J gl gl gt gl gt ,
p 0,15k 2% 3% e 35
[ G R G 69
where d‘z,1 = dg,Z - dg73 Nyt dg,hi—li,j =0 forl; ; < h;. Here, dil,d‘gg, dg,3, o ,dgh are

any constants emerged in the process of integration of i equation in (3.2) and (pl )(B)
is an Bt order derivative of the coefficient function ﬂj(:c), where 0 < r < hy, for all

i,j€4{1,2,3,...,m}.

Step 4. We can transform the equations (3.4) and (3.5) in Step 3 into a matrix form by
using the idea described in Chapter 2. Thus, for h; = l;;, (3.4) can be written in the

matrix form as

+ AhiP?,juj + dg,lxhz‘*l + dg,ZXhi*2 + dg,3xhz‘*3 Ealie dg,h,;x()’ (36)
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and for [; ; < h;, (3.5) can be written in the matrix form as

L
k‘l”’AhZ li,; [Z(_l)ﬁ( 5’]>AB(PLJJ)(B)UJ:|

B=0

" lij—1

wibsan b 37 () arely o)
5=0
b2 lii—2

ap 1, ij li;—2

4 Bl 2 A B lw+2[ Z (_1),6’< z]ﬂ >AB(P%’{J’ )(’B)uj]
B=0

+ AMPY ;o d] 3,1+ d] pxn o+ d] X + o ], xo, (3.7)

where
dg,l = dg,z = dg,:a A 4 dg,hrzi,j =0 for l; j < hi,

(P )@ = diag ((7%,)@ (@1), (85) O (w2), (5,) D (@5), ..., (5,) P (aar) )

&
h;—=l _h;—=l _h;—l h;—l
T 2o T, m R ] forl € {1,2,3,...,h;},

-1 = ity |
A =T (T*)~! as defined in Chapter 2,

T

fi = [ﬁ($1)7ﬁ(x2)aﬁ($3)v7ﬁ(xM)] )

w; = [a(x1), 45 (22), W5(w3), - . wj(xar)] " -

Simplified the above matrix equations, for h; =1, ;, (3.6) becomes

& [i(—vﬂ (')A,

B=0
hi—1
. d i—1 —
4 fphi—1 [ z(_l)ﬁ <h 8 )ABH(P% 1)(5)11]»]
hi—2

4 jphim2 [ S (1) <h15— 2> Aﬁ+2(PZ}_2)(5)uj:|
B=0

+ AMPY o+ d X, 1+ d]yXn, o+ A gxn, s+ L, Xo, (3-8)
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and for [; j < h;, (3.7) becomes

e L\ a5t ol
klz‘] [Z(_l)ﬁ ( BJ> Aﬂ+(ht l1”])(Pé"]- )(ﬁ)u]:|

5=0
hal lii—1
2li— VA i bi,j li ;=1 .
L [ 3 (_1),3< P >Aﬁ+(h Lt 1) (Bl )w)uj}
B=0
ha? lii—2
1li— 4,y i bij lij—2 .
L 2[ 3 (_1)/3( > )Azmh t+2) (ph )w)u]}
3=0
+ AhiP?,juj + dg,lxhﬁl R dg,thi-Z + dg,:axhﬁf} +---t dz,h,;XO' (3.9)

Next, the right-hand side (RHS) of i*" equation in (3.3) can written in the matrix form

Al
Now, we let
li; ;=B T "
K = Z jilii =B (_1)k< %J)Ak+hi—l,,,1+6 (Péfj_ﬁ) ’ (3.10)
B=0 k=0
for all j € {1,2,3,...,m}. Hence, we can simplify (3.2) in a matrix form
m h; Y
Z Kiju; + Z D pxXp, -, = AME;, (3.11)
Jj=1 k=1

where Djj, = Y7 df, for all k € {1,2,3, ., h;} and i € {1,2,3,..,m}.

Step 5. We write the given boundary conditions which have the number m of conditions
at the endpoints z = 0 and = = 1 into the vector forms by using linear combination (2.11)

and Lemma 2.1 (ii). Let p € NU{0} and 7 € {1,2,3,...,m}. Then, we obtain
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M-1 M—-1

3(0)= 3 e, T30) = 3 en, (~1)" = toge; = tos(T*) My,
n=0 n=0
M-1 M—-1

wj(1) = ) e, Ti(1) = ) e, ()" = torc; = to, (T uy,
n=0 n=0

2 2
_ " n® —k _
ugp) (O) = C”] (T )%p) (0) = C”J( 1)174‘71 H 2k + 1 tpvlcj = tPJ(T ) 1u.77
n=0 n=0 =0
aP(1) =3 e ()P = Y e, P ] tprCj =ty (T%) ",
2k +1
n=0 n=0 1=0
where
_ , AN _ . 4T
0 =1 02—k —1 02—k
(_1)p+ HZ:O 2k+1 Hi:o 2k+1
1 —1 122 -1 12—§2
(_l)er Hg:o 2k+1 Hi:o 2k+1
— 2 —1 22_}2 — —1 22_§2
ty = (—1)Pt Hi:o Ee and t,, = Z:O S
M—1T17p—1 (M—1)2—F? —1 (M—1)2—k?
_(_1)1)+ Hi—o 2k+1 _Hizo 2k+1

Note that, for left and right boundary conditions are defined by ﬂék) (0) =t (T*) tu; =
(k)
j

ke€{0,1,2,...,h; — 1} that their elements are substituted by 0 and 1, respectively.

by, and @; (1) = i (T*) " lu; = by,, where tp; and t;, are the row vector t; for

Let i,7 € {1,2,3,...,m}. We consider the given boundary conditions in terms of

ﬂgp)(:n) = by,,x € {0,1} for p,k € {0,1,2,...,h; — 1}, where by, € R. Thus, we have

tU(T*)_luj = bOj’
tl(T*)_luj = bljv

tQ(T*)_1Uj = bg],

th,—1(T) " uy = by, 1,
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For i,j € {1,2,3,...,m}, we can write the above all equations in the matrix form as

TZ‘(T*)flu]' = bz‘j, (3.12)
]T

where Ti = [to,tl,tg, oo ,thi_l]T and bij = [boj,blj,bgj, cooy bhi—lj

Note that, actually, we need exactly > ;" h; boundary conditions. In practice, all

missing conditions will be replaced by zero.

Step 6. We construct a linear system by using the matrix equation (3.11) together with

the boundary conditions (3.12). Then, we obtain the linear system in a block matrix form

K, Q u %%
= , (3.13)
R 0 D b

where 0 is the square zero matrix with size z := Y /" | h;,

Kii Ki2 Kin
Kor Koo K>
KO = = )
! Kml Km2 Kmm 1 oM scmM )
Xh1—1 X0 0 0
0 - 0 xpq - X O . ... 0
Q = ;
0 0
i 0 0 Xhm—l XO_mMXZ
u — [u17u2au37"'7um]—|—7
W = [AMT, Ahefy APfy . APeE,] T
*) — *\ — «—11T
R = [Ty(T*) 5 To(T*) . T (T
b= [Do, b1y bhy 1,000 B1as -5 bhg1yy -5 b0y b1 b 1]
D = [Di1,D12,...,D1p,,Da1,D99,...,Dapy, Dint, Dy oy D]
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Hence, we can solve the linear system (3.13) to find the approximate solution ()
of the system of m linear ODEs (1.1) for all j € {1,2,3,...,m}. We assume the K, and

RK; !Q are nonsingular matrices. Thus,
u=K:! [w - Q(RK;'Q) " (RK;'W — b)} . (3.14)

Finally, we can obtain the approximate solution u;(x) for « € [a,b] by using the linear

mapping = 7=
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3.2 Numerical Examples of System of Linear ODEs

In this section, we implement numerical examples with MatLab program to find
the approximate solutions of some system of m linear ODEs that have been interested in
several literature by using our numerical algorithm. For an error of the solutions, we use

*

7 and u; are

the absolute error £ = \uj(x) —uj(z)| for all j € {1,2,3,...,m}, where u
respectively the analytical and numerical solutions at each x in the domain. For the first

example, we start with a system of linear first order ODEs with constant coefficients.

Example 3.1. Consider the following system of linear first order ODEs over x € (0, 1)

ui(z) = —up(z) + 2ua(x), (3.15)

uy(z) = 2uy (x) — ua(x), (3.16)

with the initial conditions u;(0) = 3 and u2(0) = 1. The analytical solutions are uj(z) =

2e% + 3% and ub(r) = 2% — 37,

From this problem, we have fi(z) = 0 and fa(x) = 0. By using our numerical
procedure described in Section 3.1, we take single-layer integration both sides of (3.15)

and (3.16). Then, it can be transformed into a matrix form as

u; + Au; — 2Aus + Dy 1% = Afl,

uy — 2Au; + Auy + D271X0 = AE‘Q.

By using the initial conditions, we have u1(0) = to;(T*)'u; = 3 and u2(0) =
tos(T*)"tuy = 1, where tg; = [1,—1,1,...,(—1)M_1]T. Thus, we can construct the

linear system in a matrix form as

I+A —2A |x, O u; Af,
—2A I+A 0 xo us Af,
= . (3.17)
to (T*) 7t 0 0 0 Dy 4 3
0 to’l(T*)il 0 O D271 1
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We solve (3.17) to obtain the approximate solutions u; and ug of (3.15) and (3.16)
by taking M = 15. By substituting the solutions u; and ug into (3.14), we can get
the approximate solution wj(x) and ug(z) for each arbitrary z € [0,1]. We compare
the absolute errors of our approximate solutions wj(z) and ug(z) with those obtained
by the DTM [24] with M = 15 at € {0.6,0.7,0.8,0.9,1.0} as shown in Table 3.1.
Note that, the absolute errors of our approximate solutions and the solutions from [24] at
x € {0.1,0.2,0.3,0.4,0.5}, that computed by MatLab software, provide all zeros for both
ui(z) and ug(z). Figure 3.1 shows the graphical solutions of our approximate solutions

and the exact solutions with M = 40. The average run-time is 0.0546 seconds.

Table 3.1: A comparison of absolute errors of u;(z) for Example 3.1

z; DTM [24] FIM-SCP DTM [24] FIM-SCP

0.6 | 5.0000 x 1072  3.0300 x 1070 5.0000 x 1072 3.0300 x 10710
0.7 | 5.2000 x 107%  5.6200 x 10~'° 5.2000 x 107®  5.6200 x 10710
0.8 | 3.8600 x 10~7  7.8000 x 1010 3.8600 x 1077 7.8000 x 10710
0.9 | 2.2590 x 1076 7.3500 x 10~*° 2.2590 x 1076 7.3500 x 10710
1.0 | 1.0973 x 107®>  7.9900 x 10~19 | 6.3656 x 10710  1.0973 x 10~1©

Exact solution

Exact solution

O Approximate solution

O Approximate solution

-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
X

(a) A graphical solution for u;(x) (b) A graphical solution for ug(x)

Figure 3.1: The graph of the approximate and exact solutions in Example 3.1
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The second example is about the stiff system of linear ODEs in which our proposed

algorithm also give high accurate results.

Example 3.2. Consider the following stiff system of differential equations over € (0, 1)

uy(z) = —20u; (z) — 0.25uz(z) — 19.75us(z), (3.18)
uh(x) = 20u (x) — 20.25us(x) + 0.25u3(x), (3.19)
uh(x) = 20uy (x) — 19.75us(x) — 0.25u3(z), (3.20)
with initial conditions u1(0) = 1, u2(0) = 0 and u3(0) = —1. The analytical solutions are
* Iy e —20z :
uj(z) = S (e 21 € (cos(20z) + sm(20x))> ,
* Ly Ak —20z :
us(x) = 5 (e 2P —e (cos(20x) — sm(20x))> ,
* 1 1z —20zx :
uz(x) = 3 (e =¥ 4 e7 ¥ (cos(20x) — sm(20x))> .

From the problem, we have fi(z) = 0, fa(x) = 0 and f3(xz) = 0. By using our
numerical procedure described in Section 3.1, we take single-layer integration both sides

of (3.18), (3.19), and (3.20) and transform it into a matrix form

uy + 20Au; + 0.25Ausy + 19.75Aus + D1,1X0 = Afl,
—20Au; + ug + 20.25Aus — 0.25Au3 + Dy 1x9 = Afy,

—20Au; + 19.75Aus + uz + 0.25Aus + D3’1X0 = A?g
Next, from the given initial conditions can be written as

u1(0) = to (T*) tuy =1,
UQ(O) = to,l(T*)fllIQ =0,

’LL3(O) = t()’l(T*)_lllg = *1,

where tg; = [1, -1,1,..., (—1)M_1]T. Therefore, we can construct the linear system



into the matrix form as

I+20A 0.25A 19.75A |[xg 0 O uy Af,
—20A  I+20.25A —025A |0 xq O uy Af,
—20A 19.75A I+025A | 0 0 xo us Af;

to (T*)7t 0 0 0 0 O Dy 1 |
0 to(T*) ! 0 0 0 O Dsy 0
0 0 to (T)"*| 0 0 O D31 —-1
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(3.21)

We solve (3.21) to obtain the approximate solutions up, ug, and ug of (3.18), (3.19),

and (3.20). Therefore, we can get the approximate solutions wu;(x), uz(x), and us(z) for

each arbitrary = € [0, 1] by substituting the solutions u;, us, and ug into (3.14). We com-

pare the absolute errors of our approximate solutions with the absolute errors obtained

from RK-4 method [25] and DTM [24] by taking M = 16 as shown in Tables 3.2, 3.3,

and 3.4 corresponding to ui(z), uz(x), and ug(x), respectively. Note that, for M = 16 of

our FIM-SCP, it corresponds to N = 16 in [25] and [24]. Figure 3.2 plots the graphical

solutions between our approximate solutions and the analytical solutions with M = 40.

The average run-time is 0.0562 seconds.

Table 3.2: A comparison of absolute errors of u;(z) for Example 3.2

T RK-4 [25] DTM [24] FIM-SCP
0.002 1.48800 x 10~ 2.60000 x 10713 6.10622 x 10715
0.004 2.96886 x 10711 3.32882 x 10711 3.55271 x 1010
0.006 4.43044 x 10~ 5.68759 x 10710 4.55191 x 10715
0.008 5.86098 x 10711 4.26088 x 1079 1.66534 x 1015
0.010 7.25029 x 10711 2.03175 x 1078 5.5511 x 10716




Table 3.3: A comparison of absolute errors of us(z) for Example 3.2

z; RK-4 [25] DTM [24] FIM-SCP
0.002 1.487737 x 10711 3.00000 x 10~17 3.88578 x 10716
0.004 2.96886 x 10711 5.00000 x 10~17 1.11022 x 10716
0.006 4.43044 x 10711 <1077 7.21645 x 10716
0.008 5.86098 x 10711 < 10717 5.55111 x 10717
0.010 7.25029 x 10711 1.00000 x 10~16 3.05311 x 10716

Table 3.4: A comparison of absolute errors of us(z) for Example 3.2

T RK-4 [25] DTM [24] FIM-SCP
0.002 1.487737 x 1071 < 10717 4.55191 x 10~1°
0.004 2.96886 x 10711 2.00000 x 1016 3.88578 x 10717
0.006 4.43044 x 10~ < 10717 4.32987 x 10715
0.008 5.86098 x 10711 < 10717 5.55111 x 10716
0.010 7.25029 x 10~ 11 2.00000 x 10716 3.33067 x 10716

0.998

0.996

0.992

0.988

0.986

0.984

0.982

098

24

0 0002 0.004 0.006 0008 001 0 0002 0.004 0.008 0008 001 "o 0002 0.004 0.006 0.008 001

(a) A graph of uy(z) (b) A graph of ua(z) (c) A graph of uz(x)

Figure 3.2: The graph of the approximate and exact solutions in Example 3.2

The third example is the stiff system of linear ODEs, given by [26], which demon-

strates that our devised method also provides the high accurate results.
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Example 3.3. Consider the following stiff system of differential equations

uy (z) = 998u; (z) + 1998us(x), (3.22)

uh(x) = —999uq () — 1999us(z), (3.23)

for z € (0,0.001) with initial conditions u1(0) = 1 and u2(0) = 1. The analytical solutions

are UT(I') = e~ — 367100033 and u;(x) = 2¢ % ¢ 3671000:13.

From the example, we have fi(x) = 0 and fa(x) = 0. By using our numerical
procedure described in Section 3.1, we take single-layer integration both sides of (3.22)

and (3.23). Then, we transform it into a matrix form as

u; — 998Au; — 1998Aus + D171X0 = Aﬂ,

999Au; + us + 1999Au, + D2’1X0 = AE.

By the given initial conditions, we have @1(0) = to;(T*) 'u; = 1 and 42(0) =
to’l(T*)_IUQ = 1, where tg; is defined as same as Example 3.2. Thus, we can construct

the linear system in a matrix form as

I-998A —1998A |x, O u Af;
999A I+1999A | 0 xg uy Af,
= ) (3.24)
to (T*) 7t 0 0 0 Dy 1
0 to’l(T*)il 0 O D271 1

To obtain the approximate solution u; and usy of (3.22) and (3.23), we solve (3.24).
Hence, we can get the approximate solutions u;(x) and wug(x) for each arbitrary = € [0, 1]
by substituting the solutions u; and ug into (3.14). We compare the absolute error of
ui(x) and ug(x) with their analytical solutions for M = 10 as shown in Tables 3.5. Figure
3.3 shows the graphs of our approximate solutions with M = 40. The average run-time

is 0.0451 seconds.



Table 3.5:

Z

ui(z)

ug(x)

0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

0.0010

7.8000 x 10~14
1.7420 x 10712
1.3000 x 10713
2.6500 x 10713
1.5340 x 10712
6.0000 x 10~
4.8000 x 1014
1.3660 x 10~12
5.8400 x 10713

6.0800 x 10~ 13

6.9000 x 1014
1.7390 x 10712
1.3300 x 10713
2.6900 x 10713
1.5390 x 1012
7.2000 x 10~14
2.8000 x 10714
1.3800 x 1012
5.6800 x 10713

6.1100 x 10713

Exact solution

2.8 O  Approximate solution

u2

0 0.2 0.4 0.6
X

08 1
%10

(a) A graphical solution for u;(x)
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Numerical comparisons of u;(z) and ua(z) for Example 3.3

1

0.8

0.6

0.4r

0.2

ot

-0.2

-0.6

-1

-04

-0.8 1

Exact solution

O  Approximate solution

0

0.2 0.4
X

0.6

0.8

1
%103

(b) A graphical solution for us(x)

Figure 3.3: The graph of the approximate and exact solutions in Example 3.3

The last example for this section is a system of linear second order ODEs with

variable coeflicients.
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Example 3.4. Consider the following system of second order ODEs over = € (0,1)

uf (z) — ub(z) + uh(x) — e Fup(x) + eug(z) = e* — 2™ + ze” ¥, (3.25)
uy(x) + uf(z) — uh(z) —uy(z) = ve ™™ —e™ %, (3.26)
us(x) — uj(z) + ubh(z) + eug(x) + us(z) = 2™ — xe ™ + x, (3.27)

with boundary conditions u1(0) = 1, u1(1) = 2.718282, uz(0) = 0, ua(1) = 0.367879,

uz(0) =1, and ug(1) = 0.367879. The analytical solutions are uj(z) = €*, us(x) = ze™*

)

and uj(z) = e ".

From the example, we have fi(x) = e* — 2™ + ze™®, fo(x) = ze ™™ — 77,
fa(x) =2 —xe ™™ 4z, p(l),l(a:) =/HETS p(l)73(x) = e” and pgz(x) = ¢”. By using our
numerical procedure described in Section 3.1, we take double-layer integration both sides

of (3.25), (3.26), and (3.27). Then, we transform it into a matrix form as

Kiiuy + Kioug + Kyzus + Dy 1x;1 + Dy oxo = A%y,
Koiuy + Kaoug + Kozuz 4+ Do 1x1 + Daoxg = A%,

Kziu; + Ksouy + Kagus + D3 1x1 + D3oxg = A%fs,

where

Ky =T+A° (P?,l)(O)v Koy =A—-A? Kz =-A+A%
Ki2 = —-A, Ko =1, K3 = A+ A (Pg,2)(0) ’
Kis=A+ A? (P(l),B)(O) , Kog = —A, Kss =1.

Next, from the given boundary conditions can be written as

ur(0) = o (T*)tuy =1, ui(1) = to,(T*) 'uy = 2.718282,
UQ(O) = to’l(T*)_IUQ =0, U,Q(l) = t[)ﬂ»(T*)_IU.Q = 0.367879,
u3(0) = to (T*) tuz =1, wus(l) = to,(T*) 'us = 0.367879,
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where tg, = [1,1, ,...,(1)M*1]—r and tg; is defined as same as Example 3.2.

Thus, we can construct the linear system in a matrix form as

K11 K12 K13 X1 Xp 0 0 0 0 up A2f1
K21 K22 K23 0 0 X1 X 0 0 U A2f2
K31 K32 K33 0 0 0 0 X1 Xp us A2f3
to(T*)~! 0 0 0 0 0 0 0 O Dy 1
t1(T*)~! 0 0 0 0 0 0 0 O Dis | = 0
0 to(T*) ! 0 0 0 0 0 0 O Dy 1
0 t1(T*)~1 0 0 0 0 0 0 O Dy 2.718282
0 0 to(T)"*f0 0 0 0 0 O Ds 4 0.367879
0 0 t1(T"1fo 0o 0 0 0 O Ds 5 0.367879

To obtain the approximate solution u, ug, and and us of (3.25), (3.26), and (3.27),
we solve the above equation. Hence, we can get the approximate solutions u1(x), us(z),
and us(z) for each arbitrary = € [0, 1] by substituting the solutions uj, ug, and ug into
(3.14). We compare the absolute error of wj(z), ua(x), and ug(z) with their analyti-
cal solutions for M = 12 as shown in Tables 3.6. Figure 3.4 shows the graphs of our

approximate solutions with M = 40. The average run-time is 0.0598 seconds.

(a) A graph of u;(z) (b) A graph of ua(z) (c) A graph of uz(x)

Figure 3.4: The graph of the approximate and exact solutions in Example 3.4



Table 3.6: Numerical comparisons of ui(x), ua(x), and ug(z) for Example 3.4

T

ui(z)

ug(z)

us(z)

0.0043
0.0381
0.1033
0.1956
0.3087
0.4347
0.5653
0.6913
0.8044
0.8967
0.9619

0.9957

3.9968 x 1015
1.5543 x 10~1°
1.3323 x 10~
2.6645 x 10715
3.3307 x 10~15
8.4377 x 10715
6.4393 x 10~ 15
1.1102 x 10~
1.7319 x 10~
1.8652 x 10~
2.0872 x 10714

1.7764 x 10714

2.3999 x 10717
3.2335 x 10715
1.7625 x 101
3.8858 x 10715
3.3584 x 10715
3.1086 x 10715
3.2196 x 10~ 15
5.1625 x 10715
2.7200 x 10715
2.7756 x 10717
1.1657 x 1071

2.6090 x 10~1°

1.1102 x 10~
7.7716 x 10716
5.5511 x 10716
9.9920 x 10716
7.7716 x 10716
3.3307 x 10~16
5.5511 x 10716
1.5543 x 10~
4.9960 x 10~16
5.5511 x 10716
1.6653 x 10716

2.1094 x 101
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CHAPTER IV

SYSTEMS OF LINEAR IDES

In this chapter, we construct numerical algorithms for solving the system of m linear
IDEs which consist of the system of m linear VIDEs (1.3) and the system of m linear
FIDEs (1.4) with the given boundary conditions by hiring our proposed FIM-SCP. Finally,
we implement our numerical procedures on several numerical examples to demonstrate the
efficiency and the accuracy of our method. For (1.3), we compare the absolute errors with
Genocchi polynomials method (GPM) [27], single term Walsh series technique (STWS)
[28] and bi-orthogonal system (BOS) [29]. For (1.4), we compare absolute error with Tau
method (TAU) [16], the collocation method with Bessel polynomials (CM-BP) [17] and

the collocation method with Fibonacci polynomials (CM-FP) [18].

4.1 Algorithm for Solving System of linear VIDEs

We first introduce the system of linear m VIDEs with the given boundary conditions
which is the problem to be solved by letting w;(x) be the approximate solution of v;(z)

defined in (2.11), then (1.3) becomes
ZACZ'J’LL]'($) = fl(x) + Z )\i,j/ K@j(l’,f)ﬂj(ﬁ)dt, x € (a, b) (41)
j=1 j=1 @

(p) (

with the given boundary conditions u; xpg) = b; for i,j € {1,2,3,...,m}, where zpq
can be the boundary of the interval (a,b), b; € R, p € NU{0} and p < m. We apply the
idea of our proposed FIM-SCP described in Chapter 2 to deal with the integration term

in (4.1). Then, the numerical procedure for solving (4.1) is formulated. First of all, let

us consider each of the integration term in i*" equation of (4.1) for i € {1,2,3,...,m}
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which is denoted by

Ji’j(l') = /x K:Z'?j(x,t)u]'(t) dt, x € (a,b) (4.2)

for j € {1,2,3,...,m}. Thus, (4.1) becomes

m

Zzi,juj(x) = fi(x) + > XijJij(z), x € (a,b). (4.3)

j=1

Next, the numerical algorithm for solving systems of linear m VIDEs is devised in

the following steps:

Step 1. We use the linear mapping # = =2 to transform x € [a,b] into z € [0,1]. Let
k= +. Then, (4.1) for z € (a,b) becomes

EIMJLJ@x z e (0,1) (4.4)

where £; ;, DF, ﬁﬁ_.j (), 1;(Z), and f;(Z) are defined the same parameters in Step 1 of
Section 3.1, J; j(%) = [ Ki;j(2,8)u;(8) df and K; j(, ) = Kij((b— )T +a, (b— a)f +a).

Henceforth, the problem is considered over [0, 1].

Step 2. We discretize our domain [0, 1] into M nodes, which are the zeros xj of shifted

Chebyshev polynomial T} (z) defined in (2.2), as described in Step 2 of Section 3.1.

Step 3. We eliminate all derivatives of (4.4) by taking h;-layer integration from 0 to xy
on both sides of each i equation in (4.4) and using the technique of integration by parts
for all i € {1,2,3,...,m}, where h; is defined in Step 3 of Section 3.1 and xy, is defined
in (2.2). Thus, for the LHS of i*" equation of (4.4), we obtain the integral term similar
to the LHS of (3.4) for I; ; = h; and similar to the LHS of (3.5) for [; ; < h;. Next, the

RHS of i*® equation in (4.4) becomes

Ty & 1 [%*x § M _
i dé1...d&,. + = Niidiq d&q...dEy,..
/0 [ e ds a2 /O /0 ; ST (Ede .. den,
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Step 4. We apply the idea of our proposed FIM-SCP to transform jzj(xk) for all k£ €
{1,2,3,..., M} into the matrix form. By using the idea of the single-layer integration of

u; from 0 to xj, presented in Chapter 2, we have

Jij(xx) =/ Kij(zx, t)u;(0)dt
0
M —
= Zakﬁlci,j(xkaxﬁ)aj(xﬁ)
5=

= a K j (),

where Kz‘,j(ﬂ«"k) = diag (Ki,j($k;$1)7’€i,j<$k,$2)>I€i,j(wk7$3)7 cee Kz’,j(xkaxM)) and a, =

[ak1, ak2, aks, - . ., akpr]. Therefore, we obtain the matrix equation
Ji; = A'K] juy, (4.5)

where Jz"j = [ji,j(l'l), j@j(lﬂg), ji,j(aj‘g), v 4 jiJ(iUM)]T. A’ and K/i,j are M x M2 and

M? x M matrices, respectively, which can be written by the block matrices as follows:

aj 0 te 0 Ki,j(xl)
0 a [/ K, i(x
A = 2 . and K;j = l’]-( 2)
L 0 A 0 aMJ _Kz-,j(acM)_

Note that A := [a;]arxar is the first order shifted Chebyshev integration matrix which

is defined in Chapter 2.

Step 5. We transform the LHS of (4.4) presented in Step 3 together with the RHS of
(4.4) presented in Steps 3 and 4. Then, it can be simplified into a matrix form. Thus,
we obtain the matrix form of the LHS of the i*! equation in (4.4) similar to the LHS of
(3.8) for l; ; = h; and the matrix form of the LHS of the i*® equation in (4.4) similar to

the LHS of (3.9) for l;; < h;. Next, we change the RHS of i! equation in (4.4) into a
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matrix form by using (4.5). Then it can be written as

1 ik
AME + AP TN T,
k Zl 7] 7‘7
‘77
where £ = [fi(z1), fi(z2), fi(z3), ..., ﬁ(xM)]T Hence, we can simplify (4.4) into the

following matrix equation

m h; m
i 1
Z Kiju]‘ + Z Di,kxhi—k = Ah"fi + fAh’ Z Ai,jJi,ja (46)
j=1 k=1 k j=1
where K;; and D;j, for all k € {1,2,3,...,m} and i € {1,2,3,...,m} are defined the
same parameters in Step 4 of Section 3.1. Let us define H;; := %)\MA’“ A’I_{;J. Then, for

all i € {1,2,3,...,m}, (4.6) can be simplified in the form as

Z(Kij —H;j)u; + Z D pXp,_r = A, (4.7)
=1 k=1

Step 6. We can obtain the boundary conditions as same as (3.12) described in Step 5
of Section 3.1. After that, we use it and (4.7) to construct the linear system. Then, we

obtain the linear system in a block matrix form

K, Q u %%
R 0 D b

where W, Q, R, D, 0, u and b are defined the same in Step 6 of Section 3.1 and

Kin—-Hi Kipp—-Hip - Ky —Hip
Kot —Hyy Koo —Hay - Koy —Hay
K, =
L Kml - Hml Km2 - Hm2 e Kmm - Hmm 1 oM scm
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Hence, we can solve the linear system (4.8) to find the approximate solution u;(z)

of the system (1.3). We assume that K, and RK,1Q are nonsingular matrices. Thus,
u=K;' [W-Q(RK;'Q) " (RK;'W-b)]|. (4.9)

Finally, we can obtain u;(x) for « € [a, b] by using the linear mapping z = 7=2.
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4.2 Numerical Examples of System of Linear VIDESs

In this section, we apply our proposed numerical algorithm to find the approximate
solutions of some system of m linear VIDEs. We implement numerical examples with
MatLab program base on our numerical algorithm to show the efficiency and effectiveness
of our numerical algorithm. For an error of the solutions, we use the absolute error £
which defined by E = [u}(z) — u;(z)| for all j € {1,2,3,...,m}, where u} and u; are
respectively the analytical solution and the numerical solution at each z in the domain.
We start with the first example which is a system of linear first order VIDEs with constant

coefficients, constant kernel functions and polynomial forcing terms.

Example 4.1. Consider the following system of linear first order VIDEs over z € (0, 1)

ul(z) +Fug(z) =142+ 2% - / (u1(t) +ua(t)) dt, (4.10)
0
uhp(x) —ug(z) = —1—x — / (up(t) —ua(t))dt (4.11)
0
subject to the initial conditions u1(0) = 1 and u2(0) = —1. The analytical solutions are

uj(x) =z + €* and uj(z) = x — €.

In the example, we have f1(z) = 1+x+22, fo(z) = —1—2, K11(2,t) = K1 2(2,t) =
Koi(z,t) = Koo(x,t) =1, A1 = A2 = A1 = —1 and Ay o = 1. By using our numerical
procedure described in Section 4.1, we take one-layer integration both sides of (4.10) and

(4.11). Then, we can transform it into the matrix forms:

Iu; + Aus + D1,1X0 = Afl + A2A,K,171U1 + AQA/K,LQUQ,

—Au; +Iuy + D2,1X0 = AfQ + AQA,K,Zlul — AzA/K/ZQUQ
or its simplified form:

(K11 — Hip)wy + (Ki2 — Hig)ug + Dy 1x9 = Afy,

(Ka1 — Hap)uy + (Koz — Hao)ug + Do 1xg = Afy,
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where

Ky =1, Hy = A’A'K) ), Kip=A, Hp=A’AK),,

Koy =—-A, Hp = A2A/K/2,1, Koo =1, Hpp = _AQA/K/Z,?

The given initial conditions can be written in the matrix forms: u1(0) = to;(T*) " lu; =1

and u2(0) = toy(T*)'upg = —1, where to; = [1,-1,1,...,(=1)™~1]. Thus, we can
construct the linear system in the matrix form:
Kin—Hin Ki2—Hiz [x0 0 u; Af)
Ko —Ha Kax—Ha | 0 xg uy Af,
= ) (4.12)
to,(T*) 71 0 0 O Dy 1
0 tou (Tt 0 O Dy —1

We obtain the approximate solutions u; and up of (4.10) and (4.11). After that,
by substituting the solutions u; and ug into (4.9), we can get the approximate solutions
ui(x) and ug(z) for each arbitrary x € [0, 1]. A comparison of the absolute error between
the numerical solutions uq(x) and ua(z) obtained by our proposed method and the other
methods such as the GPM [27] and the BOS [29], with their exact solutions by using
M = 8 as shown in Tables 4.1 and 4.2. With M = 8, our method corresponds to N = 8
in [27] and h = 4, j = 33 in [29]. Figure 4.1 shows the graphs of the approximate and

exact solutions with M = 40. The average run-time is 0.0437 seconds.

Table 4.1: A comparison of absolute errors of u;(z) for Example 4.1

; GPM [27] BOS [29] FIM-SCP

0.2 1.19266 x 1078 4.94774 x 1078 9.05715 x 10719
0.4 1.31366 x 1078 2.72109 x 10~7 1.79678 x 10~?
0.6 1.21589 x 1078 8.98239 x 10~ 1.75629 x 10~
0.8 1.57033 x 1078 3.11105 x 1077 1.38063 x 1079
1.0 2.57296 x 1078 1.50285 x 107° 6.36561 x 10710
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Table 4.2: A comparison of absolute errors of ug(x) for Example 4.1

i GPM [27] BOS [29] FIM-SCP

0.2 7.56814 x 1079 3.47816 x 1076 4.55619 x 10710
0.4 6.17369 x 10~ 1.51051 x 107° 1.01455 x 1079
0.6 3.71515 x 1079 3.71146 x 1075 7.71357 x 10710
0.8 2.14741 x 1078 7.24787 x 107° 3.26418 x 10710

1.0 1.95063 x 108 1.24516 x 104 3.58086 x 10710

Exact solution
A4 O Approximate solution fy

Exact solution

O Approximate solution p

8
AT %

L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(a) A Graphical solution for u;(x) (b) A Graphical solution for ua(x)

Figure 4.1: The graph of the approximate and exact solutions in Example 4.1

The second example is a system of linear second order VIDEs with variable coeffi-
cients, polynomial forcing terms and kernel functions are in term of functions depending

on variables z and ¢.

Example 4.2. Consider the following system of linear second order VIDEs over x € (0, 1)

uf (z) + (=322 — 62 4 Tuy (z) — 222 (x + Dug(z) = 2t — 23 — 227 — 6
+ / (3 — 23)uy (t) dt + / 22 (1% — 2%)ua(t) dt, (4.13)
0 0
uhy(z) + 2(x — Dug(z) + (22 + 223 + 222 — Dug(x) = 2t 4 323 — 2

+ /Oz(x‘" — 1))y (t) dt — /0m 22(t2 + 2¥)up(t)) dt (4.14)
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subject to the initial conditions u;(0) = 1, u2(0) = 1, w}(0) = 1 and u4(0) = —1. The

analytical solutions are uj(z) = e* and uj(x) = e~ .

From the problem, we have m = 2, fi(z) = 2* — 23— 222 —6, fo(z) = 2* + 323 - 2,
p(il =322 —6z+7, p(1)72 = —22%(x + 1), p8,1 =2(z —1), pg2 =224 + 223 + 222 — 1,
Kia(z,t) = 3—23, Kia(z,t) = 22(2 —22), Ko (z,t) = 22 =12, Koo(z,t) = —22(t2+22)

and )\171 = )\1,2 = )\2,1 = )\272 =1.

By using our numerical procedure described in Section 4.1, we take double-layer
integration both sides of (4.13) and (4.14), respectively. Then, we can transform them

into the matrix forms to obtain

(I + AQ(P?VI)(O)) u; + AQ(P?VQ)(O)LIQ + D1’1X1 <+ DLQXO
= A%f) + A’A’K] ju; + A’A'K yus,
AQ(P%l)(O)ul + (I + A2(P872)(0)) us + D271X1 - D272X0

= A*f) + A’A’K) ju; — A’A'K) Hus.
We rearranged the above equations into the simplified matrix forms:

(K11 — Hip)w + (Kio — Hig)us + Dy 1x1 + Dy axg = Afy,

(Ko1 — Hap)uy + (Kag — Hop)us + Do 1x1 + Do oxg = Afy,

where
Ky =I+A%P))O Hyj =A?AK] ),

Ki» = A%(P?,)), Hyp = AA’KY ,,

Kj = A%(PY ), H, = A’A'K) |,

Koy =1+ A%(PY,)0), Hy = -A?A’K),.
The given initial conditions, we get u1(0) = to;(T*) 'uy = 1, u2(0) = to(T*) " tug = 1,
u}(0) = t1,(T*)"tuy = 1 and uh(0) = t1,(T*)"tug = —1, where to; are defined in

Example 4.1 and t;; = [0,1,—4,...,(—1)M(M — 1)2}. Hence, we can construct the



linear system in the matrix form:

- Ki—Hip Kig—Hpp|xp xo 0 0 1 u - A%y -
Ko1 —Hzy Koo—Hze | 0 0 x1 Xg uy A%,
to(T*)7t 0 0 0 0 O Dy 1
1, (T*)7t 0 0 0 0 O D15 1

0 to (T*)"']0 0 0 O Dy 1
0 t (T 0 0 0 0 Dy -1
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(4.15)

Hence, we solve (4.15) to obtain the approximate solutions u; and ug with M = 8.

After that by substituting the solutions u; and ug into (4.9), we can get the approximate

solutions wuj(x) and wug(x) for each arbitrary = € [0,1]. We compare the absolute errors

which are given by our numerical algorithm with the STWS [28] by using M = 8 as shown

in Table 4.3 together with the graphs between our approximate solutions and the exact

solutions with M = 40 depicted in Figure 4.2. With M = 8, our FIM-SCP corresponds

to m = 200 by [28]. The average run-time is 0.0880 seconds.

Table 4.3: A comparison of absolute errors of u;(z) and uy(z) for Example 4.2

uy(x;) ug(x;)

. STWS [28] FIM-SCP STWS [28] FIM-SCP

0.1 3.25 x 1077 NGKORN X 1.64 x 1077 2.23 x 10710
0.2 8.59 x 1077 1.49 x 10710 2.25 x 1077 2.66 x 10710
0.3 1.58 x 1076 1.68 x 107 1.59 x 1077 9.29 x 1010
0.4 2.46 x 1076 4.52 x 10710 5.95 x 1078 4.79 x 10710
0.5 3.50 x 1076 8.52 x 10710 4.60 x 1077 2.64 x 10~ 1
0.6 4.70 x 1076 5.03 x 10710 1.06 x 1076 5.35 x 10710
0.7 6.06 x 1076 1.82 x 107 1.87 x 1076 9.62 x 10710
0.8 7.57 x 1076 1.31 x 10719 2.85 x 1076 3.15 x 10710
0.9 9.26 x 1076 2.74 x 10710 3.87 x 1076 3.37 x 10710
1.0 1.11 x 107° 4.44 x 10712 4.69 x 1076 2.39 x 10710
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Exact solution 4 Exact solution
O Approximate solution o O Approximate solution
- 0.9

0.8
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(a) A graphical solution for u;(x) (b) A graphical solution for ug(x)

Figure 4.2: The graph of the approximate and exact solutions in Example 4.2

The next example is a system of linear second order VIDEs with variable coefficients,

constant kernel functions and the forcing terms of trigonometry and exponential functions.

Example 4.3. Consider the following system of linear second order VIDEs over x € (0, 1)

uf () + 2zuy (z) — wi(x) = 2+ & — e¥ + 2ze” — cos(z) + /Ox(ul(t) —ug(t))dt, (4.16)

uh(x) + ub(z) — 2zus(x) = =3z — € — (1 + 2x) sin(x) + 2 cos(z) + /Ox(ul(t) + ug(t)) dt

(4.17)

with initial conditions u1(0) = u2(0) = u}(0) = u5(0) = 1. The analytical solutions are

uf(z) = e® and ud(x) = 1 + sin(z).

From the example, we know that m = 2, pil =2z, p872 = 2z, fi(r) =2+zx—€"+

21’696—008(117), fg(&?) =—-3r—e"— (1+21’) Sin(l‘)—}—QCOS(l‘), )\171 = )\172 = )\2,1 = )\272 =1.

By using our numerical procedure described in Section 4.1, we take double-layer
integration both sides of (4.16) and (4.17), respectively. The problem can be transformed

and simplified into the matrix forms as

(Ky1 — Hip)ug + (—Hy)ug + Dy1x; + Dyoxo = A%,

(=Ha1)u; + (Kao — Hao)ug + Do 1x1 + Daoxo = A%y,
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where

Kii =I+APL)O - A2P1 D + A2(PY ), Koy =T+ A + A%(PY,)©),

HH = A2A/K/171, H12 = —A2A/K/172, H21 = AQA/KIZl and H22 = A2A/K/272.

The given initial conditions can be written in a matrix form as u1(0) = to,;(T*)"tu; = 1,
UQ(O) = to,l(T*)fllIQ =1, u’l(O) = tLl(T*)*lul = 1 and UIQ(O) = tLl(T*)*llJQ =1,
where to; and tq; is defined in Examples 4.1 and 4.2, respectively. Hence, we can construct

the linear system in a matrix form as follows

- Ky —Hyy —Hypo x3 xo 0 0 1 uy - - A%fy -
—Hoy; Ky —Hyx | 0 0 x1 X u A%
to(T*)~! 0 0 0 0 O Dy _ 1 (418)
t1(T*)~! 0 0 0 0 O Dy o 1
0 to(T*)"* |0 0 0 O Doy 1
0 t1(TH"1 10 0 0 O Ds o 1

Hence, we solve (4.18) with M = 8 to get u; and ug of (4.16) and (4.17). To find
the approximate solutions w;(x) and ug(x) for each arbitrary = € [0, 1], we substitute uy
and ug into (4.9). Then, we compare our absolute errors with those given by [27] and [28]
by taking M = 8 as shown in Tables 4.4 and 4.5. Finally, the approximate and exact

solutions with M = 40 is shown in Figure 4.3. The average run-time is 0.0503 seconds.

2.8 1.9
p Exact solution p

Exact solution

O  Approximate solution

26 O Approximate solution 1.8

24 1.7

22 1.6

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(a) A graphical solution for u;(x) (b) A graphical solution for ug(x)

Figure 4.3: The graph of the approximate and exact solutions in Example 4.3



Table 4.4: A comparison of absolute errors of u;(z) for Example 4.3

; GPM [27] STWS [28] FIM-SCP

0.1 9.10139 x 10710 2.28 x 10710 8.13771 x 10710
0.2 1.85461 x 107 4.89 x 1077 5.67609 x 10710
0.3 3.29800 x 1079 7.74 x 1077 2.35358 x 107
0.4 1.07693 x 108 1.08 x 1076 1.29180 x 10~
0.5 2.40393 x 108 1.38 x 107 6.50428 x 10~
0.6 3.27914 x 1078 1.69 x 107¢ 1.12844 x 107
0.7 2.40101 x 1078 2.00 x 1076 2.36337 x 1079
0.8 5.52469 x 10~ 2.29 x 1076 6.91728 x 10710
0.9 4.26837 x 1078 2.56 x 1076 7.30513 x 10710
1.0 6.83253 x 1078 2.81 x 1076 8.88178 x 10716

Table 4.5: A comparison of absolute errors of us(z) for Example 4.3

z; GPM [27] STWS [28] FIM-SCP

0.1 2.22861 x 10719 1.79 x 1077 1.92190 x 10~10
0.2 4.35240 x 10~10 3.09 x 107 1.04064 x 1010
0.3 8.04688 x 10~1° 3.99 x 1077 6.12261 x 10710
0.4 2.97754 x 1077 4.58 x 1077 2.95272 x 10719
0.5 7.13762 x 107 4.91 x 1077 1.30359 x 10~10
0.6 1.02531 x 1078 5.03 x 1077 2.05141 x 10710
0.7 7.59375 x 1079 4.96 x 1077 6.03731 x 10710
0.8 3.32624 x 1077 4.72 x 1077 1.45898 x 10~10
0.9 1.93192 x 1078 4.31 x 1077 1.29673 x 1010
1.0 3.35382 x 1078 3.70 x 1077 4.44089 x 10716

42

The last example for this section is a system of linear first order VIDEs with constant

coefficients, variable kernel functions and the forcing terms of polynomials.
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Example 4.4. Consider the following system of linear first order VIDEs over x € (0, 1)

ui(z) =14z — %x:g + /Ox(x — t)uy(t)dt + /Ox(a? — t)ua(t)dt, (4.19)
() =1— o — %2:& + /0 "o — Y (t)dt — /0 Cw— ua(dt,  (4.20)

with boundary conditions u1(0) = 1 and u1(1) = 1.5 The analytical solutions are uj(z) =

z+ 322 and uj(z) =z — 327

From the example, we know that m = 2, fi(z) = 1+x — %x?’, folz) =1—2x— 1—123;4,

Kl,l(x,t) = KLQ(.CI},t) = Kg}l(x,t) = T — t7 K272(.%',t) = —(iC — t), and )\1,1 = /\1’2 =

)\271 = )\2,2 =1.

By using our numerical procedure described in Section 4.1, we take single-layer
integration both sides of (4.19) and (4.20), respectively. The problem can be transformed

and simplified into the matrix forms

(K11 — Hip)ug + (=Hyg)us + Dy 1x0 = Afy,

(—Ha21)u; + (Ko2 — Hao)ug + Do 1x0 = Afy,

where

K = I, Ko = I, H{ = AA/K,l,lv Hqi = AA/K,LQ, Hy = AA,K,ZJ, Hoy = —AA/K/Q,Q.

The given boundary conditions can be written in the matrix forms as follow u(0) =
tojl(T*)_lul = 1, and u1(1) = to,(T*)"tu; = 1.5, where to; and to, is defined in
Examples 4.1 and 4.2, respectively. Hence, we can construct the linear system in a matrix

form as follows

K1 — Hpp —Hio xp O up Afy
—Hoy Ko —Hz | 0 xg up Af,
_ . (4.21)
to(T*)~! 0 0 0 D14 1
0 to(T)™1 | 0 0 Dy 1.5
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Hence, we compute (4.21) with M = 10 to get u; and ug of (4.19) and (4.20). To

find the approximate solutions w1 (z) and ug(x) for each arbitrary = € [0, 1], we substitute

u; and uy into (4.9).

Exact solution

O Approximate solution

ul

0.5

0

0 0.2 0.4
X

(a) A graphical solution for u;(x)

0.6

0.8 1

Y 0.25

Exact sol.

O Approximate sol.(FIM-SCBS)

0.2 0.4 0.6
X

0.8 1

(b) A graphical solution for us(x)

Figure 4.4: The graph of the approximate and exact solutions in Example 4.4

Then, we compare our absolute errors with the analytical solutions by taking M =

10 as shown in Tables 4.6. Finally, the approximate and exact solutions with M = 40 is

shown in Figure 4.4. The average run-time is 0.0889 seconds.

Table 4.6: Numerical comparisons of u;(z) and ug(z) for Example 4.4

T

u ()

uz ()

0.0062
0.0545
0.1464
0.2730
0.4218
0.5782
0.7269
0.8536
0.9455

0.9938

5.3949 x 10716
6.5919 x 10716
5.2736 x 10716
6.1062 x 10716
2.2204 x 10716
1.1102 x 10716
8.8818 x 10716
8.8818 x 10716
2.4425 x 10715

2.2204 x 101

2.0144 x 10714
2.1233 x 10714
1.9651 x 10~
1.8874 x 10~
2.0872 x 10714
1.9040 x 10~
1.7097 x 10~ 14
1.7652 x 10~
1.9706 x 10~

1.8541 x 1014
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4.3 Algorithm for Solving System of linear FIDEs

In this section, we can devise a numerical algorithm for solving a system of linear
m FIDEs with the given boundary conditions which is the problem to solved by letting

u; to be the approximate solution of v; as defined in (2.11), then (1.4) becomes
m m b
> Lijui(x) = fi(z) + > Nij / Kij(z, tyu(t) dt, = € (a,b) (4.22)
j=1 j=1 a

with the given boundary conditions ug-p) (xpd) = b; for i € {1,2,3,...,m}, where xpq can
be the boundary of the interval (a,b), b; € R, p € NU{0} and p < m. Then, we apply the
idea of Chapter 2 to formulate the procedure for solving (4.22). Similarly to the system
of m linear VIDES, let us consider each of the integration term in i*" equation of (4.22)

for i € {1,2,3,...,m} which is denoted by

Gi,j(l') = /b ICM(m,t)uj(t) Clt, (423)

for 7 €{1,2,3,...,m}. Thus, for all i € {1,2,3,...,m}, (4.22) becomes

m

m

Y Lijui(x) = filw) + > XijGij(@), « € (a,b). (4.24)
Jj=1 J=1

We construct the numerical procedure for finding approximate solutions of the

system of m linear FIDEs. Steps 1 to 3 of the procedure for solving the system of linear

VIDEs as described in Section 4.1 can be used to construct an algorithm for solving the

system of m linear FIDEs. The numerical algorithm is devised by the following steps:

Step 1. We use the linear mapping z = =2 to transform x € [a, b] into Z € [0,1]. Let
k= 5. Then, (4.24) for z € (a,b) becomes

> Ligus@) = i) + ]i > NisGig(@), @€ (0,1) (4.25)

where £; j, ;(Z) and f;(Z) are defined in Step 1 of Section 3.1, G; j(z) = fol Ki (@, t)u;(t)dt
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and K; ;(zZ,%) = K; ;((b— a)Z + a, (b — a)t + a).
Step 2. We mesh our domain [0, 1] into M nodes as described in Step 2 of Section 3.1.

Step 3. We eliminate all derivatives from (4.25) by taking h;-layer integration from 0 to
x1, on both sides of each i*® equation in (4.25) and using the technique of integration by
parts for all i € {1,2,3,...,m}, where h; is defined in Step 3 of Section 3.1 and zj, is the
zeros of the shifted Chebyshev polynomials described in (2.2). Thus, for the LHS of i'!
equation of (4.25), we obtain the integral term similar to the LHS of (3.4) for [; ; = h; and

similar to the LHS of (3.5) for I; ; < h;. Next, the RHS of i*" equation in (4.25) becomes

Ty &2 1 [T § M B
i dé1...d&. + = NiiGii déq...dEy. .
/O ; fi(&1) déy ... dép, + k/o /0 ; G (&)dér ... d&p,

Step 4. We apply the idea of the single-layer integration of u; from 0 to 1 described by
(2.14) in Section 2.2 to transform Gj;(xx) for all k € {1,2,3,...,m} into the matrix

form. Thus, we can get

1
G (o) = /0 R (e Dty (D)l = B(T*) Ko (ap)uy = BE, (),

where B = b(T*)"!, b = [TS(I),TT(U,T;(I),...,TL_l(l)] for each entry can be

found in (2.8), Ki7j(.il:k) = diag(lCm(xk,xl),ICi,j(xk,a:g),lCm(xk,xg), . -aICi,j(frkaxM))

and u; = [a;(z1), 45 (xa), Uy (3), . . ., wj(zar)]

Next, we vary each zj for k € {1,2,3,..., M} to transform Gj;(z;) into the

following matrix equation as

Gi,j(flil) B 0 s 0 Kz"j(l‘l) Uj(.%‘l)
G’Z”j(SUQ) _ 0 B . KL]'(CCQ) uj(xg)
. 0 . .
—Gi’j(xM)— IxM —O o 0 B— MxM? —Ki’j(xM)— M2xM _Uj(l'M)_ Mx1
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that is denoted to the simplified form:

Gz‘,j = B/ ¢ uy. (4.26)

1,J

Step 5. We transform the LHS of (4.25) presented in Step 3 together with the RHS of
(4.25) presented in Steps 3 and 4 and simplify it into a matrix form by using the idea of
FIM-SCP described in Chapter 2. Thus, we obtain the matrix form of the LHS of the
i equation in (4.25) similar to the LHS of (3.8) for I; ; = h; and the matrix form of the

LHS of the i*" equation in (4.25) similar to the LHS of (3.9) for l; ; < h;.

Next, we change the RHS of it? equation in (4.25) into the matrix form by applying

(4.26) similar to the idea described in Step 5 of Section 4.1. Then, it can be written as

= 1 A ol
AME+ AN N jGig = AME + AN, ) B ju;,
j=1 Jj=1

where f; = [ﬁ(.ﬁbl),ﬁ(xg),ﬁ(,fg),...,fi(l‘M)]T. Hence, we can simplify (4.25) in the

following matrix equation
m h; - 1 m B
> Kijuj+ > Djpxp,— = AN + EA’“ Xij Y B'Kjjuy, (4.27)
j=1 k=1 j=1

where K;; and D;y, for all k € {1,2,3,...,m} and ¢ € {1,2,3,...,m} are defined in

Step 4 of Section 3.1. Let us define Hj; := 1)\i,jAh’?B’K;’j. Consequently, (4.27) can be

Tk
simplified in the form as
m hl _
Z(Kz’j - Hj;)u; + Z D; pXp, -, = A", (4.28)
j=1 k=1

for all i € {1,2,3,...,m}.

Step 6. We can obtain the boundary conditions as same as (3.12) presented in Step 5 of

Section 3.1. After that, we use it and (4.28) to construct the linear system. Then, we
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obtain the linear system in a block matrix form

Ke Qe (W (4.29)

R 0 D b

where W, Q, R, D, 0, u and b are defined the same in Step 6 of Section 3.1 and

Kin-Hj;  Kpp-Hjp - K —Hp,
Ko —Hy Ky —Hj -+ Ko —Hj,
Ky = . .
i Ky — H;nl K2 — H/m2 o Kom — H;nm 1 oM scm

Hence, we can solve the linear system (4.29) to find the approximate solutions ()
of the system of linear m FIDEs (1.4) for all j € {1,2,3,...,m}. We assume that Ky

and RK;IQ are nonsingular matrices. Thus,
-1
u=K;' [W ~Q (RK;1Q> (RK;lw _ b)] . (4.30)

Finally, we can obtain the approximate solutions u;(z) for « € [a,b] by using the linear

mapping T = 7=

Q
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4.4 Numerical Examples of System of Linear FIDEs

In the section, we implement numerical examples to find the approximate solutions
of some system of m linear FIDEs by using our proposed method with Matlab program.
We compare our results with the analytical solution to show the efficiency of our numerical
algorithm. For an error of the solutions, we use the absolute error £ which defined by
E = |uj(z) — u;(z)| for all j € {1,2,3,...,m}, where u} and u; are respectively the

analytical and numerical solution at each x in the domain.

We start with the first example which is a system of linear second order FIDEs with
constant coefficients, kernel functions and the forcing terms are in terms of trigonometry

and exponential functions.
Example 4.5. Consider the following system of linear second order FIDEs for z € (0, )

uf (x) + uhy(z) = 2(e” — sin(x)) — /07r e’ (uy(t) — ua(t)) dt, (4.31)

2u) (x) + uf(z) = (1 + =) cos(x) — —gsin(z) - /07r cos(x 4+ t)(ur(t) +ua(t))dt (4.32)

N[

with the boundary conditions u;(0) + u}(0) = 1, ui(m) + u)(7) = —1, u2(0) + uH(0) =1

and ug () + uh(w) = —1. The exact solutions are u}(z) = sin(z) and uj(z) = cos(z).

From the problem, we have fi(z) = 2(e® —sin(z)), fa(x) = (14F) cos(x) — § sin(z),
Kii(z,t) = —€e*, Kia(x,t) = —e”, Koi(z,t) = —cos(z + t), Kaa(z,t) = —cos(z + t)

and A;1 = A2 = A2 = Ao o = 1. First, we transform x € [0, 7] into z € [0, 1] by using

T =72 Let k= % Then, we obtain
1 1 _
pu'{(i) + ;ué(i" / Ki1(z, t)ui(t) + 7T/ K12(z, t)us(t) dt,
2 1 _
full(.’f) + ﬁug(:i = / .’/U f)ul t_) + 7T/ ICQ’Q(E,E)UQ(E) dt,

where fi(Z) = 2(e™ —sin(n2)), fo(Z) = (14 Z) cos(rz) — 3 sin(nz), K1,1(Z, ) = —€™,
Ki12(%,t) = —€™, Ka.1(Z,t) = — cos(nrZ+7t) and K22(Z,t) = — cos(rZ+7t). The exact
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solutions become uj(z) = sin(nz) and u3(z) = cos(nz).

Next, we take double-layer integration both sides of (4.31) and (4.32) and transform
its into the matrix form by using our numerical procedure described in Section 4.3. Then,

we rearrange its into a simplified matrix form

(Kq1 — Hiw + (Kig — Hiy)us + Dy1x1 + Dy oxo = A%y

(Kgl - H/Zl)ul + (K22 — H/22)112 + D2,1X1 + D272X0 = AZE‘Q,

where

K =51, Hj, =7A’B'K),, Kiz=%A, Hj, =7A’BK) ),

Ky = 2A, Hjy =7A’B'K);, Ky =51, Hy =71A’BK),.

2

The given boundary conditions can be written to the matrix forms:

ul(O) + u'l(()) = (t()J(T*)_l + tu(T*)_l)ul =1,
up () 4 ) (1) = (b (T*) 7' 4 t1,(T*) Huy = —1,
ug(0) +ub(0) = (to (T~ 4+ t1(T*) Hug = 1,

ug (1) + uhy(m) = (b0, (T*) ™ + t1,(T*) Huy = —1,

where

to, = [1,-1L,1,.... (=DM, t1;,=[0,1,—4,...,(-D)M(M - 1)?],
tor = [1,1,1,..., 1] and  t1, =[0,1,4,...,(M —1)?].



Therefore, we construct a linear system in a matrix form as follows

i K, — HY; K2 — HY, xX; Xo 0 O 1T u; AZf)
Ky — HY, Ko — HY, 0 0 x5 xo us AZf,
(to, + t1,)(T*) 71 0 0 0 0 O D14 1
(to,r + t1,)(T*) 7t 0 0 0 0 O D15 -1
0 (toy+t1)(T)"'{0 0 0 0 Dsy 1
0 (toy+t1)(T)"1{0 0 0 O Dsy -1

51

After solving the above matrix equation, we can obtain the approximate solutions uy

and ug of (4.31) and (4.32) and take these equations to (4.30), then we get the approximate

solutions u (z) and uz(x) for each arbitrary « € [0, 1]. A comparison of the absolute errors

of our proposed method with the TAU [16] by using M = 5, M = 10 and M = 15 as

shown in Tables 4.7 - 4.12. Figure 4.5 shows the graphical solutions of our approximate

solutions with the exact solutions. The average run-time is 0.0572 seconds.

Table 4.7: A comparison of absolute errors of u;(x) for Example 4.5 (M = 5)

T

TAU [16]

FIM-SCP

1/5)m

2/5

(1/5)
(2/5)
(3/5)
(4/5)

s

4.106683 x 1073
3.394788 x 1073
1.828708 x 10~*
3.080457 x 1073
1.122245 x 1072

9.431156 x 1073

8.326673 x 10717
1.647847 x 1073
3.441410 x 10~*
3.786036 x 10~
3.093337 x 1073

2.473648 x 10716




Table 4.8: A comparison of absolute errors of ug(z) for Example 4.5 (M = 5)

T

TAU [16]

FIM-SCP

(1/5)m
(2/5)
(3/5)m
(4/5)

™

s

1.885015 x 1072
7.915380 x 1073
3.003007 x 1073
3.215101 x 1073
1.402093 x 1073

1.051111 x 1073

4.440892 x 10716
5.529300 x 103
7.344982 x 1074
3.313541 x 1073
4.408611 x 1073

1.554312 x 10715

Table 4.9: A comparison of absolute errors of u;(x) for Example 4.5 (M = 10)

TAU [16]

FIM-SCP

4.420342 x 1078
1.247323 x 1078
2.136281 x 1078
5.186232 x 1078
6.725784 x 1078

5.403331 x 10~8

9.992010 x 10~ 16
5.209195 x 1078
1.458277 x 1078
1.848885 x 1078
1.426471 x 1078

3.147822 x 10715

Table 4.10: A comparison of absolute errors of us(z) for Example 4.5 (M = 10)

T

TAU [16]

FIM-SCP

(1/5)m
(2/5)
(3/5)m
(4/5)

™

s

4.701099 x 10~8
2.261104 x 1078
3.873452 x 1078
4.240854 x 107
3.007024 x 1078

2.175167 x 108

1.110220 x 10716
3.243422 x 1078
2.639139 x 1078
5.453175 x 1079
1.499293 x 1078

9.992007 x 10716

52



Table 4.11: A comparison of absolute errors of u;(z) for Example 4.5 (M = 15)

Table 4.12: A comparison of absolute errors of ug(x) for Example 4.5 (M = 15)

0.9
0.8
0.7
0.6
0.5

S
0.4
0.3

0.2

0.1

xi TAU [16] FIM-SCP

0 1.304721 x 107? 2.775558 x 1016
1/5)7 5.264506 x 10~° 2.788880 x 1013
(1/5)
2/5)w 4.701600 x 10~° 2.966516 x 10713
(2/5)
(3/5) 1.430526 x 10~° 3.603784 x 10713
4/5)7 1.865835 x 108 4.463097 x 10713
(4/5)

T 1.405449 x 10~° 1.931448 x 10~1°

; TAU [16] FIM-SCP

0 6.028561 x 1079 4.440892 x 10716
(1/5)7 3.606308 x 1077 8.104628 x 10713
(2/5) 5.473832 x 10~? 6.925571 x 10713
(3/5)m 7.694197 x 107° 1.331713 x 10713
(4/5) 8.618511 x 10~ 3.380629 x 1013

T 6.447411 x 107° 8.88178 x 10716

Exact solution

O Approximate solution

0

(a) A graphical solution for u;(x)

Figure 4.5: The graph of the approximate and exact solutions in Example 4.5

0

0.2

0.4
X

0.6

0.8 1

Sorst

Exact solution
O Approximate solution

0.2 0.4 0.6
X

0.8

1

(b) A graphical solution for us(x)
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The second example is a system of linear second order FIDEs with constant coeffi-
cients, polynomial forcing terms and kernel functions are in terms of functions depending

on variables x and ¢.

Example 4.6. Consider the following system of linear second order FIDEs over z € (0, 1)
3 1 1
(@) + s () = 307 S 8- / (2at)ur(t) di + / (6zt)us(t) dt, (4.33)
0 0

1 1
o (2) + ul(z) = 23+ g _ /0 3(20 + £2)u (¢) dt + /O 620 + P)us(t) dt (4.34)

with the boundary conditions w1 (0)+u}(0) = 1, uq (1) +u} (1) = 10, uz(0)+u4H(0) = 1 and

u2(1) +ub(1) = 7. The analytical solutions are uj(z) = 32% + 1 and u}(z) = 23 + 22 — 1.

In this example, we have fi(z) = 32%+ 22 +8, fo(z) = 21z +3, Ky1(2,t) = —2at,
]Clyg(:l,‘,t) = 6:ct, ’C271(33,t) = —3(2$+t2), K272($,t) = 6(2$+t2) and )\171 = /\172 = )\271 =

)\2’2 =1.

By using our numerical procedure described in Section 4.3, we take double-layer
integration both sides of (4.33) and (4.34). The problem can be transformed and simplified

into the matrix form as

(Kq1 — Hijup + (Kig — Hiy)us + Dy1x; + Dy oxo = A%y,

(Ka1 — Hy)up + (Koo — Hyy)ug + Do 1x1 + Daoxg = Af,

where
K =1, Hj;, =A’BK|,, Kpo=A, Hj,=A’BK),

Ko = A, Hj =A’B'K),, Kp=1 Hj=A>BK),.
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The given boundary conditions can written in a matrix form as

u1(0) +u7(0) = (60 (T*) ™" + t1,(T*) "Huy =1,
uy () + ) (1) = (bo(T) ™1 +t1,(T*) Huy = 10,
u2(0) 4+ uh(0) = (o (T*) ™1 4 t1,(T*) Hug = 1,

up(m) + u(m) = (b0, (T*) ™ + b1, (T Huz =7,

where tg, to,, t1; and t1, are defined in Example 4.5. Thus, we can construct the linear

system in a matrix form

i Ky — HY; Ko — HY, x1 xg 0 O 11 u; Il A ]
Ko — H), Kqo — HY, 0 0 x; xg Uus AZf,
(to, + t1,)(T*) 71 0 0 0 0 O Dy | 1
(to, +t1,)(T*)! 0 0 0 0 O Dy 2 10
0 (toy+t1)(T)1|0 0 0 0 Doy 1
0 (toy+61)(T"'{0 0 0 O Ds 5 7

We solve the above matrix equation to obtain the approximate solutions u; and us
of (4.33) and (4.34) and take these equations to (4.30) in order to obtain the approximate
solutions ui (x) and ug(z) for each arbitrary x € [0, 1]. We compare the absolute errors of
our approximate results uj(z) and ug(z) with the analytical solutions by using M = 10
as demonstrated in Tables 4.13. The graphs of our approximate solutions with M = 40

are shown in Figure 4.6. The average run-time is 0.0554 seconds.
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Table 4.13: A comparison of absolute errors of u;(z) and us(z) for Example 4.6

T

ui(z)

uz(x)

0.006156
0.054497
0.146447
0.273005
0.421783
0.578217
0.726995
0.853553
0.945503

0.993844

8.881785 x 101
3.330669 x 1071°
3.108624 x 101
4.662937 x 1071°
1.554312 x 10715
4.440892 x 1016
1.332268 x 10715
3.996803 x 1015
2.664535 x 1071°

5.773160 x 10~

2.775557 x 10715
9.547918 x 10~15
9.769963 x 10~1°
5.995204 x 10715
4.996004 x 10717
9.103829 x 10~16
5.107026 x 1015
5.773160 x 10715
5.107026 x 10715

1.998401 x 10715

Exact solution

O  Approximate solution

0 0.2 0.4 0.6
X

(a) A graphical solution for uq(x)

0.8 1

Exact solution

O Approximate solution

0.2 0.4 0.6
X

0.8 1

(b) A graphical solution for ug(x)

Figure 4.6: The graph of the approximate and exact solutions in Example 4.6

The last example is a system of linear second order FIDEs with variable coefficients,

the forcing terms and kernel functions are in terms of trigonometry.
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Example 4.7. Consider the following system of linear second order FIDEs on x € (0, 1)

1
uf (z) — zuhy(x) —uy(z) = (x — 2)sin(z) + /0 (x cos(t)uy(t) — xsin(t)ug(t)) dt, (4.35)

1
uly(x) — 2xu) () + uz(x) = —2x cos(x) + sin(x) Cos(t)/o (up(t) — ua(t)) dt (4.36)

with the initial conditions u1(0) = 0, v}(0) = 1, u2(0) = 1 and u5(0) = 1. The exact

solutions are uj(x) = sin(z) and u3(x) = cos(x).

From this example, we have pj o(x) = —z, py | (x) = =2z, fi(z) = (z — 2)sin(x),
fo(z) = —2x cos(z), K1,1(z,t) = xcos(t), Ki2(x,t) = —xsin(t), Ko,1(z,t) = sin(x) cos(t),

ICQQ(.T,t) = — sin(a:) COS(t) and )\171 — )\172 = )\271 = )\272 =1.

Taking double-layer integration both sides of (4.35) and (4.36) by using our nu-
merical procedure described in Section 4.3. Then, the problem can be transformed and

simplified into the matrix forms

(Ky1 — Hiup + (Kig — Hip)us + Dy1xp + Dyoxo = A%,

(Ko1 — Hj)uy + (Koo — Hyp)up + Doyxi + Do oxo = A%f,

where
K =1-A2 H, = A’B'’K] ,,
Kip=A (P%Q)(O) —A? (P%z)(l) ) H/12 = AQB/KQ@
Ko = A (PL,)” —A2(Py )V, Hy = A?BK),
Ko =1+ A2 H, = A2B'K’272.

By using the boundary conditions, u;(0) = to;(T*) " tu; = 0, u}(0) = t1,(T*)"tuy = 1,

u2(0) = t0;(T*)tuz = 1 and u4(0) = t1,(T*) 'uy = 1, where to; and t1; are defined



in Example 4.5. Thus, we can construct a linear system in a matrix form

Ki—-H);, K2—-H),|x1 x 0 0 A2f)
Koy —H), Koo—Hy |0 0 x1 xo AZf,
to(T*)7t 0 0 0 0 O Dy 0
1, (T*)7 ! 0 0 0 0 O D15 - 1
0 to (T*)"']0 0 0 O Do 1
0 t (T 0 0 0 0 Dy 1
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(4.37)

We compute (4.37) to obtain the approximate solutions u; and uy of (4.33) and

(4.34) and take these equation (4.30) to get the approximate solutions u;(x) and us(x)

for each arbitrary = € [0,1]. The comparison of the average absolute errors of our ap-

proximate solutions u;(x) and ug(z) with [17] and [18] by using M € {3,7,9,10,11, 12}

as demonstrated in Tables 4.14 and 4.15, respectively. Figure 4.7 show the graphs of our

approximate solutions with M = 40. The average run-time is 0.0574 seconds.

Table 4.14: A comparison of average absolute errors of u;(x) for Example 4.7

M CM-BP [17] CM-FP [18] FIM-SCP

3 5.0207 x 1073 5.0207 x 1073 2.8326 x 1073
7 5.0207 x 1077 5.0207 x 1077 1.3485 x 10710
9 3.9722 x 107° 3.9722 x 107 1.1567 x 10711
10 2.6596 x 10710 2.6596 x 10710 2.3278 x 10713
11 2.4875 x 1071 2.4875 x 10~ 7.3000 x 1071°
12 1.2126 x 10712 1.2126 x 10712 2.0921 x 10715




Table 4.15: A comparison of average absolute errors of ug(x) for Example 4.7

M CM-BP [17] CM-FP [18] FIM-SCP

3 1.3565 x 102 1.3565 x 102 1.4316 x 1073
7 6.3006 x 10~7 6.3006 x 10~7 9.0883 x 10~
9 4.2348 x 107 4.2348 x 1079 7.8634 x 10713
10 2.9397 x 10710 2.9397 x 10719 4.7902 x 10713
11 2.5629 x 10~ 2.5629 x 10~ 3.0279 x 10715
12 1.5526 x 1012 1.5526 x 10712 2.0262 x 10715
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(a) A graphical solution for u;(x)

Figure 4.7: The graph of the approximate and exact solutions in Example 4.7
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we devise the numerical algorithms based on the idea of [22] with
slightly modify by using the shifted Chebyshev polynomials for finding the approximate
solutions to the systems of linear ODEs, VIDEs and FIDEs problems. We utilize the
zeros of shifted Chebyshev polynomials of a certain degree to be the computational nodes

and construct the shifted Chebyshev integration matrices for these devised algorithms.

Several numerical examples illustrate the performance of our numerical algorithms
and the accuracy of our approximate solutions comparing with some other numerical
methods in literatures. In Section 3.2, for Example 3.1, our method provides a better
accuracy than other methods in terms of the absolute errors at the same number of nodal
points and under the same conditions which can be seen in Table 3.1. For Example 3.2
which is the stiff system of linear ODEs, our method gives a good result compare to other
methods for every computational grid point in terms of the absolute errors at the same
number of nodal points and under the same conditions which can be seen in Tables 3.2 -
3.4. For Example 3.3 which is the stiff system of linear ODEs and Example 3.4 which is
the system of linear ODEs with the boundary conditions, our method also gives the high
accuracy compare to the analytical solutions in terms of the average absolute errors as
shown in Tables 3.5 and Table 3.6, respectively. We also plot the graphical solutions at

the number of nodes M = 40 as shown in Figures 3.1 - 3.4.

In Section 4.2, our method provides a higher accuracy than other methods in terms
of the absolute errors at the same number of nodal points and under the same conditions

for every computational grid point which can be seen in Tables 4.1 - 4.5. For Example 4.4
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which is the system of linear VIDEs with the boundary conditions, our method also gives
the high accuracy compare to the analytical solutions in terms of the average absolute
errors as shown in Tables 4.6. We further show the graphical solutions at M = 40 as

shown in Figures 4.1 - 4.4.

In Section 4.4, for Example 4.5 and 4.7, our method provides a higher accuracy
than other methods in terms of the absolute errors at the same number of nodal points
and under the same conditions for every computational grid point which can be seen in
Tables 4.7 - 4.12 and Tables 4.14 - 4.15. For Example 4.6, our method provides the high
accuracy compare to the analytical solutions in terms of the average absolute errors as
shown in Tables 4.13. We finally show the graphical solutions at M = 40 as shown in
Figures 4.5 - 4.7.

For M € {3,5,7,9,11,13,15}, Tables 5.1 - 5.11 demonstrate the average absolute

errors of uy(z) and ua(x) for Example 3.1 - 3.4 and Example 4.1 - 4.7, respectively.

Table 5.1: Average absolute errors of u;(z) and ua(z) for Example 3.1

M ui(x) uz(x)

3 1.707608 1.979499

5 9.453146 x 1072 9.628591 x 1072
7 3.914707 x 1073 3.926651 x 1073
9 1.027767 x 104 1.028068 x 10~*
11 1.818047 x 106 1.818131 x 10~
13 2.441199 x 108 2.441209 x 108
15 2.418820 x 1010 2.419012 x 10710




Table 5.2: Average absolute errors of u;(z) and us(z) for Example 3.2

up(x)

usz(x)

u3 ()

© N o ow 2

13
15

6.597985 x 107°
3.338292 x 1077
1.986126 x 10~12
2.146431 x 1071
9.780056 x 1071°
1.298107 x 10~1
7.786364 x 10715

1.361354 x 107°
1.665486 x 1078
3.975261 x 1013
3.335367 x 1071°
1.275455 x 10~15
2.101167 x 10715
8.681857 x 10716

1.361418 x 107°
1.665485 x 1078
3.956041 x 10713
1.048544 x 10~ 15
9.911264 x 10715
1.639714 x 10~15
6.550316 x 10715

Table 5.3: Average absolute errors of u;(z) and ua(z) for Example 3.3

Table 5.4:

up(x)

uz(x)

© N o ow 2

13
15

6.071904 x 1073
1.902571 x 107°
2.843494 x 1078
2.471849 x 10~ !
2.860338 x 1014
1.848094 x 10~
2.016165 x 10~

6.071904 x 1073
1.902571 x 1073
2.843493 x 1078
2.471813 x 10~ 11
1.602254 x 10714
5.642922 x 10715
4.637031 x 10717

Average absolute errors of uj(x) and wug(x) for Example 3.4

us(x)

up(x)

ug(x)

© N o ow |

13
15

6.653674 x 1073
1.866672 x 10~°
2.879149 x 1078
2.708902 x 101!
1.735985 x 10714
1.540648 x 10714
9.947598 x 1071°

6.826086 x 1073
2.959495 x 107
6.521237 x 1078
7.116367 x 10~
4.902896 x 10~
5.073666 x 10710
2.643949 x 10717

1.956917 x 1073
7.409434 x 1076
1.373126 x 1078
1.465876 x 10~
1.024938 x 10714
3.322129 x 1071
4.718448 x 10717
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Table 5.5: Average absolute errors of uj(z) and ug(x) for Example 4.1

u1(x)

uz(x)

© N oo 2

1.260764 x 1072
3.648782 x 107°
5.317952 x 1078
4.577092 x 10~
2.488918 x 10~
7.105427 x 10~1°
5.536312 x 10~ 1°

7.729789 x 1073
2.139675 x 107°
3.083810 x 1078
2.642817 x 10711
1.388788 x 10~ 14
2.100884 x 10715
2.827368 x 10715

Table 5.6:

Average absolute errors of u;(z) and uz(z) for Example 4.2

up(x)

ug(x)

© N o ow 2

5.233532 x 1073
1.667650 x 10~°
2.533888 x 1078
2.198742 x 10~ !
7.145799 x 1012
1.187085 x 10~1
8.822572 x 10~1°

2.580935 x 103
6.588292 x 1076
1.035765 x 1078
8.618883 x 10712
6.651245 x 10715
2.895120 x 10715
3.204844 x 10715

Table 5.7:

Average absolute errors of u;(x) and ug(x) for Example 4.3

ui(x)

ug(x)

© N o w2

13
15

5.099841 x 1073
2.075038 x 107°
2.756037 x 1078
2.408834 x 101!
8.599182 x 10~1°
1.463786 x 10~ 14
9.118632 x 10~1?

3.017017 x 1073
8.926379 x 1076
1.355109 x 1078
1.160289 x 10~
9.891078 x 10715
1.144384 x 10714
8.319271 x 101
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Table 5.8: Average absolute errors of uj(z) and ug(x) for Example 4.4

u1(x)

uz(x)

© N oo 2

1.208510 x 107°
3.393119 x 10716
1.485419 x 10~15
1.367733 x 10715
2.573778 x 1071
5.623039 x 10~1°
2.703104 x 10~1°

1.850717 x 1073
3.749084 x 1071°
8.242662 x 1071°
2.314179 x 10~
2.956821 x 10~
5.832751 x 10~ 14
3.857025 x 10714

Table 5.9: Average absolute errors of u;(z) and ua(z) for Example 4.5

up(x)

ug(x)

© N o ow 2

2.832573 x 1073
8.881220 x 1076
1.348496 x 1078
1.156664 x 10~
7.299953 x 1010
4.423745 x 10715
2.332162 x 10~1°

1.431580 x 1073
7.167711 x 1076
9.088295 x 107°
7.863352 x 10712
3.027881 x 10715
2.997602 x 1015
2.301862 x 10~1°

Table 5.10: Average absolute errors of uj(z) and us(x) for Example 4.6

ui(x)

ug(x)

© N o w2

13
15

2.627196 x 1073
3.330669 x 1071°
5.551115 x 10~1°
5.625129 x 10~1°
8.619368 x 1071°
2.252899 x 10~
1.178317 x 10~ 14

1.897008 x 1072
2.525757 x 10715
8.556647 x 10715
3.938208 x 10~15
6.762268 x 10715
1.173634 x 10714
7.329322 x 10715
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Table 5.11: Average absolute errors of u;(z) and us(x) for Example 4.7

M u1(x) ug(x)

3 2.832573 x 1073 1.431580 x 1073
5 8.881220 x 1076 7.167711 x 1076
7 1.348496 x 1078 9.088295 x 1079
9 1.156664 x 10~ 7.863352 x 10712
11 7.299953 x 10~1° 3.027881 x 1071°
13 4.423745 x 10715 2.997602 x 10715
15 2.332162 x 10~1° 2.301862 x 10715
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5.2 Future work

The plan of our future works for improving our results and extend the scope of

the research for our proposed method based on shifted Chebyshev polynomials are the

followings

1. To extend our proposed algorithm for solving the system of linear FIDEs with

Neumann and mixed boundary conditions.
2. To improve our devised method for the system of nonlinear IDEs.

3. To extend the scope of our domains for solving the system of linear IDEs in the

other domains such as circle and polygons by using our presented method.

4. To find the theoretical accuracy of our presented method.
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In this thesis, we implement our propose numerical algorithms with MatLab soft-
ware to calculate the approximate solutions of each example in this research. In this
appendix, we would like to present some examples of the code which the linear systems

are solved by the Gaussian elimination method.
APPENDIX A : Example of MatLab code for solving the stiff system of ODEs.

Example A. We consider Example 3.2

vy (z) = —20u; (z) — 0.25us(x) — 19.75us (),
ub(z) = 20uq (x) — 20.25us(x) + 0.25u3(z),

uh(x) = 20uy (x) — 19.75uz(x) — 0.25u3(x),

with initial conditions u1(0) = 1, u2(0) = 0 and u3(0) = —1. The analytical solutions are
1 1z —20x :
uy(z) = 3 (e 2T + = (cos(20z) + sm(20x))> ,
1 1
us(@) = 3 (e—gfv — 2% (c0s(20z) — sin(20x))> ,
1 1
ug(x) = = (e_ix + e=29%(cos(20z) — Sin(20x))> .

Thus, we can construct the linear system in a matrix form as follows

[ I+ 20A 0.25A 19.75A |[xo 0 O 17 u ] [ Af; ]
—20A  T1+20.25A —025A |0 xq O uy Af,
—20A 19.75A I+025A |10 0 x ug | Afy

to(T*) L 0 0 0o 0 ol||Dn| | 1
0 to(T*) ™! 0 0 0 O Dy 0
0 0 to(T*)"1 |0 0 0 D31 -1

1 |%% Input parameters——-—-———————————————————— -

2 |m=1; % The higher order derivative

3 |M = 16; % The number of nodal points



© o N O Ot ke

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
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a=0; % The left boundary
b = 0.01; % The right boundary
fx1 = 0; % The forcing term f_1(x)
fx2 = 0; % The forcing term f_2(x)

%% Analytical solutions——-—-——————————————————————

exl = @(x) (1/2)*(exp(-x./2)+exp(-20%*x) .*(cos(20*x)+sin(20*x)));
ex2 = 0(x) (1/2)*(exp(-x./2)-exp(-20%*x) .*(cos(20*x)-sin(20%*x)));
ex3 = @(x) -(1/2)*(exp(-x./2)+exp(-20%*x) .*(cos(20*x)-sin(20%*x)));

%% Compute xbar in [0,1]-------—-—————————————————
xbar = flip(((0.01)*cos((2x(1:M)'-1)/(2+M)*pi)+0.01)/2);

%% Integration matrix A-—-=--———==————————————————

=== Construct matrix Tx —--———-
T(:,1) = ones(M,1);
T(:,2) = (2*xbar-0.01)/(0.01);

for n = 2:M
T(:,n+1) = 2%x(2*xbar-0.01)/(0.01) .*T(:,n)-T(:,n-1);
end
hom———~ Construct matrix (T*)bar --——-
Tbar(:,1) = xbar;

Tbar(:,2)

(xbar) . *(xbar-0.01)/(0.01);
for n = 2:M-1
Tbar(:,n+1) = (0.01)/4%(T(:,n+2)/(n+1)-T(:,n)/(n-1)-2%(-1)"n/(
n"2-1));
end
Tinv = 1/M*diag([1 2*ones(1,M-1)]1)*T(:,1:M)"';
A = Tbar*Tinv;
%% Boundary conditions—-——-—-———————————————————

t0l = (-1).7(0:M-1);

ri [t01*Tinv zeros(1,M) zeros(1,M)];

r2

[zeros(1,M) tOl*Tinv zeros(1,M)];




33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62

r3 =

%% Construct linear system

Yfo————— Construct matrix K_ij -----
K_11 = eye(M)+20%A;

K_12 = 0.25%4;

K 13 = 19.75%4;

K 21 = -20%A;

K_22 = eye(M)+20.25%A;

K_23 = -0.25%4;

K_31 = -20%A;

K_32 = 19.75%4;

K_33 = eye(M)+0.25%A;

Yh————- Constuct matrix equation -----
K_o=

Q = [ ones(M,1) zeros(M,2); zeros(M,1) ones(M,1) zeros(M,1);

[zeros(1,M) zeros(1,M) t01*Tinv];

[K_11 K_12 K_13; K_21 K 22 K_23; K 31 K_32 K_33]; % Matrix K o

zeros(M,2) ones(M,1)];

R:

MO =

W

b

Z

B

%% Solve u

[r1; r2; r3];

[000; 000; 00 0];

[zeros(M,1) ;zeros(M,1); zeros(M,1)]
[ex1(0); ex2(0); ex3(0)];

[K o Q; R MOJ;

W; bl;

u = pinv(Z)*B;

el

e2 =

el =

El =

E2 =

E3 =

ex1(xbar) ;
ex2(xbar) ;
ex3(xbar) ;

mean(abs(u(1:M)-el))

mean (abs (u(M+1:2+M)-e2)) % Average absolute error of u2

mean (abs (u(2xM+1:3%M)-e3)) 7 Average absolute error of u3

b

h
h

h
h
h
h

% Average absolute error of ul

73

% Matrix Q
% Matrix R
% Matrix O
% Matrix W
% Matrix b
The LHS Of linear system

The RHS Of linear system

Numerical Solutions
Analytical solution ul
Analytical solution u2

Analytical solution u3




63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

[xbar u(1:M) el abs(u(l:M)-el)];
[xbar u(1:M) e2 abs(u(M+1:2xM)-e2)];

[xbar u(1:M) e3 abs(u(2*M+1:3*xM)-e3)];

%% Compute u for arbitary x—-—--—-—--——-—————————————————————————————

x1

[0.000 0.002 0.004 0.006 0.008 0.010]"';

T1 = @(n,x1) cos(n*acos((2¥x1-0.01)/0.01));
for j=1: length(x1)
for i=0:M-1
Tix(1,i+1)= T1(i,x1(j));
end

ur1(j) = Tix*Tinv*u(1:M);

ur2(j)

Tix*Tinv*u(M+1:2*M) ;

ur3(j) Tix*Tinvxu (2xM+1:3*xM) ;

erl1(j) = abs(url(j)-ex1(x1(j)));

er2(j)

abs(ur2(j)-ex2(x1(j)));
er3(j) = abs(ur3(j)-ex3(x1(j)));
end

[x1 erl' er2' er3']l;

%% Plot our numerical & analytical solutions

pl = plot(xbar,el,'red');

hold on

p2 = plot(xbar,u(1:M), 'bo');
figure

p3 = plot(xbar,e2, 'red')

hold on

p4 = plot(xbar,u(M+1:2%M), 'bo');
figure

p5 = plot(xbar,e3, 'red')

hold on

p6 = plot(xbar,u(2*M+1:3%M), 'bo');

b
h
b
b
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ul for arbitary x
u2 for arbitary x
uld for arbitary x
Absolute error of ul
Absolute error of u2

Absolute error of u3




75

APPENDIX B : Example of MatLab code for solving the system of linear VIDEs.

Example B. We consider Example 4.2

uf (z) + (=322 — 62 4+ Tuy (z) — 222 (z + Dug(z) = 2t — 23 — 22% — 6

+/0 (t3 — 23)uy (t) dt+/0 22 (1% — 2¥)uy(t) dt,

uy(z) 4+ 2(z — Dug(z) + (22 + 22° + 222 — Duy(z) = 2t + 323 — 2

subject to the initial conditions u1(0) = 1, u2(0) = 1, v} (0) = 1 and u5(0)

+/0x(x2 — t?)uy (t) dt — /Oxe(t2+x2)u2(t))dt

= —1. The

analytical solutions arre u;(z) = e® and ug(x) = e~*. We can construct the linear system

in a matrix form as follows

_ Kii—Hin Kip—Hip|xi x 0 0 11 u; Il A% _
Koir —Hy Kop—Hz | 0 0 x1 X up A%y
to(T*)~! 0 0 0 0 O Diy | 1
£1(T*) L 0 0 0 0 0|]|D| | 1
0 to(T*)"L |0 0 0 O Dy 1
0 ty (T o 0 0 0 Dy -1
1 | %% Input parameters—————————————————— -
2 m=2; % The higher order derivative
3 |M = 8; % The number of nodal points
4 la = 0; % The left boundary
5 |b=1; % The right boundary
6 [lam = 1; % Value of lamma_ {i,j}
7 1f1 = @(x) x.74-x.73-2%x.72-6; % The forcing term f_1(x)
8 [£2 = 0(x) x.74+3%xx.72-2; % The forcing term f_2(x)
9 |Kxtll =0@(x,t) t. 3-x.73; % The kernel function K _11(x,t)
10 |Kxt12 =0(x,t) (x.72).x(t."2-x.72); % The kernel function K 12(x,t)




11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
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Kxt21 =0(x,t) x.72-t.72; % The kernel function K 21(x,t)
Kxt22 =0(x,t) (x.72).*(t.72+x.72); % The kernel function K 22(x,t)

%% Analytical solutions——-——————-——————————————————————— -

exl = 0(x) exp(x); % Analytical solution ul(x)
ex2 = @(x) exp(-x); % Analytical solution u2(x)
bll = exl(a); % Value of ul(0)
brl = ex1(b); % Value of ul(1)
bl2 = ex2(a); % Value of u2(0)
br2 = ex2(b); % Value of u2(1)

%% Compute xbar & tbar in [0,1]-=---------————-mmmm
xbar = flip((cos((2x(1:M)'-1)/(2+«M) *pi)+1)/2);
tbar = flip((cos((2*x(1:M)'-1)/(2*xM)*pi)+1)/2);

%% Integration matrix A-———-=-——————-—————————— oo

Yp————= Construct matrix Tk —-——--
T(:,1) = ones(M,1);

T(:,2) = (2*xbar-1);

for n = 2:M

T(:,n+1) = 2%(2*xbar-1) .*T(:,n)-T(:,n-1);
end
Jo————~ Construct matrix (T*)bar -----
Tbar(:,1) = xbar;
Tbar(:,2) = (xbar).*(xbar-1);
for n = 2:M-1
Tbar(:,n+1) = 1/4x(T(:,n+2)/(n+1)-T(:,n)/(n-1)-2%(-1)"n/(n
"2-1));
end
Tinv = 1/M*diag([1 2%ones(1,M-1)]1)*T(:,1:M)"';
A = Tbar*Tinv;
%% Construct matrix A'x(Kbar)' ij--—-——-———————————————————————

for i = 1:M




40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69

end

for

end
Yoo
tl
tr
rl

r2

12 = -A"2%P_12;

21 = A"2%P_21;

_12 = diag((2*xbar.”2) .*(xbar+1));

_22 = diag(2xxbar. 4+2*xbar. 3+2*xbar. 2-1);

11 = eye(M)-A"2+P_11;

7

for j = 1:M

K11(i,j) = Kxtli(xbar(i),tbar(j));

K12(i,j) = Kxt12(xbar(i),tbar(j));
K21(i,j) = Kxt21(xbar(i),tbar(j));
K22(i,j) = Kxt22(xbar(i),tbar(j));
end
k =1:M

H11(k,:) = A(k,:)*diag(K11(k,:));
H12(k,:) = A(k,:)*diag(K12(k,:));
H21(k,:) = A(k,:)*diag(K21(k,:));

H22(k,:) = A(k,:)*diag(K22(k,:));

Boundary conditions-------=7-----—"7————————————————————————————

(-1).7(0:M-1);

(1).7(0:M-1);

[t1*Tinv zeros(1,M)];

[tr*Tinv zeros(1,M)];

[zeros(1,M) tl1*Tinv];

[zeros(1,M) tr*Tinv];
Construct linear system—-—---—-—-—--——————————————————————————————

--- Construct matrix P_ij ----—-

N
1]

diag(3*xbar. 2-6*xbar+7) ;

1 = diag(2*(xbar-1));

--- Construct matrix K_ij -——--
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7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

K_22 = eye(M)+A~2%P_22;

h————- Construct matrix H_ij -----
H 11 = lam*xA"2xH11;

H 12 = lam*A™2*H12;

H_21 = lam*xA™2xH21;

H 22 = -lam*A~2*H22;

Yo————— Constuct matrix equation -----

K v =[K_11-H 11 K _12-H 12; K 21-H 21 K_22-H 22]; % Matrix K_v
Q=[xbar ones(M,1) zeros(M,2);zeros(M,2) xbar ones(M,1)];% Matrix Q

R = [rl; r2; r3; r4]l; % Matrix R
MO=[0000; 0O00O0; 00O0O0; 0O0O0O0]; % Matrix O
W = [A"2xf1(xbar); A~2xf2(xbar)]; % Matrix W
b = [bll; bril; bl2; br2]; % Matrix b
Z=[K v Q; R MOJ; % The LHS Of linear system

B = [W; bl; % The RHS Of linear system

hth Solve u—————————-F e ) T ———————————————

u = pinv(Z)*B;

el = exl(xbar); %
e2 = ex2(xbar); yA
El = mean(abs(el-u(1:M))) T
E2 = mean(abs(e2-u(M+1:2+M))) h
[xbar ex1(xbar) u(1:M) abs(el-u(1:M))];

[xbar ex2(xbar) u(M+1:2%M) abs(e2-u(M+1:2xM))];
%% Compute u for arbitary x—-———-—————————————————————————

x1 =[0.10.20.30.40.50.60.70.80.91.0]";

T1

for j=1: length(xl)
for i=0:M-1
Tix(1,i+1)= T1(i,x1(j));

end

b

@(n,x1) cos(n*acos((2*x1-1.1)/0.9));

78

Numerical Solutions
Analytical solution ul
Analytical solution u2
Average absolute error of ul

Average absolute error of u2
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100 url(j) = TixxTinv*u(l:M); % ul for arbitary x
101 ur2(j) = Tix*Tinvku(M+1:2xM); % u2 for arbitary x
102 erl1(j) = abs(uril(j)-ex1(x1(j))); % Absolute error of ul
103 er2(j) = abs(ur2(j)-ex2(x1(j))); % Absolute error of u2
104 |end

105 | [x1 erl' er2'];

106 |%% Plot our numerical & analytical solutions---—---—--————————————-
107 |pl=plot(xbar,el, 'red'); hold on;

108 |p2=plot(xbar,u(1:M), 'bo');

109 |figure

110 |p3=plot(xbar,e2, 'red'); hold on;

111 |p4=plot(xbar,u(M+1:2*M),'bo');

APPENDIX C : Example of MatLab code for solving the system of linear FIDEs.
Example C. We consider Example 4.7
1
uf (z) — zuhy(x) — ui () = (@ — 2) sin(z) + / (x cos(t)uy(t) — zsin(t)ua(t)) dt,
0

1
uy(x) — 2zuf (7) + uz(z) = —2x cos(x) + sin(z) Cos(t)/0 (u1(t) — ua(t)) dt,

subject to the initial conditions u;(0) = 0, uv}(0) = 1, u2(0) = 1 and u5(0) = 1. The
exact solutions are uj(z) = sin(z) and ug(z) = cos(x). Thus, we can construct a linear

system in a matrix form as follows

Ky —-H), Kpo-Hjy|x1 xp 0 0 u; A%fy
Kot —H) Koo—Hy | 0 0 x5 X us AZf,
to,(T*) 1 0 0 0 0 O Dy | | 0
£, (T*)"! 0 00 0 0| |Do| | 1
0 to (T*)"']0 0 0 O Dy 1
0 t (T |0 0 0 O Dy 1
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
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hh I
m:

M:

lam
f1
f2
Kxt1
Kxt1
Kxt2
Kxt2
Wh A
exl
ex2
bl1
bril
bl2
br2
Wh C
xbar
tbar

Wh I

for

T(:,n+1) = 2x(2*xbar-1) .*T(:,n)-T(:,n-1);

end

nput
2;

12;

0(x) (x-2).*sin(x);
0(x) -(2*x) .*cos(x);
1 = @(x,t) x.*cos(t);

2

0(x,t) -x.*sin(t);

1 = 0(x,t) sin(x).*cos(t);

2

@(x,t) -sin(x).*sin(t);

nalytical solutions--===---————=—=-——————————————————————————-

= @(x) sin(x);

= 0(x) cos(x);

exl(a);

ex1(b);

ex2(a);

ex2(b);

ompute xbar & tbar in [0,1]

ntegration matrix A--—————----————————————

—— construct matrix T

1) = ones(M,1);
2) = (2*xbar-1);
n=2:M

parameters ———————————————————————————————————————————————

b
b
b
b
b
b
b
b
h
b
YA

)
b
b
h
%
b

flip((cos((2x(1:M)'-1)/(2*M)*pi)+1)/2);

flip((cos((2%(1:M) '-1)/(2+M)*pi)+1)/2);

The higher order derivative
The number of nodal points
The left boundary

The right boundary

Value of lamma_{i,j}

The forcing term f_1(x)

The forcing term f_2(x)

The kernel function K 11(x,t)

The kernel function K 12(x,t)

The kernel function K 21(x,t)

The kernel function K 22(x,t)

Analytical solution ul(x)

Analytical solution u2(x)
Value of u1l(0)
Value of ul(1)
Value of u2(0)

Value of u2(1)




31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59

81

Tbar(:,1)

xbar;
Tbar(:,2) = (xbar).*(xbar-1);

for n = 2:M-1

Tbar (:,n+1) = 1/4%(T(:,n+2)/(n+1)-T(:,n)/(n-1)-2%(-1)"n/(n
~2-1));
end
Tinv = 1/M*diag([1 2*ones(1,M-1)1)*T(:,1:M)";

A = Tbar*Tinv;
%% Construct matrix B'*(Kbar)' ij--------—----—-————-—————————————-

- Construct matrix B' —---—-

z(1,1)

1;

Z(1,2) 0;

for j = 2:M-1

if mod(j,2)== 0;
Z(1,j+1)=(1/(1-5"2)) ;
else
Z(1,j+1)=0;
end
end
B = Zx*Tinv; % Matrix B'
h————- Compute B'*(Kbar)'_ ij ----—-
for i = 1:M
for j = 1:M
K11(i,j) = Kxtll(xbar(i),xbar(j));
K12(i,j) = Kxt12(xbar(i),xbar(j));
K21(i,j) = Kxt21l(xbar(i),xbar(j));
K22(i,j) = Kxt22(xbar(i),xbar(j));
end
end
for k = 1:M




60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

end
%% Bou
(
(
L
[
[
L

%% Con

tl

tr

rl

r2

R
w
]

=
S
Il

K f =

H11(k,:) = Bxdiag(K11(k,:));
H12(k,:) = Bxdiag(K12(k,:));
H21(k,:) = Bxdiag(X21(k,:));
H22(k,:) = Bxdiag(K22(k,:));

ndary conditions——————-—————-————————————————————————————————

-1).7(0:M-1);
1).7(0:M-1);
t1*Tinv zeros(1,M)];
tr*Tinv zeros(1,M)];
zeros(1,M) tlx*Tinv];

zeros(1,M) trxTinv];

struct linear system-———--——-""-"--"""""""""""""——————————————-

Construct matrix P_ij --———-

diag(xbar);

eye(M) ;

diag(2xxbar) ;

eye (M) ;

Construct matrix K_ij -----
eye(M)-A"2;
-AxP_120+A72*%P_121;
—A*P_210+2*A"2*P_211;
eye(M)+A"2;

Construct matrix H'_ij -———-
lam*A~2%H11;

lam*A~2%H12;

lam*A~2%H21;

lam*xA~2%H22;

Constuct matrix equation -----

Matrix

Matrix

Matrix

Matrix

Matrix

Matrix

Matrix

Matrix

P_127(0)
P_127(1)
P_217(0)

P_217(1)

H !

H !

H'_

H'_

[K_11-H 11 K_12-H_12; K_21-H 21 K_22-H 22];

11

12

21

22

82

% Matrix K_f
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91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

Q=[xbar ones(M,1) zeros(M,2);zeros(M,2) xbar ones(M,1)];% Matrix Q

R = [rl; r2; r3; r4]l;

MO=[0000; 0000; 0O000; 00

W = [A~2xf1(xbar); A~2xf2(xbar)];

b = [bll; brl; bl2; br2];

Z = [K_f Q; R MOJ; %
B = [W; bl; T

%% Solve u——————————— -

% Matrix R
0 0]; % Matrix O

% Matrix W

% Matrix b
The LHS Of linear system

The RHS Of linear system

Numerical Solutions
Analytical solution ul
Analytical solution u2
Average absolute error of ul

Average absolute error of u2

u = pinv(Z)*B; %
el = exl(xbar); b
e2 = ex2(xbar); o
E1l = mean(abs(el-u(1:M))) b
E2 = mean(abs(e2-u(M+1:2%M))) hh
[xbar ex1(xbar) u(1:M) abs(el-u(1:M))];

[xbar ex2(xbar) u(M+1:2%M) abs(e2-u(M+1:2%M))];

format long

%% Plot our numerical & analytical solutions-—-—-----—-———————-——-

pl=plot(xbar,exl(xbar), 'red");
hold on

p2=plot (xbar,u(1:M), 'bo');
figure

p3=plot (xbar,ex2(xbar), 'red');
hold on

p4=plot (xbar,u(M+1:2*M), 'bo');

83




Name

Date of Birth

Place of Birth

Education

Publications

BIOGRAPHY

Miss Matinee Juytai

19 October 1995

Phrae, Thailand

B.Sc. (Mathematics), Chulalongkorn University, 2014

The 49" National and International Graduate Research

Conference at Nakhon Si Thammarat Rajabhat University

84



