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CHAPTER 1

INTRODUCTION

Animal migration is a fabulous phenomenon in nature of movement of ani-
mals from one place to other places according to seasonal conditions. A migration
cycle is often annually and closely linked with the cyclic pattern of the seasons.

In the last decades, an understanding of animal migration has been devel-
oped continuously, but the ultimate cause is still obscure. Animal migration
models have been constructed to predict the movement and plenty of empirical
data have been collected to illustrate migration routes to describe patterns of mi-
gration. However, in most of results in literature [1, 2, 3], the number of complete
records for round-trip tracking is low due to limited funds and lost of signals and
tags.

In general, a short-distance migration is modeled mathematically on a planar
surface, but most animals have a long-distance migration, e.g., arctic terns migrate
from the North Pole to the South Pole [4]; thus, their migration should be modeled
on a spherical surface. Additionally, the Brownian motion term is included in a
model to represent the existence of noises and randomness of movements. In 1949,
the system of stochastic differential equations (SDEs) for the Brownian motion on

a sphere was proposed by Yosida [5] in the form

~2
Ay = GU, + oo o, (1.1)
&
e = oo Ve (1.2)

where ¢; and 6; represent the latitude and longitude coordinates of a Brownian
particle at time ¢, respectively, where 0 < ¢, < 7 and 0 < 6, < 27, 62 is a variance

parameter, and U; and V; are independent standard Brownian motions. In 1986,



Le Gall and Yor [6] worked with a diffusion on a sphere with general drift terms

by adding some drifts to the Yosida’s model (1.1)-(1.2) to have the form

~2

A6y = 64U, + 5ot + [ (61, 00)dt, (1.3)
o
det = . (z)t d‘/t + g(¢t7 et)dta (14)

where f and g are bounded measurable functions on [0,7] X R/2zz. In 1998,
Bellinger and Stewart [7] applied this model (1.3)-(1.4) to the migration of elephant-
seals that migrate directly towards the North Pole by adding an appropriate speed

constant (§) to the drift term to have the form

5’2
=5 3 1.
de, = 6dU, + ( T 5) dt, (1.5)
o
db; = dV. 1.
t Sin¢t ‘/; ( 6)

In this work, we describe the movement of a point (X;,Y;) toward a point

(X*,Y*) by using SDEs which is given by [§]

—(X, = X*)

Y= e xr ol (1.7)
(Y, - Y*

dY| 1= A8 0 () S dt + o dV, (1.8)

(Xi = X722+ (Vi = V)

where 7 represents the speed of movement, o2 is a a variance parameter, and U,
and V; are independent standard Brownian motions.

The aim of this work is to establish animal migration models by using SDEs
together with behavior functions to describe the migration behaviors during their
migrations. The models are developed based on the transformation between SDEs
(1.7)-(1.8) on a plane and SDEs (1.1)-(1.2) by using different behavior functions,
namely map projections.

Let [0, 7] be the time domain for a cycle of particular animal migration hav-



ing N sub-intervals of times corresponding to N behaviors during the migration.
We discretize the interval [0,7] into N periods, namely [¢,-1,t,], for each par-
ticular movement behavior, where 0 = t) < t; <ty < --- < ty = T. For each
particular period [t,,_1, t,], the coordinate (¢, 0;) on the sphere is described via an
appropriate map projection to transform (¢, 6;) into (X;,Y;) on the plane. The
behavior of (X3,Y;) is then modeled based on SDEs (1.7)-(1.8), whose solution
moves toward (X,,Y,,), i.e., the transformation of (¢, ,0;,) on the sphere.

A system of the SDEs on (¢, 6;) is obtained by applying It6’s Lemma with
an appropriate map projection to transform the process from the rectangular coor-
dinates (X, Y;) into the spherical coordinate (¢, 0;) € [0, 7] X B/2zz and adding the
drift and diffusion terms based on Yosida’s model (1.1) and (1.2). After that, all
periods are combined together to display animal migration models via the Euler-
Maruyama scheme.

Nevertheless, migrants do not only migrate from one place to another di-
rectly, but they also migrate sinuously from one place to another or meander
around some targeted areas. Thus, we provide a probability of the different pat-
terns of animal migration to make the models realistic.

The organization of the thesis is given as follows. Background knowledge is
described in chapter 2. The methods of modeling animal migrations are presented
in chapter 3, and some simulation examples are shown in chapter 4. Finally,
in chapter 5, we conclude our work, provide some discussions, and suggest some

related future works.



CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we first introduce SDEs and numerical methods for SDEs
which are addressed in [9]. Next, Brownian motion on a sphere [5] and the SDEs
whose solutions move toward a particular point [8] are presented. Finally, the
basic idea of map projection [10, 11] is provided to describe behavior functions for

the model.
2.1 Introduction to SDEs

Definition 2.1.1. (Stochastic Process)
Let I be a subset of R. A family of random variables {X;}es, indexed by I, is

called a stochastic process.

Remark : In most applications, the variable ¢ stands for time and [ is usually

assumed to be a subset of [0, 00).

Definition 2.1.2. (Continuous Sample Paths)

Let {X;}ier, be a stochastic process defined on a probability space (£2, F, P). For
a fixed w € Q, a function X (w): I — R is called a sample path. The process
{ X }ier is said to have continuous sample paths, if for almost all w € 2, X (w)

is a continuous function on I.

Definition 2.1.3. (Standard Brownian Motion)
A scalar standard Brownian motion, or standard Wiener process, over [0, 7]

is a stochastic process {W}icjo,r) that satisfies the following four conditions.
1. Wy = 0 (with probability 1).

2. For 0 < s <t <T, W, — Wi is normally distributed with mean zero and

variance t—s, i.e., Wy — W, ~ N(0,t — s), where N (i, o) denotes a normally



distributed random variable with mean p and variance o.

3. For 0 <s<t<u<wv<T, the increments W, — Wy and W, — W, are

independent.
4. {Wi}iep,r has continuous sample paths.

Definition 2.1.4. (m-dimensional Standard Brownian Motion)
Let Wt(l), Wt@), ce I/Vt(m) be independent standard Brownian motions.
Then, {Wt = <Wt(1), Wt@), cee Wt(m))} is called an m-dimensional stan-

t€[0,T
dard Brownian motion.

Stochastic differential equations (SDEs) studied in this work are typi-

cally of the form
dXt = a(t, Xt)dt + b(t, Xt)th, XO =X (21)

where a and b are real-valued functions, {Wt}te[o,T] is a standard Brownian motion
and = € R. The equation (2.1) is a shorthand notation which should be understood

as the stochastic integral equation
t t
X :X0+/ a(s,Xs)ds—i-/ b(s, Xs)dWs.
0 0

The integral f(f a(s, Xs)ds is interpreted in the Riemann sense and the integral
fot b(s, Xs)dWy is interpreted in the Ito sense.

For n-dimensional SDEs,

dXt(l) = ay(t, Xg)dt + by (t, Xt)th(l) + o b, Xt)th(m)v

dXt(n) = an(t; Xt)dt + bnl(t7 Xt)dI/Vt(l) +...+ bnm<t7 Xt)th m)’



where X; = (Xt(l),Xt(Q), ...,Xt(")>, a; and b;; are real-valued functions for ¢ =
1,2,..,nand j =1,2,...,m and {W;},, is an m-dimensional standard Brownian

motion. It can be written in matrix notation as

dXt = a,(t, Xt) dt + b(t, Xt) th

where
axV aw )
ax® aw?
dXt = y th = )
ax;" aw,™
a1<t7 Xt) bn(t’ Xt) bm(ﬂ Xt) Tt blm(t7 Xt)
as(t, X bo1(t, X bas(t, X s bon(t, X
alt, X)) = 2(t, Xy) b X)) = 21(t, Xt)  bao(t, X) om (t, Xt)
_an(ta Xt)_ _bnl (t7 Xt) an <t7 Xt) e bnm(t7 Xt)_

Definition 2.1.5. (Infinitesimal Generator)

Let X be a solution of the SDE dX; = a(Xy) dt + b(X;) dWy. The infinitesimal

generator A of Xj; is defined by

x € R"™.

Af(x) = im 2 KXo = 2) — [(@)

t—0 t ’

The set of functions f : R — R such that the limit exists at « is denoted by
Da(x), while D4 denotes the set of functions for which the limit exists for all

x € R™.

Theorem 2.1.1. Let X; be a solution of the SDE dX; = a(X4) dt + b(X;) dW,



and CZ(R") denotes the set of the continuous functions from R™ into R with
continuous partial derivatives up to order 2 with compact support in R™. If f €
C2(R™), then f € D4 and the infinitesimal generator of the process X; is given

by

n 1 n n - an .
;al 8% +§ZZ(b(a:)b(w) )i,jm(w), for & € R".

i=1 j=1

Remark : Applying Theorem 2.1.1 with d X; = dWy, we haven = m, a(X;) =0

and b(X;) = I, the n-dimensional identity matrix. Thus, the generator of W; is

1 0
Ate) = 700

=1

for f € C5(R™).

Thus, we have the following corollary.

Corollary 2.1.1.1. The infinitesimal generator of n-dimensional Brownian mo-

tion is half of the Laplace operator, i.e., A = %A )

Theorem 2.1.2. It6’s Lemma (Multi-dimensional)

Let X; be a solution of the SDE

dXt = a(t, Xt> dt + b(t, .Xt) th

Let g (t,z) = (g1 (t, @), ..., g, (t,x)) be a C* map from [0, 00) x R™ into R?. Then,

for k =1,2,...,p, the SDE for the process Yt(k) = gx(t, Xy) is
ay,® = 91 2R (¢ X )dt + Z 09 (t, X¢)dx "
ot — 0x;
+ = Zzn: P91 x)axPax
8351813

le].

where dWdW 9 = §,.dt, awVdt = dt dW" = dtdt =0 for all i,j = 1,2, ..., n.



2.2 Numerical methods for SDEs

Let [0,7] be the domain that we want to compute the numerical solution
of the SDE (2.1). We first discretize the domain [0,7] into N equal pieces for
some positive integer N and let At = T'/N. Next, we define 7, = nAt. Taking

integration from 7,,_; to 7, through (2.1), we have that

X, =X, .+ / a(t, X,)dt + / b(t, X,)dIW,
Tn—1 Tn—1

for n = 1,2,..., N. The simple way to find the numerical solution of X, is ap-
proximating the integrands evaluating at the left end of the time interval. Thus,

we have

X, ~ X, o+ / alf L XSR / b7 1, X VAWV,
Tn—1 Tn—1
=X, |, +a(m1, X’Tnl)/ dt + (71, X5, ) / AW,

= Xr,_, +a(m1, X‘rn—1)(7n — Tn—1) +0(Tn—1, Xry ) (Wr, — W2 ).

Due to the fact that 7, —7,,_1 = At for all n and the property of standard Brownian

motion, we have that

X,

n

~ X, a1, Xy

n—1

VAL + b(T—1, Xo, ) AW,

where AW, < N(0, At).
Let x,, be the numerical solution of X, , then the Euler-Maruyama method

for (2.1) is given by xy = = and
Tpn = Tp_1 + CL(Tnfl, $n,1)At + b(Tnfl, $n,1)AWn (22)

forn=1,2,..., N, where AW, iri\(JiN(O,At).



Similarly, for applying numerical method to m-dimensional SDEs, we can

compute the numerical solution in each dimension with particular numerical scheme.

2.3 SDEs models

2.3.1 Brownian motion on a sphere

In 1949, Yosida gives the system of SDEs for the Brownian motion on a

sphere

—
Ay = GdUs + oo dt, (1.1)
&
&y = Ve (1.2)

where ¢, and 6; represent the latitude and longitude of a Brownian particle on
a sphere at time ¢, respectively, such that 0 < ¢, < m and 0 < 6, < 27, 02 is a
variance parameter, and U; and V; are independent standard Brownian motions.
According to Corollary 2.1.1.1, we know that the infinitesimal generator of
n-dimensional Brownian motion is half of the Laplace operator. Here, we will
show that (¢, 6;) in the Yosida’s model is a Brownian motion on a sphere, i.e.,
the infinitesimal generator of the Yosida’s model is the multiple of the spherical

Laplacian A* which is given by [12],

1 a+a2+ 1 02
tang 0¢  0¢?  sin® ¢ 00?°

*

From Theorem 2.1.1, the infinitesimal generator of (¢, 6;)” in (1.1) and (1.2) is

¢ 9 @8 o &
2tang 0p 2 O¢?  2sin’ ¢ 062

P Lo P 1
2 \tangdgp  0¢%  sin® ¢ 002



10

= —A".

Hence, the Yosida’s model is a Brownian motion on a sphere.

2.3.2 SDEs whose solutions move toward a particular point

In [8], a 2-dimensional SDE whose solution moves toward the point (X*,Y™*) €

R? has the form

—(Xe - X*)

dX, = dt +od 1.
(Y, - Y*

Y, = V(¥ - YY) dt + o dV;, (1.8)

(Xt = X*)Q 4 (}/‘t = Y*)2

where v represents a rate of moving toward the point (X*,Y*), 02 is a a variance

parameter, and U; and V; are independent standard Brownian motions.
2.4 Introduction to map projections

2.4.1 Latitude and longitude

To identify the location of points on the Earth, longitude and latitude values
are often used to refer to these points. Longitude and latitude are angles measured
in degree from the earth’s center to a point on the earth’s surface. In the spherical
system, horizontal lines or East—West lines, are lines of equal latitude, or parallels.
Vertical lines, or North—South lines, are lines of equal longitude, or meridians.
The line of latitude which is midway between the North and South poles is called
the equator having zero latitude. The line of zero longitude is called the prime
meridian, and for most geographic coordinate systems, the prime meridian is the

longitude that passes through Greenwich, England.

Latitude values are measured relative to the equator and range from —90° at



11

the South Pole to +90° at the North Pole. Longitude values are measured relative
to the prime meridian. They range from —180° when traveling west to 180° when
traveling east. For example, if the prime meridian is at Greenwich, then Australia,
which is south of the equator and east of Greenwich, has positive longitude values

and negative latitude values.

2.4.2 Map projections

A map projection is a way to transfer the information from a 3-dimensional
surface to a 2-dimensional plane. In this work, a map projection is a way to
flatten a globe’s surface into a plane. It is well known that is impossible to show the
surface of the Earth accurately on a flat map, which was proven mathematically by
Leonhard Euler in 1777. A common example is to imagine peeling an orange and
pressing the orange peel flat on a table. It would bulge and break. Representing
the Earth’s surface in two dimensions causes distortion in the shape, area, distance,
and direction of the data. A map projection uses mathematical formulas to relate

spherical coordinates on the globe to planar coordinates.

There are many types of projections [10, 11]. Different projections cause
different types of distortions. The well-known criterion visualizing the distortions
of a map projection is Tissot’s Indicatrix. The idea is to measure the deformation
when a circle on a sphere is projected onto a plane. Figure 2.1 shows Tissot’s
indicatrices on the Earth’s surface. The deformation of a circle depends on types
of projection. We can select the projection that has less distortions on the specific

area.
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Figure 2.1: The Tissot’s indicatrices are circles of identical true radius on the Earth’s
surface.

In this work, we use 3 projections corresponding to 3 behaviors for mod-
eling animal migrations: Stereographic (STER) projection, Transverse Mercator

(TMER) projection and Lambert Conformal Conic (LCC) projection.

The STER projection is an appropriate transformation to describe the area
around a considered point on the sphere. In our work, it is used to describe
movements surrounding the considered area, because the area around a considered
point has less distortions. The distortions increase in the area that is far from the

considered point. Figure 2.2 shows Tissot’s indicatrices transformed by the STER



13

projection. The farther area from the considered point, the more distortions of

the indicatrices.

Figure 2.2: The STER projection is shown centered at (¢, 0y) = (0°,0°).

The TMER projection is preferred for North-South movements which are
for movements going North or South directly with low movement in East-West
direction. This is because the area near the same longitude of a center point has
less distortions. The distortions increase in the area that is far from the longitude
of the center point. Figure 2.3 shows Tissot’s indicatrices transformed by the
TMER projection. The farther the longitude from the center point, the more

distortions of the indicatrices.
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Figure 2.3: The TMER projection is shown centered at Greenwich with
(¢0,00) = (0°,0°).

The LCC projection is preferred for East-West movements, when the move-
ments are low in the North-South direction. This is because the area near the
same latitude of a center point has less distortions. The distortions increase in the
area that is far from the latitude of the center point. Figure 2.4 shows Tissot’s
indicatrices transformed by the LCC projection. The farther the latitude from the

center point, the more distortions of the indicatrices.
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Figure 2.4: The LCC projection is shown with standard parallels on the northern
hemisphere with (¢o,6p) = (45°,0°), ¢1 = 15° and ¢o = 75°.

Let (¢, 0) € [—90°,90°] x (—180°, 180°] be a pair of the latitude and longitude
coordinates, respectively, and R be the radius of the sphere corresponding to the
scale of the map. (¢g,6y) is a pair of the latitude and longitude coordinates of
the center and kg is the scale factor, normally 1.0. Let (x,y) be a pair of the
rectangular coordinates. Note that the Y axis lies along the central meridian 6,
with y increasing northerly, and the X axis is perpendicular through ¢, at 6, with

x increasing easterly. The formulas for the 3 projections are given as follows.

STER projection:

r = Rkcos¢sin(d — 0), (2.3)
y = Rk [cos ¢gsin ¢ — sin ¢ cos ¢ cos(0 — b)) , (2.4)
where
2k

[1 + sin ¢ sin ¢ + cos ¢g cos ¢ cos(6 — 6y)]
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For the inverse formulas, given R, kg, ¢g, 09, x, and y, we have

¢ = arcsin <coscsin oo + M) , (2.5)
P
rsinc
0=20 t 2.6
o - arctan <pcosgz§0cosc—ysingz50sinc>’ (2:6)
where
p = /2% + 12 and ¢ = 2arctan [ —L— | .
2Rk
TMER projection:
R kg 1+ B
= 1 2.
x 5 b (1 = B) \ (2.7)
tan ¢
=Rk t —| - 2.8
where
B = cos ¢sin(6 — 6y).
Here, we assume that B # +£1.
For the inverse formulas, given R, kg, ¢q, 0y, x, and y, we have
sin D
¢ = arcsin | ————— | , (2.9)
cosh(z7-)
sinh (%)
0=0 tan | ———0s 2.10
o—l—arcan{ p— }, (2.10)
where

REy
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LCC projection:

x = psin A, (2.11)
Y = po — PCOS A, (2.12)
where
RF RF
= i AN’ /\:n(G_GO)a Po = iy oy’
tan”(% + 2) fan (2 7 )
_ cos ¢y tan™(F + 2) . 1 (%)
n 3 1 |:tan(£+%):| ’
n T, 1
tan(Z+7)
where ¢; and ¢, are the lower and upper standard latitudes.
For the inverse formulas, given R, ¢y, ¢2, ¢q, 0o, x, and y, we have
¢ = 2arctan \"/RF/ﬁ—g, (2.13)
0= \/n+ 0, (2.14)

where

p = sign(n)yv/2* + (po — y)?,

X—arctan( L >
Po—Y




CHAPTER I11

METHOD

In chapter 3, we present the procedure to establish an animal migration
model. In brief, we first research the considered animal migration cycle compre-
hensively. Then, we discretize the time domain into N periods which character-
ize N different movement behaviors during their migration. We present possible
patterns of their migration and provide probabilities for each pattern. For each
period, we construct the SDEs whose solution moves toward a particular point
on a sphere via [t0’s Lemma based on the SDEs whose solution moves toward a
particular point on a plane (1.7) and (1.8), with an appropriate map projection
formula. We also add the drift and diffusion terms based on Yosida’s model (1.1)
and (1.2) into the constructed SDEs. All periods are combined together to display
animal migration models via the Euler-Maruyama scheme. In detail, this chapter

falls into 4 sections as follows.

3.1 Understanding of animal migration cycle

First of all, we have to know the main location that they migrate in their
migration cycle. What is the time that they depart and arrive for each place?
Do they all migrate in the same pattern? How do they move from one place to
another? However, all data that we know is incomplete. The understanding of

animal migration has been researching for a long time.
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3.2 Setting of animal migration model

3.2.1 Time domain and pattern

Figure 3.1: Time domain with their probabilities and representative points for each
periods.

We first set time domain [tg, T'| for simulation. Here, ty is a starting time for
simulation that we set and 7T is a suitable maximum time. Then, we discretize
the time domain [tg, T| into N periods, namely [t,_1,t,] for n =1,2,..., N, cor-
responding to each particular movement behavior where 0 =ty < t; <ty < --- <
ty = T. For each [t,_1,t,], we set the fixed point on a sphere to be the representa-
tive point (¢, , 0, ), and then, we classify the behavior movement into P, possible
patterns and provide all probabilities p,1, Pn2; ..., Pnp, Where pp1 +ppo+...+0pp, =
1.

3.2.2 Criterion of selecting map projection

According to Section 2.4.2, the STER projection is suitable for transfor-
mation on area around a consider point, the TMER projection is suitable for
transformation on area near the same longitude of a center point, and the LCC
projection is suitable for transformation on area near the same latitude of a center
point. Thus, for each period [t,_1,t,]|, we select an appropriate map projection

based on locations of (¢, ,,0;, _,) and (¢, , 0;,) according to the following criteria.

For movement that is not too far away from the point (¢, , — ¢y, ,), i.e. if

V (b, — b, )2 + (6, — 04, _,)? < 5°, we select the STER projection.

For movement that is far away from the point (¢y, , — ¢y, _,), i.e. if

V (b, — b, )+ (0, — 0,,_,)* > 5°, we consider between the variation of lati-

tude and longitude. If the movement goes in the North-South direction more than
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East-West direction, i.e. |¢y, — ¢, | > |0y, — 0,_,|, we select the TMER pro-
jection. If the movement goes in the East-West direction more than North-South

direction, i.e. |¢y, — ¢r, .| < |6+, — O, .|, we select the LCC projection.

3.3 Construction of numerical schemes

In this section, we construct the SDEs whose solution moves toward a point
(¢, ,0:,) for each period [t,_1,t,]. In this work, we model animal migration route

both on the plane and the sphere.

For modeling on the plane, for each [t, 1,t,], we use a 2-dimensional SDE
whose solution moves toward the point (¢, ,6;,) € [—90°,90°] x (—180°,180°]

which has the form

'Vn(X oy )
dX, = n dt + o, dU,, 3.1
N s R s t 31)
L,
Y, = i S i Y R (3.2)

(Xt — ¢1,)% + (Y2 — 64,)?

where 7, represents a rate of moving toward the point (¢, ,6;, ), and U, and V;
are independent standard Brownian motions. In this case, the map projections

are not required to transform the coordinates between the plane and the sphere.

For modeling on the sphere, we have to transform the SDEs whose solution
moves toward a particular point on a sphere via Ito’s Lemma based on the SDEs
whose solution moves toward a particular point on a plane (1.7) and (1.8), with
a suitable selected map projection formula. For each period [t,_1,t,], we set the
fixed point on a sphere to be the representative point (¢, ,6;, ) forn =1,2,... N.
The SDEs whose solution moves toward a particular point (¢, ,6;,) are based
on the SDEs whose solution moves toward a point (X,,,Y,) where (X,,Y,) is a

transformation point of (¢, , 6, ) with a selected map projection formula.
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For each period [t,,_1,t,], 2-dimensional SDEs whose solution moves toward

a point (¢, ,0:,) on a sphere is

—(Xt — F, Y (¢r,,64,))
dX,; = n dt + o dUy, 3.3
T S F i, 6+ (Vi = G (0 ) b (33)
o - —1
4y, — (Ve = Gy (D4 01,)) dt +odV;,  (34)

(Xi = F7 N (¢t 00,))* + (Ve = G (6, 00,))?

where F71 and G, ! are the selected map projection formulas for the point X,, and

Y,, in terms of (¢, 0;, ), respectively. From now on, we denote

—Xs = F, (¢, 01,))

(Xy — E; Yt 01,)2 + (Y — G Y (1, 01,))?
—(Y; = G, ' (¢1,,0,))

(Xo = E Y or,,,00,)) + (Y — G Y (1, 01,))2

a<Xta }/;fa ¢tn7 etn) =

b(Xe,Ys, b1,504,) 1=
Thus, (3.3) and (3.4) become
dXt = a(Xt,Yt,gbtn,@tn)dt—{—adUt, (35)

dY; = b( X, Y, &, ,0,,) dt + o dV. (3.6)

Next, we apply It6’s Lemma with the function F,,(X,Y) and G,,(X,Y) where
F,, and G, are the selected map projection formulas for the point ¢; and 6, in terms

of (X4, Y}:), respectively. Then, we have

F oF,
A =52 (X0, Vi) dX, + 52 (X, Yy) dY,
1 0*F, 0*F, 1 0°F,
Y,dY,
+5 9 8X8X (Xtv Y;f)dXtht 8X(9Y (Xt7 Y;f)dXtdn 2 8Y(9Y (Xta }/;)d td ty
oG, G,
det = aX (Xt7 Y;) dXt + 8Y (Xtv }/t> dYt
1 9°G, 0°G, 1 9°G,

S (X V) AXid X+ (X, YO)dXedY; = o (X, V) dY;dY

20X0X 20Xy 20Y9Y
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Replace dX; and dY; with (3.5) and (3.6) respectively. Then, we have

F
dn === (X0, Y1) (a(Xe, Vi, b, 6,,) dt + 0 dUL)

(9F

+ oY (Xt? }/;5) (b(Xta }/;fa gbtna th) dt + o d‘/t)
1 0°F,

+5 D) (3X8X (Xt? }/;f) (a(Xt7 }/;7 gbtna etn) dt + 0o dUt)2
62

t 5vav aXay (Xt7 }/t) (G(Xt, Y;ta ¢tn> Qtn) dt + O'dUt) (b(Xt, Y;g, qbtn, Qtn) dt + O'd‘/;)
1 0%F,

+5 20Y0Y (Xt? }/;5) (b(Xt7 Yt7 ¢tn7 etn> dt + O-d‘/;f)Z .

oG,

det oXxX (Xh}/l;/) (G<Xt7}/ta¢tn79tn>dt+0'd[]t)

G,
oY (Xt? }/t) (b(Xta }/;fa ¢tn7 etn) dt +o d‘/t>
1 9°G,

+ 5 0X0X (Xt7 Yt) (a(Xt) }/157 gbtnu etn) dt +o dUt)2
9*G,

t avav OXoY (Xt7 )/t) (a'(Xt7 Y%a ¢tn7 gtn) dt + O'dUt) (b(Xt, Y;? gbtn’ Qtn) dt -+ o-d‘/t)

+ LG (X, V) (b(Xy, Vi, b1, 0r,) dt + 0 dV;)?
20Y0Y ty Lt ty Lty Ptny Uty g t) -

Therefore, we have

F

dgbt (Xt7 }/t> (a(Xt7 )/1‘,7 thn, Qtn) dt + o dUt)
(9F
aY (Xt7 K) (b(Xt7 K? ¢tn7 etn) dt + O'd‘/;)
1, [ 0°F, 9°F,
N (axax( w¥) + 8Y8Y(Xt’yt)) d,
oG,
db; = X — (X, Y2) (a(X4, Y, ¢, 0,) dt + o dUY)
8G
aY (Xl‘n}/;‘,) (b(Xty }/;h (bt»,m etn) dt + O-d‘/t)
1, ([ 9*G, 82G

Replace X; and Y; by F'(¢,0;) and G '(¢y,0;), respectively, where F, !

and G,;! are the selected map projection formulas for the point X; and Y; in terms
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of (¢y,,0:,), respectively. Thus, we have

oF, _ _ _
Ay =2 (B (00,00, G (60, 00) (alFy (60,60, G (00,00), 00, dt + 7 dU)

a@f: (Fn_l(gbta 0t)7 G7_Ll<¢t7 Qt)) (b(Fn_l(gbta 9t)7 G;l(gbt’ Qt)a qbtnv etn) dt + o d‘/t)
O0?F,

02 82Fn F—l 0 G—l 0 n F_l 0 G_l 0 di
+5 (—aan( W (60,00, G (@1, 00)) + oz (0 (60, 60), G (o, 0)) 7
oG,

T Fn (006,00, G1 7 (60,6)) (alF (60,6, G (61,61), n,,01,) di + 0 dUY)

0G,, , } ) )
o (7 (0000).G (00600) (0(E, (00,6,). G (0060). 6, 00,) dt + 0 V)

2 aQGn B A (920” B ~
% (aan(Fn1(¢t,0t),Gn1(¢t,0t>) + ayaY(Fn1(@,@)@5(@,@))) dt.

+

do, =

Finally, we add the drift and diffusion terms based on Yosida’s model (1.1)

and (1.2). Thus, we have

O (3 (60,0), G (61, 00)) (alE (61, 60), G (00, 64), b, 00,) dt + o)

b1, 0,), G (dr, 00)) (B, (¢4, 00), G (94, 00), @, O0,) dt + 0 dV;)

F(
0 I ! =il 5’2Fn 1 1
+ = 2 (8X3X(Fn <¢t79t)7Gn (¢t70t))+8YaY(Fn (¢t70t)aGn (¢t7‘9t))> dt

~2

doy =

8Y(

+ O'dUt + 2tan¢t dt
oG,

. (Fn (@0 00), G (@1, 00)) (alF (@, 00), G (6, 60), b, B0, ) dE + 0 dUT)

%(Fn_l(qbtv 915)7 G7_Ll<¢t7 gt)) (b(Fn_l(gbta et), G;l(ﬂst, Qt), ¢tn7 Qtn> dt + o d‘/;)
0*G

+ T (FCn (60,0, G (60,60)) + G (F (61, 6,), G2 (00,01)) )
2 n tyVt) n ty Vi 8Y8Y n ty Yt ) n ty YVt

(3.5)

d@t =

v, (3.6)

being the SDEs whose solution moves toward a point (¢, ,6:,) on a sphere for
t € [th_1,t,) where 6?2 is a variance parameter for Brownian motion on a sphere,

and Uy, V;, Ut, and \7,5 are independent standard Brownian motions.
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We denote
0F ,1 -1 -1
A(@,et) = 8X< (¢t79t) n ((bt,@t))a(Fn (¢t79t),Gn (¢t76t>7¢tn79tn)
or,
gy (o (060, G (@1, 00) B(F (61, 60), G (64, 60), 6,61,
1 o) ~ _ PE, _
+50° (MaX (B (60, 00), G (01, 00) + 5o (F 1<¢t7et>,Gn1(¢t,et)>)
5.2
+ 2 tan ¢y
0F, _
B(¢t79t) = 8X( (¢t79t) n1(¢t70t))
oF, . X
C<¢t7 Qt) =0 aY (Fn 1<¢t7 0t)7 Gn1(¢t7 gt))
D(¢y,0;) 3:%( e, 00), G (9, 04)) al G M (e, 00), Gy (e, 0), 1 O,
G,
8Y( o (D06,00), G (D, 00) B(GL (01, 60), G (91, 04), ¢, O,
1 0*G,, 0*G,
+350 ( o (G (00,00, G (01,00) + 5= (G (00, 60), #(qbt,et)))
0G, a
E<¢t:9t) =0 0X ( (¢t79t) nl(ﬁbt,et))
oG,
F(¢y,0:) =0 BY% 2(G M (¢, 00), G (94, 61)
G(¢y,0;) =0
o
H{(¢,0;) e

Then, (3.5) and (3.6) become

doy =A(¢y, 0,) dt + B¢y, 0,) dU, + C(¢by, 0,) AV, + Gy, 0,) dUL, (3.7)

9, =D (1, 0,) dt + E(ér, 0,) AUy + F(éy, 0,) AV + H(¢y, 0,) dVi.  (3.8)

Figure 3.2: Time domain for simulation on [t,,_1,ty].

Let At, = z—" for some positive integer L,,7; = iAt,, and ¢; and 6; be

numerical solutions of ¢,, and 6, at the time 7;. Then, Euler-Maruyama method
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for (3.7) and (3.8) are given by

bi =¢i—1 + A(pi—1,0i-1) Aty + B(pi—1,0;—1) AU; + C(¢i—1,0;-1) AV;
+ G(¢i_1, ;1) AU, (3.9)
0; =0;—1 + D(¢pi—1,0;-1) Aty + E(di—1,0i-1) AU; + F(¢i1,6,-1) AV,

+ H(pi_1,0;_1) AV, (3.10)

where AU;, AV;, AU, AV, 2 N(0, At) for i = 1,2,.. ., L.

Generally, for period [t,_1,t,], we have P, patterns. Thus, we have P,
schemes happening with probabilities pn1, pn2, .-, Pnp,, respectively, where p,; +

Pn2 + ... +pnPn = 1.



CHAPTER IV

RESULTS

There are many interesting animal migrations around the world, and many
of them have not yet been discovered; however, in the last decades, complete mi-
gration cycles of some animals have been revealed. In this work, we model and
simulate migration routes of 3 animals using SDEs based on observed data in lit-
erature. Starting with sardine (Sardinops sagaz), we display the movement from
South Coast of South Africa to the East Coast of South Africa, known as sardine
run phenomena. The second migration is wildebeest (Connochaetes taurinus),
which migrates around Tanzania and Kenya as a complete cycle. The last migra-
tion is for arctic tern (Sterna paradisaea), which has the longest migration route
in the world. The migration of arctic terns routes not only have long distance be-
tween Greenland and Antarctica, but also have many patterns. Their migration
routes are also showed with complete migration cycles with some possible patterns
that we set. The 3 animal migrations are modeled and simulated on the plane

and the sphere, which are compared using Q—-Q (quantile-quantile) plot.

This chapter is divided into 3 sections corresponding to each considered
animal. We provide the behavior movements with suitable parameters (provided

in Appendix), and show their migration patterns with the simulations.

4.1 Sardine run

Almost every year, the enormous shoal of sardines migrate from the Southern
Coast to the Western Coast of Africa. This natural phenomenon is celled sardine

run. The partial information of sardine run is provided in the references [13, 14].
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Figure 4.1: Map of the South Coast of South Africa with the path of the sea currents
[15].

The sardine run does not occur every single year; if it occurs, we will normally
see this fantastic phenomenon in late-May to early-June at the South Coast of
KwaZulu-Natal, South Africa. Not only we see the huge shoal of sardines, but we
also see the predators, such as seabirds, sharks, whales, and dolphins. The full
cycle this migration is poorly understood; thus, we partly display their migration
routes, from the Southern Coast to the Western Coast of Africa as shown in Figure

4.1.

In this work, we divide the time domain [0, 7] into 3 periods with the repre-
sentative points as follows: AB = Agulhas Bank (—35°,21°); T1, T2, and T3 =
Transit 1, 2, and 3, with coordinate (—34.5°,265°), (—30°,31.2°), and (—29.1°, 32.2°),
respectively. For each period, we use the map projections LCC, TMER, and STER
to transform the process on the plane to the process on the sphere. The beginning

place of simulation is set to be Agulhas Bank and the initial date and time of the
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migration is the 15 March 2008 at noon, and the end date and time is the 1% July
2008 at noon, which gives T = 175680 minutes. All the discretized times and the

corresponding map projection for each period are shown in Figure 4.2.

to=10
|

Lcc

l

t; = 44640

TMER

l

ty = 132480

STER

l

ty = 175680

Figure 4.2: The discretized time of migration routes of sardine run.

The simulated migration routes of 100 sardines using At = 60 and with
suitable adjusted parameters v, 0, and ¢ (provided in Appendix) for each period,

are shown in Figures 4.3 and 4.4.
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of the routes of sardine run modeled on the sphere
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Figure 4.3: Coordinate (¢, ) of simulation of the routes of sardine run modeled on
the sphere.

of the routes of sardine run modeled on the plane
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Figure 4.4: Coordinate (¢, 0) of simulation of the routes of sardine run modeled on
the plane.
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Figure 4.5: The Q—Q plots of processes on the plane and the sphere.

Figures 4.3 and 4.4 show the similar results of the simulated coordinates (¢, 6)
for both models on the plane and the sphere. First, the 100 sardines depart from
AB and go westward to T1, then, they continue to reach T2 and T3, respectively.
The simulation accords with their movement. Figure 4.5 shows the distributions
between the mean path of the process on the plane and the mean path of the

process on the sphere, which are quite similar.

Latitude movement of sardine run modeled on the sphere

Figure 4.6: Latitude movement of 100 sardines modeled on the sphere.



Latitude movement of sardine run modeled on the plane

Figure 4.7: Latitude movement of 100 sardines modeled on the plane.

Longitude movement of sardine run modeled on the sphere

Figure 4.8: Longitude movement of 100 sardines modeled on the sphere.

31
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Latitude movement of sardine run modeled on the plane

Figure 4.9: Longitude movement of 100 sardines modeled on the plane.

Figure 4.10: Simulation of sardine run routes displayed on the sphere.

Figures 4.6 and 4.7 show the latitude movements of 100 sardines during
their migration on the sphere and the plane, respectively. The increasing of lati-
tude represents the northward movement. Figures 4.8 and 4.9 show the longitude
movements of 100 sardines during their migration on the sphere and the plane,
respectively. The increasing of longitude represents the westward movement. Fur-

thermore, the 3-dimension simulation models for sardine run routes on sphere are
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shown in Figure 4.10.

4.2 Wildebeest migration

One of well-known migrations in Africa is wildebeest migration. Every year,
millions of wildebeests have clockwise movement between Tanzania and Kenya,
shown in Figure 4.11. They migrate together with zebras, antelopes, gazelles,
elands, and impalas. In this work, information of wildebeest migration used in the

model is addressed in [16, 17].

Masai Mara
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Mara River Nairobi

Talek River

KENYA
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N
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Serengeti
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“ “— A Arusha
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<

Karatu !

Figure 4.11: Map of wildebeest migration routes with monthly behaviors [16].

For the modeling and simulation, we set the initial date and time of the
migration to be 1% January 2008 at noon, and the end date and time to be 1%
January 2009 at noon, which gives T' = 480960 minutes. All representative points
are denoted as follows: NCA = Ngorongoro Conservation Area; and T1, T2, T3,
T4, T5, T6, T7, T8(1), T8(2), T9 = Transit 1, 2, 3, 4, 5, 6, 7, 8(1), 8(2), 9,

respectively, and their coordinates are shown in Table 4.1.
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Representative | Coordinates
points (degree)
NCA (—3°,35.5°)
T1 (—3.43°,34.9°)
T2 (—2.75°,34.8°)
T3 (—2.24°,34.4°)
T4 (—1.87°,34.2°)
Th (—1.72°,34.6°)
T6 (—1.4°,34.9°)
T7 (—1.56°,35.1°)
T8 (—2.05°,35.1°)
T9 (—2.42°,35.3°)

Table 4.1: The coordinates of representative locations.

As shown in Figure 4.11 wildebeest migration starts at the Northern part of
the Ngorongoro Conservation Area in Tanzania. New wildebeests are born and
then move to T1 at the time ¢;. Then, they move upward to T2 and T3 at the
time to and t3, respectively. Next, at the time t4, most herds go to T4 while the
others go to T5. After that all herds go to T6, T7, and T8 at the time t5, t5, and
t7, respectively. At T8, they continue downward to T9 while some of them stay
there before go down to T9. All wildebeests move through T9 and at the time tg

and go back to NCA at the time tg.

We assume that there are 4 possible patterns of wildebeest migration. We
claim that at the time ¢4, the herds go to T4 and T5H with probabilities % and %,
respectively. Also, at the time ¢, the herds continue downward to T9 and stay at

T8 before go down to T9 with probabilities % and }l, respectively. The discretized
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times and the pathways along with their probabilities of 4 different patterns are

shown in Table 4.2.

Patterns
n tn 1 2 3 4
0 0 NCA
1 | 43200 T1
2 | 64800 T2
3 | 192960 T3
4 | 217440 T4 TH
5 | 260640 T6
6 | 325440 T7
7 | 358560 T8(1)
8 | 427680 T8(2) T8(2)
T9 T9
9 | 437760 T9 T9
10 | 480960 NCA
Probability | 9/16 | 3/16 | 3/16 | 1/16

Table 4.2: The 4 patterns of wildebeest migration and their probabilities.

For each pattern p, let 0 =ty < t; <ty < .. <tn,—1 <tn, =T. The period

[tn—1,t,) represents time interval of different behavior for n = 1,2,...,N,. For

example, pattern 1 can occur with probability 9/16 that the wildebeests go from

NCA to Tl, T2, TS, T4, T5, T6, T?, T8 and T9 at the time tl, tg, t3, ty, t5, tﬁ, t7, ts

and tg, respectively. Finally, they come back to NCA at the time t;9. The other

patterns can also be described similarly. The routes of wildebeest migration and

the corresponding map projection for each period are shown in Figure 4.12.
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Figure 4.12: The routes of wildebeest migration for each period.
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The simulated migration routes of 100 wildebeests using At = 60 with suit-
able adjusted parameters 7,0, and ¢ (provided in Appendix) for each period,

are shown in Figures 4.13 and 4.14.
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Figure 4.13: Coordinate (¢, 8) of simulation of wildebeest migration routes modeled
on the sphere.
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T

Lattitude (degree)
Ny

| ERER] ERER] ERSE R RER FRRR [ERE) KERH) KEEE) EESEIPRIEAURER] IRER] (320] ERSEI EERE! EERH! ERERY FRERY FRER! FREHY HESH HEaH )

(e A EEEE o\ A Ve Y 18 A FRE 5 R EE S Y EREA ] A |

1 1 1 1 1 1 1 1
-35
34 34.1 342 343 34.4 345 346 347 348 349 35 35.1 35.2 353 354 355 35.6

Longitude (degree)

Figure 4.14: Coordinate (¢, ) of simulation of wildebeest migration routes modeled
on the plane.
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Figure 4.15: The Q—Q plots of processes on the plane and the sphere.

Figures 4.13 and 4.14 show the plots of coordinates (¢, ) of the simulations
on the sphere and the plane, respectively, which are quite similar. This shows
that wildebeests start from NCA and go to T1, T2, and T3, respectively; at
T3, it separate into 2 groups; the one goes to T4 while the other goes to T5;
next, they move to T6, T7, and T8, respectively; at T8, some wildebeests stay in
this site before go to T9 while the others continue to T9; finally, all wildebeests
move to NCA. The simulation results show behaviors as expected according to
information in Figure 4.11. Figure 4.15 shows distributions between the mean
path of the process on the plane and the mean path of the process on the sphere,

which are quite similar.
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Latitude of wildeb i i deled on the sphere

Figure 4.16: Latitude movement of 100 wildebeests modeled on the sphere.

Latitude of wi igrati deled on the plane

Figure 4.17: Latitude movement of 100 wildebeests modeled on the plane.
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Figure 4.18: Longitude movement of 100 wildebeests modeled on the sphere.
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Figure 4.19: Longitude movement of 100 wildebeests modeled on the plane.
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Figure 4.20: Simulation of wildebeest migration routes displayed on the sphere.

Figures 4.16 and 4.17 show the latitude movements of 100 wildebeests during
their migration on the sphere and the plane, respectively; the increasing of latitude
represents the northward movement, while the decreasing of latitude represents the
southward movement. Figures 4.18 and 4.19 show the longitude movements of 100
wildebeests during their migration on the sphere and the plane, respectively; the
increasing of longitude represent the westward movement, while the decreasing
of longitude represents the eastward movement. Furthermore, the 3-dimension

simulation models for wildebeest migration routes on sphere are shown in Figure

4.20.

4.3 Arctic tern migration

Arctic tern is a seabird which has the longest migration route in the world.
Their migration routes not only have long distance between Greenland and Antarc-
tica, but also have many patterns. Main informations of arctic tern migration are
based on [4]. Moveover, we receive the tracking of arctic tern during their migra-

tion from [4]. The routes of arctic tern migration routes data from [4] are shown
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in Figures 4.21 and 4.22.
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Figure 4.21: Southbound migration routes of arctic terns.
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Figure 4.22: Northbound migration routes of arctic terns.

To describe their migration, all representative points are denoted as follows:
GL = Greenland; SO(1), SO(2), SO(3) = Stopover; WS(1), WS(2) = Wintering
site; and T1, T2, T3, T4(1), T4(2), T5(1), T5(2), T6, T7, T8 = Transit 1, 2, 3,
4(1), 4(2), 5(1), 5(2), 6, 7, 8, respectively. Their coordinates are shown in Table

4.3.



Representative Coordinates
points (degree)

GL (74.26°, —20.16°)
SO (47°, —34°)
WS (—58°, —30.5°)
T1 (10°, —23.61°)
T2 (—5°,—31°)
T3 (—5°,4°)
T4 (—39°, —47°)
T5 (=39°,15°)
T6 (—50°,106°)
T7 (—22°,8°)
T8 (16°, —57°)

Table 4.3: The coordinates of representative locations.
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We set the initial date and time of migration to be 10" August 2007 at noon

and the end date and time to be 31 May 2008 at noon which gives T' = 424800.



44

Patterns
n tn 1 2 4 5 6 7 8 9 10
0 0 GL
1 | 17280 SO(1)
2 | 51840 SO(2)
3 | 74880 T1
4 | 108000 T2 T3
5 | 119520 T4(1) T5(1)
6 | 152640 T5(2) T4(2) T6
WS(1) WS(1)
7 | 161280 WS(1) WS(1) WS(1)
8 | 360000 WS(2)
9 | 368640 T7
10 | 396000 T8
11 | 400320 SO(3)
12 | 407520 SO(4) SO(4) SO(4) SO(4) SO(4)
GL GL GL GL GL
13 | 424800 GL GL GL GL GL
Probability 1/8 1/12

Table 4.4: The 10 patterns of arctic tern migration and their probabilities.

In the first half of their migration, they departed from GL and went to the

SO(1) at time t¢;; all the discretized times are shown in Table 4.4. They stop

at the SO(1) for a while, and then, at the time ¢y, they continued downward to

the south of the Cape Verde Islands (T1). At this area, they split into 2 groups

at the time t3. The first group crossed the Atlantic to East coast of Brazil (T2)

while the second group flew along the West coast of African (T3) at the time 4.

After that, their movement was East-West through various locations, see Figure

4.23. At the time t7, all birds went to WS(1) and stayed there for winter. The
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northbound migration began at the time tg from WS(2) to GL with a particular
S-curve movement. At the time ¢;; at SO(3) some of them stayed there before
went to GL while the others went straight to GL. Finally, all birds come back at

GN at the time t;3.

We assume in this work that there are 10 possible patterns of arctic tern
migration. We claim that at the time ¢4, the arctic terns will go to T2 and T3
with equal probability of %; at the time t5, the birds at T4 will go WS and T5H
with equal probability of %; and the birds at T5 will go WS, T4 and T6 with equal
probability of % As for the northbound routes, at the time ¢, the birds continue
upward to GL and stay at SO before go up to GL with equal probability of % The
discretized times and the pathways along with their probabilities of 10 different

patterns are shown in Table 4.4.

For each pattern p, let 0 = fp < t; < tp < ... < Iy, < ty, = T. The
period [t,_1,t,] represents time interval of different behavior for n = 1,2, ..., N,.
For example, pattern 1 can occur with probability 1/8 that the birds go from GN
to SO(1) at the time ¢; and stay there for a while, i.e. shown as direction from
SO(1) to SO(2). At the time t5 they move to T1, T2, and T4(1) at the time ¢3, 4
and t5, respectively. After that they travel toward to WS(1) for the winter at
the time t7; and stay there until the time ¢, i.e. shown as direction from WS(1)
to WS(2). Next, they fly through T7, T8, and SO(3) at the time tg, t19 and 11,
respectively, and they continue to Greenland directly. The other patterns can also

be described similarly.

The simulated migration routes of 100 arctic terns using At = 60 and with
suitable adjusted parameters 7, ,,, and ¢ (provided in Appendix) for each period,

are below in Figures 4.24-4.31.
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Figure 4.23: The routes of arctic tern migration for each period.
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Figure 4.24: Coordinate (¢, @) of simulation of the routes of arctic tern migration on
the sphere.
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Figure 4.25: Coordinate (¢, ) of simulation of the routes of arctic tern migration on
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Figure 4.26: The Q—Q plots of processes on the plane and the sphere.

Figures 4.24 and 4.25 show all routes of patterns of arctic tern migration
models on the sphere and the plane, respectively. The birds begin their southbound
migration from Greenland, and split into 2 groups having different East-West
movements. However, in the end of southbound migration, all birds go to wintering
site near Antarctica. After that, they move northward with S-curve from wintering
site to the stopover. At the stopover, some birds continue to Greenland directly,

while the others pause there before continuing to Greenland.

Figure 4.26 shows distributions (Q-Q plots) between the mean path of the
process on the plane compared with the mean path of the process on the sphere.
This result shows that the paths of arctic terns for the longitude coordinate from
the process on the plane is incomplete (right hand side of Figure 4.26) and different
from that for the process on the sphere. This result agree with sample-paths shows
in Figures 4.24-4.25, showing the difference between the paths between the sphere
and plane processes. Moreover, as compared with real data (Figure 4.21), the
simulation of arctic tern migration on the sphere provides more accurate result

than that from the plane.
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In addition, when compared arctic tern migration route with other short-
distant animal migration routs such as sardine and wildebeest, we see that the

modeling of long distant animal migration is required to perform on the sphere.

Latitudes of arctic terns during their migration on the sphere
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Figure 4.27: Latitude movement of 100 arctic terns modeled on the sphere.
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Figure 4.28: Latitude movement of 100 arctic terns modeled on the plane.
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Figure 4.31: Simulation of arctic tern migration routes displayed on the sphere.

The latitude and longitude of simulation paths are shown in Figures 4.27-
4.30. The North-South movement is considered according to the trend of latitude;
the increasing of latitude represents the northbound movement, while the decreas-
ing of latitude represents the southbound movement. Similarly, East-West move-
ment is considered according to the trend of longitude; the increasing of longitude
represents the eastbound movement while the decreasing of longitude represents
the westbound movement. Furthermore, the 3-dimension simulation models for

arctic tern migration routes on sphere are shown in Figure 4.31.



CHAPTER V

CONCLUSION AND FUTURE WORK

All simulations of animal migration routes are generated according to the
proposed animal migration SDE models: the simulated routes of sardine run show
the westward and northward movements along the South Coast and the East Coast
of South Africa, respectively; the simulated wildebeest migration routes show the
separated movements to difference areas—going to the transits sequentially and re-
turning to the Ngorongoro Conservation Area; the simulated arctic tern migration
routes follow the observed real data showing the separations of birds that go along

the coast to the West African and move across to the East Coast of Brazil.

The appropriate map projections are applied for each movement period to es-
tablish the models. The STER, TMER, and LCC projections are suitable applied
for surrounding movements, North-South movements, and East-West movements,
respectively. In general, one can select any appropriate map projections to use in

the models according to animal behaviors, distances and directions of movements.

The Q-Q plots of sardine run and wildebeest migration routes suggest that,
for animal migration routes having not so large distances, the simulated migration
routes generated on the sphere and the plane provide similar results. However,
for long distant migration routes such as arctic tern migrations, the simulations
should be modeled on the sphere, since there might be some distortions along the
longitude coordinate for the simulations modeled on the plane; as for arctic turn

in this study.

Indeed, reserved animals such as dugong (Dugong dugon), brow-antlered deer

(Rucervus eldii thamin), and white-eyed river martin (Pseudochelidon sirintarae)
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are unable to be tracked because of mistreatment. For this reason, if we have

enough data and know the exact places and dates that they reach, our model is

able to predict their location at any time after then.

For effectiveness for further modeling and simulation of animal migrations,

additional related results and real observed data are required. This work contains

partly fasts of animal migrations, which can be used as a basic idea for developing

more realistic animal migration models. We provided here 4 possible comments

for future work as follows.

1)

Boundary conditions can be included into the model. If we know animal
movements in some specific area, we can create the boundary for that area
and set the boundary condition for the SDE model. For example, arctic
terns travel over the seas but not mainlands such as Africa, South America,
and Antarctica; thus, we may set an appropriate boundary condition on the

coastline of the mainlands.

The times of changing migration behaviors or routes, t; in our model, can
be randomly selected. In our model, these times are fixed for each animal
according to the observed real data, so, all simulated routes change the move-
ments abruptly at these times. We can fix these simultaneous movements by
assigning suitable distributions for the periods of the migration behaviors,
so that each individual simulated route has different times to change the

migration behaviors.

The model can be generalized to have more than one attracting point in each
behavior period. Moreover, we can have sources of dangers, such as natural

enemies and storms, that can push away animals. For example, if we have
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m sources of incentives/dangers, the generalized model will have the form

dén = 3 aalt) [Ai(6u, 0u)dt + Bildu, 0)dU, + Ci(61, 0,)dVi + Gi(6r, 0,)d0L
i=1

doy =" ai(t) [Di(qﬁt, 0,)dt + Ey(61,0,)dU, + Fy(¢r, 0,)dV; + Hi(o,, Gt)df]t] ,
=1

comparing with Equations (3.7) and (3.8), where 0 < a;(t) < land Y ", oy(t) =
1 for all time ¢; a;(t) is a deterministic function that gives a weight of im-
portance for the 7*" incentive or danger at time ¢, thus, these functions a;’s

can control the dynamic of the movement behaviors.

The parameter estimation can be implemented to obtain suitable parameters
for the model. Unfortunately, available data for most animals are quite rare

and inadequate to make a good estimation.
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1. Parameters for SDE model and simulations

In the modeling and simulation described in chapter 4, we use & = 1075, 10725,
and 10~% for sardine run, wildebeest, and arctic tern migrations, respectively, and

v, and o, for all simulations are shown below.

Tn On

11 0.0000008 0.00001
0.0000005  0.00003

3 | 0.000001  0.00006

Table 1: Parameters v, and o, for sardine run migration model.

Pattern

1

2

3

4

co N O

10

0.0000014
0.0000025
0.0000004
0.0000025
0.0000012
0.0000006
0.0000018
0.0000005

0.000007

0.0000014
0.0000025
0.0000004
0.0000025
0.0000012
0.0000006
0.0000018
0.0000005

0.000007

0.0000014
0.0000025
0.0000004
0.0000025
0.0000012
0.0000006
0.0000018
0.0000005

0.000007

0.0000014
0.0000025
0.0000004
0.0000025
0.0000012
0.0000006
0.0000018
0.0000005

0.000007

0.0000015 0.0000015 0.0000015 0.0000015

Table 2: Parameter +,, for wildebeest migration model.




Pattern

1 2 3 4

1 | 0.000005 0.000005 0.000005 0.000005
2 | 0.000003 0.000003 0.000003 0.000003
3 | 0.000007 0.000007 0.000007 0.000007
4 |1 0.000009 0.000009 0.000009 0.000009
5 | 0.00001  0.00001  0.00001  0.00001

0.000008 0.000008 0.000008 0.000008
0.000006  0.000006  0.000006 0.000006
0.000004 0.000004 0.000004 0.000004
0.000003 ~ 0.000003  0.000003 0.000003

10 | 0.000008 0.000008 0.000008 0.000008

Table 3: Parameter o, for wildebeest migration model.
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