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CHAPTER 1
INTRODUCTION

Riesz transforms arise naturally in linear PDEs of divergence form

Z Or,(A(2)0p,u) =g inR" (1.1)
2,7=1

or nondivergence form
Z A(2)0;,(0p;u) =g inR" (1.2)
2,7=1

where A(x) = (a;;(z)) € R™" is a given coeflicient function. They are the “zero-
order” structural part of the PDE. In 1998, T. Iwaniec and C. Sbordone [10]
proposed elegant methods in solving (@) via Riesz transforms. Under assumption
that A is elliptic, bounded and of vanishing mean oscillation, they obtained the
existence, uniqueness and also the Calderén-Zygmund LP-theory of a solution.

We now adapt techniques of T. Iwaniec and C. Sbordone to the equation
Z Op;(A(2)0y,u) =g in R™ (1.3)

If we set [ := (—A)%u and apply the Riesz potential I! to equation (@), then

(@) at least formally is equivalent to

ZR )R f) =1'g inR"



In particular, if we define the operator
Tf:= iRz(A(x)sz)
i=1
then (@) is equivalent to the equation
T((—A)zu) =I'g inR" (1.4)

Thus, existence, regularity and uniqueness of a solution to (@) are basically re-
lated to harmonic analysis results on boundedness and invertibility of the operator
T'. Since the Riesz transforms are bounded on any LP space, the most basic prop-
erty is that T is a bounded linear operator from L? to itself under the assumption
that A is bounded. Additionally, if A is elliptic and of vanishing mean oscillation,
then T has a bounded inverse which was proved by T. Iwaniec and C. Sbordone
[10] as mentioned before.

In this work, we extend the previous method to a popular nonlocal equation
Liu=4g (1.5)
where s € (0,1) and the operator L3 is given by

wu(r) == P.V./ QK(:L‘,y)M

" |z —y| 2

Notation P.V. stands for the principal value of the integral. Here we assume
K :R" x R" — R to be measurable in x and y, symmetric K(z,y) = K(y,z) and
also elliptic, i.e. there exist A\, A > 0 such that A < K(z,y) < A for all z,y € R".
Notice that in the case K = 1, the operator Lj, corresponds to the fractional
Laplacian operator (—A)?*.
Such equation has been studied by numerous authors, to name just a few,

[, 2, 8,4, b, 6, 7, 11, 12, 15, [16]. Recently, T. Mengesha, A. Schikorra and
SY [13] introduced a natural analogue of the operator T associated to () set



Ak s, .5,(71, 22) to be the following double integral

(3? _ Zl s1—mn __ y _ Zl sl—n) ( T — Z2|sz—n _ y _ 2’2|S2_n)
/ K(z,y) | | | | L+2s | dx dy
n JRn |$ - ?/|
where 0 < s1, 89 < 1 with s; + s = 2s, and set
TK751752f<Zl) = / AK,SLSQ(Zl,ZQ)f(ZQ) dZQ, 21 - Rn (16)

The operator Tk s, s, is equivalent to (@) in the sense that solutions to ()

satisfy
Ticsrsa((—2) Tu) = I?g. (1.7)

Again, existence, regularity and uniqueness of a solution to the equation ()
are related to boundedness and invertibility of Tk, s,- In [13] — under Holder
continuity assumptions on the kernel K — it was shown that T s, s, is comparable
(up to lower order terms) to the fractional Laplacian (—A)z, and regularity theory
was obtained as a distortion of the regularity theory known for the fractional
Laplace equations.

On the contrary, in this work we want to show LP boundedness of Tk s, s,
without any continuity assumption on K. In view of [9, Theorem 4.2.2, Theo-
rem 4.2.7], if an operator is a Calderdn-Zygmund operator, we will immediately
obtain weak type (1, 1) boundedness, L? boundedness for any p € (1,00) and also
L>* — BMO boundedness of such an operator. Consequently, our main result is

stated as follows.

Theorem 1.1. Let K € L®(R™ x R"). Then Tk, s, @5 a Calderon-Zygmund

operator. In particular, for any p € (1,00), there exists a constant C' > 0 such that
1. HTK,sl,sszLLOO(]Rn) S C HKHLOO(]R"XR") Hf“Ll(R”)7
2. [Tk 51,50 f |l Lr@ny < C || K| poo@nxrny || f]|Lr@ny,

3. [Tk,sr,50f1Bro@ny < C || K || Lo @nxrny || f] 200 ®r)-



To prove that Tk s, s, is the Calderén-Zygmund operator, we first show that
Tk 5,5, is bounded from L*(R") to L*(R™) and we then show that Ag g, s, is a stan-
dard kernel, i.e. the kernel A g, 5, satisfies all properties in the following proposi-

tion.

Proposition 1.2. For any z; # z5 in R", there exists a constant C' > 0 such that

Ak s, s, Satisfies the size condition

C HKHLOC(R"XR")

|AK781152(217 22)| < |Z1 — 2y|m (18)
and for some o > 0 the regularity conditions
C h @ K L (R xR”
|AK,51,82 (Zl + ha Z2) pr AK,S1,S2 (Zly Z2)| S | ‘ H H n(—f—ax ) (19)
|21 — 2|
whenever |h| < 3|z — 2| and
|AK,81,52(21722 + h) — AK,S1782(21722)| S | | H H (R" xR") (110)

|Zl _ 22|n+a
whenever |h| < 3|z — 2.

An application of our main result, Theorem @, is the following regularity
results for “almost constant coefficients” (but without any further regularity as-

sumption).

Theorem 1.3. For any s,s1,82 € (0,1) with s1 + so = 2s, s > s and any
p € [2,00), there exists € > 0 such that the following holds. For any measurable
kernel K : R* x R" — (0,00) with 1 — 25 < ¢ if u € W*2(R") and f € L*(R")
satisfy

su=(—A)3f inR"

then there exists C > 0 such that

s—589

2 fllr@ny-

1(=A) ul| oeny < C[|(—A)



The small constant € > 0 is uniform in the following sense: if s,s1,52 € (0,1 —6)

and p € |2, %) for some 6 > 0, then € depends only on 6 and the dimension.

Observe that we obtain this estimate at all differentiability scales below 1. In
Theorem @ the conditions s; > s and p > 2 means we restrict to higher integra-
bility and differentiability for variational solutions, i.e. solutions u € W*2(R") and
f € L*(R™) which can be obtained by the direct method of Calculus of Variations.

An outline of this work is as follows. We devote Chapter II to reviewing basic
definitions and properties about function spaces and well-known singular integral
operators, e.g. Fractional Laplacian, Riesz potential, Riesz operator and Calderdn-
Zygmund operator of nonconvolution type. After that we discuss how to define
the operator Tk s, 5, as in (@) and prove that such an operator is bounded from
L? to itself in Chapter III. Next, we provide the computations that show that the
kernel Ak, s, is a standard kernel in Chapter IV. The application, Theorem @,
will be proved in the last chapter.

For convenience, throughout this work, C' is used as a positive universal con-
stant, usually depending on the dimension, and is often omitted it in the calcula-

tions by using the following symbols.

« A < B means there exists a constant C' > 0 not depending on A and B such
that A < CB.

e A=~ B means that A< Band B < A.



CHAPTER II
PRELIMILARIES

All definitions of function spaces and the operators mentioned in the introduction
will be stated in the chapter. Moreover, we also present some known results which

will be useful for our work.

2.1 Function spaces

We begin this section by introducing the space of Schwartz functions. Roughly
speaking, it contains all functions such that its derivatives decay faster than the
reciprocal of any polynomial at infinity and we then state the definition of space
of tempered distributions which is its dual space. Lebesgue spaces, BM O space

and Fractional Sobolev spaces will be given later.

2.1.1 Schwartz space and space of tempered distributions

The Schwartz space, denoted by S(R"), is the space of infinitely differentiable

function f on R™ such that for every multi-indices o and 3,

Pas(f) = SUp 12208 f(2)| < oo0.
xeR"

The quantities p, g(f) are called the Schwartz seminorms of f. Here

olel
o Q1 Qn _ [
=z .. .x la| =1+ 4+, and 0"=_—-——
1 n n aq
where z = (z1,...,2,) and @ = (o, . .., a,) is a multi-index, i.e. a; is nonnegative
integers for all v =1,...,n.

Let S'(R™) denote the dual space of the Schwartz space S(R"), i.e. the space



consists of all continuous linear functionals on S(R"). Elements of S’'(R") are
called tempered distributions. More precisely, a linear functional u is a tempered

distribution if and only if there exist C' > 0 and k, m integers such that

() <C Y paslf)

la]<m
18I<k

for all f € S(R™).

Definition 2.1. If f € S(R"™), the Fourier transform F f of f is given by

FiO= | fwe? =<
Rn

and the inverse Fourier transform F 1 f of f is given by
FA1E) = | @)t o
Rn

where - & = 21§ + -+ + 2,6, with x = (21,...,2,) and £ = (&1, ..., &)-

2.1.2 Lebesgue spaces and BMO

For 1 < p < oo, LP(R™) denotes the set of all Lebesgue measurable functions on
R"™ such that

wmm@:( |ﬂmwgp<m

Rn

and L>*(R") denotes the set of all Lebesgue measurable fuctions such that
esssup |f| :=inf{C > 0:|[{z e R": |f(z)| > C}| =0} < .

It is a well-known that the dual (LP)* of LP is isometric to L”" where %4—1% =1.
Moreover, the L” norm of a function can be obtained via duality when 1 < p < oo

as follows:

Afmmww

[ lle@ny = sup

”gHLp’(Rn)Zl



Since the space C°(R™) consisting of all compactly supported and infinitely dif-
ferentiable functions on R” is dense in LP(R™) for p € [1,00), we can weaken the

condition a bit and obtain the following lemma.
Lemma 2.2. Let 1 < p,p’ < oo be such that % —1-1% =1 and f € LP(R"). Define
Ty : CX(R™) — R by
Ti(9)= | [y
RTL

for g € C*(R™). Then Ty is a bounded linear functional on L (R™) with
ITsll = 11/l oqny = sup fg.

geC(R™) JR™

9l 57 guny <1

Proof. Tt follows immediately from Holder’s inequality that T is a bounded linear
operator on C°(R™) with || T¢| < |[f||z»@n). On the other hand, let

_ |fPP-sgnf
N ey

Then h € L (R") and 12l o ey = 1. Since CZ(R") is dense in LP (R™), there is
a sequence (h,) € C2(R") such that h, — h in L” (R"). Thus,
Ifllr@ny = | fh
R

R7 R™

hn
< thHLP’(R")/ fW 1 flleo@m lh = Pl 12 ey
Lr (R™
< ||hy — || / f—+||h|| ' (&7) f—
PED J  hall gy D S Tl )

+ | fllo@mllh = | o @)
I,

< 1 = Poll o ooy |l o ey + Tl
| n“LP/(R")

A lzr @l = hnll 1 ),

where the third and the last lines follows from Hélder’s inequality. By taking



n — 00, the first and the third terms converges to zero and so

hy,
e < [ fr—< sw [ fo
R~ || n||Lp’(Rn) geCP(R™) JRn
91l p gy <1
Hence ||T%|| > || f||zrn). The proof is now complete. O

We now give the definition of weak L' space which is larger than L' space.

Definition 2.3. The space weak L', denoted by LY*°(R™), is defined as the set of

measurable function f such that

| Il proe ey := ililg)\Hx eER™: |f(x)] > A} < 0.

As the usual L' space, two functions in LV*°(IR") are considered equal if they
are equal a.e.. However, L*(R") is only a quasi-normed linear space because it

do not satisfy the triangle inequality, that is,

1f + gllzroo@ey < 2 ([ llzree @) + lgllzro@n)

for every f,g € L'>°(R™). We also can show that || f||p1.ec®n) < [|f||1@n). This
means L'(R") C LY*°(R"™). Furthermore, the inclusion is strict. For example,
f(z) = |z|™™ is not integrable function but is in L>*(R") with || f|| z1.0(rn) = vn,
where v, is the volume of the unite ball of R™.

The next space we introduce is called BMO space that plays role similar to

the space L* and often serves as substitute for it. For example, Riesz transforms

(precise definition in section @) do not map L™ to L* but L> to BMO.

Definition 2.4. The function f is of bounded mean oscillation if

1 1
[flBaogn) = SEP@/Q‘J”(%‘) — @/Qf(y) dy‘ dx < oo,

where the supremum is taken over all cubes @ in R" and BMO(R™) denotes the

set of all locally integrable functions on R™ with [f]zamomn) < oo.



10

It is obvious that every constant function ¢ satisfies [c] Byvorry = 0. Thus,
[-| Bmo®n) is only a seminorm. Moreover, L>°(R") is a proper subspace of BMO(R")
with [f]smomn) < 2| f||Le®n) since BMO(R™) contains the unbounded functions.
For instance, log |z| is in BMO(R").

2.1.3 Fractional Sobolev spaces

There are many fractional Sobolev spaces, a particular one is induced by the

Gagliardo-Slobodeckij seminorm : s € (0,1), p € (1,00), Q C R™ open,

flwsr) = (/Q A %dm dy) ’

We notice that [flysr@) < oo for s > 1 if and only if f is constant. Hence, the

definition is restricted to s € (0,1).

Definition 2.5. For any s € (0,1), p € (1,00) and Q an open subset of R", we
define the fractional Sobolev space W*P(2) to be the space of all LP functions f

on Q with [f]ws») < 0o, endowed with the norm

hSA

1 lwssiey = (1F ooy + Flipescoy)

2.2 Fractional Laplacian, Riesz potential and Riesz opera-

tors

Let first consider the Laplacian operator
A=+ 402
whose Fourier transform is given by

— F(AS)(©) = 2rlE)* F(f)(E) (2.1)



11

for all f € S(R™). By replacing the exponent 2 with a nonnegative real number s

in the above equation, we define the fractional Laplacian operator (—A)z by

(=2)2f)(2) = FH ((2nle])* F(E)) () (2.2)

for all f € S(R™). By calculating the inverse Fourier transform (@), we can write
the fractional Laplacian operator as the integral representation for any f € S(R")

and s € (0,2),

(=A)2 f(x) = C(n,s)P.V. @) = /) dy (2.3)

ge T — Y[

s n+s
where C'(n, s) = 2 ;5(25)). Observe that the kernel has a singularity. However, one
Teilg

can remove it by using the standard changing variable formula to have another

following representation for any f € S(R") and s € (0, 1),

2f(w) — f(x +y) — flx —y)

’y‘n+2s

(-8 f(a) = 5C0n.5) [ b (24

n

More details can be found in [14]. Moreover, the fractionl Laplacian operator is

also related to the fractional Sobolev space as stated in the following proposition.

Proposition 2.6. Let s € (0,1) and let f € W**(R™). Then

[f]%vw(u&n) =C(n,s)™" ||(—A)%f“%2(w)

where C(n, s) is the same constant as (@)
Proof. We refer to [14, Proposition 3.6] for the proof. O

Observe that if s > n, the function £ — |£]|7® is not locally integrable on R™.
However, such function is locally integrable for any 0 < s < n. Thus, it makes
sense to define the inverse operator of the fractional Laplacian operator for any

0 < s < n. It is called the Riesz potential operator.



12

Definition 2.7. Let 0 < s < n. The Riesz potential operator of order s is I® =
(—=A)72, ie. for any f € S(R")

(I*f)(x) = F - ((2nlg)) = F () (@) (2.5)

and so

(1°f)la) = Cns) [ _I® (2.6)

n |z =y
F(n;s
2S7r%l—‘(%>'

—

where C'(n, s) =

The importance of the Riesz potential operators is that they improve the in-
tegrability of a function, more precisely, for 0 < s < n, 1 < p < oo and sp < n,

there exists a constant C' = C(n, s,p) > 0 such that

HIS(f)H[/%(R”) S CHf”LP(Rn) (27)

for all f € LP(R™). In other words, the Riesz potential operators are bounded from

LP(R") to LY(R") where ¢ = 2> p.

—sp

We next give the definition of the Riesz transforms R;, for ¢ = 1,...,n, which
is the typical example of singular integral operators and it also appears naturally

as the derivative of the Riesz potential I, i.e. R; = 9,1".

Definition 2.8. For i = 1,...,n, the ith Riesz transform of f is given by

Ri(7)(e) = CPN. [ b (g)dy

n |z —y[r Tt

for all f € S(R"). Here C(n) =72 I’ ().

2

Proposition 2.9. Fori=1,...,n and f € S(R"), we have

FR)E) = —i%ff(f) (2.8)
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and hence
S
i=1

where I is the identity operator. Furthermore, it is also bounded from LP(R™) to

itself for every 1 < p < 0.

Remark 2.10. Due to the constants C(n,s) and C(n) in the definitions of the
fractional Laplacian, Riesz potential and Riesz operators are not important to us,

we will replace them by 1 from now on.

2.3 Calder6n-Zygmund operator

In this section, we consider a singular integral

T(f)(x)= | K(x,y)f(y)dy

R

whose kernel function K : R” x R” — R is singular along the diagonal x = y and
do not necessarily commute with translations (nonconvolution singular integral).
We are interested in the question: what are sufficient conditions on function K so
that the singular integral operators associated with K are bounded on LP(R") for
any 1 < p < 00? To answer this question, we introduce the Calderon-Zygmund

operator.

Definition 2.11. A function A(z,y) defined on R” x R" \ {(z,z) : € R"} is

called a standard kernel if it satisfies for some C' > (0 the size condition

Az, y)| < 2.9
Al < (29
and for some a > 0 the regularity conditions
Cle — 2’|«
Alwy) - Ala'y) € 2] (210)

(lz =yl + 2" — y[)r+e



whenever |z — 2’| < 3 max(|z — y|, |2/ — y|) and

Cly —y'|*

Az, y) — Az, )| <
A = AN S oy e

whenever |y — ¢/| < %max(|a: —yl, |z —y').

Definition 2.12. A linear operator 7" from S(R"™) to S'(R") defined by

1(7)(e) = [ Alw)i(w)dy

is said to be Calderon-Zygmund operator if

e A is a stardard kernel

o T is a L>-bounded operator, i.e. there exists C' > 0 such that

|T(f)]22®ry < C|l fll2@n for all f € S(R™).

14

(2.11)

We end this section by addressing the question that we posed previously.

Theorem 2.13. If T is a Calderon-Zygmund operator, then

1. T has a bounded extension that maps L*(R™) to LY (R"):

| T fllLree@ny S IFllLr@ny,

2. T has a bounded extension that maps LP(R™) to itself for 1 < p < oco:

| T fllzr@ny S 11 fllze@ny,

3. the distribution T(f) can be identified with a BMO function that satisfies

[T flemomny S || 1| e mn)-

Proof. See [9, Theorem 4.2.2 and Theorem 4.2.7] for the proof.



CHAPTER I11
Tks,.s, AND ITS L BOUNDEDNESS

As we mentioned in the introduction that there is the operator T s, s, associated

to the nonlocal equation

Liu=yg (3.1)

where s € (0,1) and the operator L3 is given by

Liu(x) == P.V./ QK(:E’y)U(JU) — u(y)

g ‘iIZ’ - y‘n+2s

Recall that the function K : R" x R™ — R is assumed to be measurable in x and v,
symmetric K(z,y) = K(y,z) and elliptic, which means there exist A, A > 0 such
that A < K(z,y) < A for all z,y € R".

In this chapter, we explain why the operator Tk s, 5, should be defined as in
(@) and we then prove L? boundedness of Tk, s,-

Firstly, we show that the equation (@) is equivalent to the following integral

equation

n

|z —y|+?

for all ¢ € C°(R™). To show this, let ¢ € C°(R™) and we then consider

/n [ K(z.y) (u(z) —u(y) () = 2(y) dy

|z —y|+e
_ / L @) (u(ﬁ:ﬁﬁ)ﬁ(w) dz dy

[ K= sy
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By Fubini’s theorem and symmetry of K, we obtain

[ [ e = o) = 0D o,

|z =yl

_/n e (e dx_/n RnKy’ () u(y))y <)d:vdy
-/ §£§(u(x)g0(x) dx—i—/n < . K(Wﬁ)%“) ly) dy
_ / Liu(@)p(x) da

_ / gla)p(a) da.

Secondly, we employ the integral representation of the Riesz potential which is
the inverse of the fractional Laplacian with the equation (@) That is, for any

u € S(R™) and any sy, s9 € (0,1) so that s; + sy = 2s, we have

w(z) = I (=A) T u(z) = [ |z — 2" (=A) T u(z) dz

Rn

and

u(y) = I (=8) Fule) = | |y — 2" (=A) 7 u(z) d=.

Rn

It follows that

s

ule) = ul) = [ (=2l — g = 2l ) (A) Fula) dan

Similarly, for any ¢ € C2°(R"), we also obtain

o) = o) = [ (o= al" —ly - al*") (-8)Fp(z)da

Consequently,

K(z.y) (u(r) —u(y))(p(x) — v(v))

|I‘ _ y|n+2s dx dy

S1 52

Ak 51,5 (21, 22) (=A) 2 u(z1) (—A) 2 p(22) d21 d2y
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where Ak 4, s,(21, 22) is defined by

Y (e etV e it T i D
n JRre Y |z — y|nt2s v

On the other hand, we use integration by parts to obtain

| sererds= [ g@r(-a)F o) = [ 179G F o) de

Thus, we can rewrite the equation () as

[ At () Fue) (-8 F plaa)der e = [ 129()(-2) Fp(a) d

Since the above equation holds for all ¢ € C2°(R™), this implies (in distributional

sense)

/ A s (21, 20) (FA) Fu(z1) dor = I°2g(22).

Hence, the operator Tk s, s, is defined by

TK,sl,SQf(Z2) = / AK,Sl,SQ(z17Z2)f<zl) dz,

n

for any z; € R™ and for any 0 < sq, 89 < 1 with s; + s5 = 25, so that solutions of

(@) satisfy
T o150 ((—A) T ) (2) = I*2g(2)

for any z in R".

Next we show that Tk, s, is bounded from L*(R") to L*(R").

Proposition 3.1. Let K € L°(R™ x R"). Then, for any f € L*(R™), we have

1T ,s1,50 f I 22 @ny S K| Lo @rxcrmy || £l 22 mny-
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Proof. Let ¢ € C°(R™). By Fubini’s theorem, we obtain

/ (TKslszf)() ()dz
/ Ko,y 0@ = @) U () = T2 @)

|z —y|+ee

Then, using Hoélder’s inequality twice, we yield (recall that si,s, € (0,1) and
S1+ 89 = 25),

/ (TKs1s2f)(> ()dZ
-~ [ ] K@y ("tple) = Ip(w) U @) ~ 1),

|z —y|r+?e

el S e ) o
(/ " / " = e |I+2( 9% dy) (/ - / n = o= |[+2( o) dmy)é

]Wsl Z(Rn) [I (pjlWSQ Z(Rn)

As a consequence of Proposition @, we obtain the following estimate

| Tealan)@e)ds S Ml el

for any ¢ € C2°(R"). By duality, Lemma @, we deduce that

| Tk 51,50 f |2y = sup /(TK,sl,szf)(Z)SO(Z) dz S| fllc2@n)-
peC®(R™)
||‘PHL2(RTL)§1

This concludes the proof of proposition. O



CHAPTER IV
Ak s s, IS A STANDARD KERNEL

The main result in this chapter is to prove that Ag s, s, is a standard kernel which
satisfies the size and regularity conditions in Proposition . We organize this
chapter into two sections. In the first section we prove some estimates which will
be useful later and then prove that Ak, s, is a standard kernel in the second

section.

4.1 Some useful estimates

We begin this section with an estimate known as an application of the fundamental

theorem of calculus.

Lemma 4.1. For any r € R and o € [0, 1], there exists a constant C' depending
on r such that the following holds. Let a,b € R"\{0} with |a — b| < min{]|al, |b|}.
Then

[lal” = 161"} < C o= b|7 min {|a["=7, o]}

Proof. We may assume r # 0, since the case r = 0 is trivial. Notice that if

la — b| < min{|al, |b|}, then |a| = |b] (with a uniform constant) and so
min {|a|"~7, [b]""7} ~ |a]""7.
Also, for any o € [0, 1], we have

o= bl = la —blla —b]'~" < |a—b||al' ™"
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and thus we obtain
la = 0l]al"™" < la = b7|al"~7|a|"™" = |a — b|7[a]" "
Hence, to complete the proof, it suffices to show that
llal” = 18" < la = ] |a]"~".

Dividing both sides of the above inequality by |a|”, it is equivalent to show that

T T

b

lal

a b

lal ol

a

lal

~J

Since |a| = |b|, there are uniform constants 0 < r; < 1 < ry < 0o such that both

< and i' are in A := B,,(0)\B,,(0). Thus, the estimate is now reduced to show

lal |a

fu]” = oI} S Ju — vl

for all u,v € A. Since A is an annulus, for any u,v € A there exists a curve y C A
with v(0) = u, (1) = v, |¥/| & |u—v| with constants depending only on 7 and 7.
We define a function 7 : [0,1] — R by 5(t) := |y(¢)|". By the fundamental theorem

of calculus, we obtain

1
[Jul” — (vl =/ i'(t)dt < sup |if' ()] S sup vy (8)] < Ju—wvl.
0 te(0,1] te(0,1]

This completes the proof of the required inequality. O

We now state and prove the following estimate which will help us in proving

Lemma @

Lemma 4.2. Let v € R. Then there exists a constant C = C(v) such that
the following holds. For any t € [0,1] and for any a,b,h € R"\{0} such that
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|h| < 1 min{|al,|b]}, we have
lla+th]|” —[b+ th]"| < C(y) max{lla]” — [b]"[,[la + h[" = [b+ R[]} (4.1)

Proof. The inequality is valid obviously when v = 0. The case v < 0 can be
deduced from v > 0 as follows. If the inequality (@) holds for v > 0, then

|la+th|™ — b+ th| 77|
= |a+th|™|b+th| ™ ||a + th]" — b+ th]]

S C(y) la+th[7|b+ th| ™" max{|[a]” — [b]"], [[a + h[" — |b+ A|"[}.

By assumption, we obtain |a| & |a + th| &~ |a + h| and also |b] = |b+ th| ~ |b+ h|.
This implies that

9

ja+th|=7[b+ th| ™ [lal” ~ [b]7] & |al 1B~ [lal” — [b]"] = [lal ™ — [b|

and similarly, we obtain

la + th|™ b+ th|™"|la + h]Y — |b+ h]"| = |a+ k|70 + k|7 ||a+ h|” — |b+ h||

=|la+h|7" = |b+h|7].

Combining these estimates, we obtain that the inequality (@) also holds for —~.

Hence, we now need to show (@) only for v > 0. We divide into three cases.

1. Case v = 2: We first observe that
la + th|> — |b+ th|* = |a|* + 2t(h,a — b) — |b|*.
If (h,a — b) > 0, we obtain that

la -+ th|? — b+ th|? < |af® + 2(h,a — b) — [b]2 = |a + h[* — |b + h|%.
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If (h,a — b) <0, we obtain that
la 4+ th|* — |b+th|* < |a|® — |b]%.
Thus, for any t € [0, 1], we have

la+ th|* — |b+ th|* < max{||a]* — [b]?

la+ h|* = b+ b}

9

Similarly, we also obtain

9

b+ th|* — |a + th|* < max{||a|> — [b]?

la 4+ h> — b+ h|2{}.
Consequently, the inequality (@) is established for v = 2, i.e. we have shown

|la + th|> — [b+th[?| < max{[|al* — |[b]*|, ||a+ R[> = [b+R[*]}.  (4.2)

To generalize this equation to all ¥ > 0, we observe that for any p > 1
|AP — BP| ~ |A — B|(AP~! + BPY) (4.3)

for all A, B > 0, with constants depending only on p. Indeed, taking x :=

;1;1{{11’,?9? (@) is equivalent to

-2~ (1—x)(1+2")

for all z € [0,1). Let

1—a?
(1—a)(14ar-1)

fz) =

Then f is continuously extendable into [0, 1] with f(1) = & because p > 1.
Since f(z) > 0 for all x € [0,1], its infimum and supremum exist and also

positive. Let c(p) := inf,eo,1) f(z) and C(p) := sup,¢(oq) f(x). Then we have
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c(p) < f(x) < C(p) for all z € [0,1]. That is, we get the estimate (@)

. Case v > 2: To use (@), we set A = A2, B=B%and p = 2 > 1. Thus,
|AY — BY| ~ |A? — B*|(A"2 + B"?) (4.4)

for all A, B > 0. Consequently, with the help of (@) we find that for any
v > 2

||la + th|” —|b+ th|”|

< (|a +th]"™2 + b+ th|7_2) max{||a|2 — |b\2} ,

la + h|? — |b+h|2\}.

We again observe that |a +th| ~ |a + h| ~ |a| and |b+ th| =~ |b+ h| =~ |b].
Thus, with the help of (@) we obtain

(la+th|" + b+ th|"?) ||al* = |b]*| = (la]*™2 +[6]"2) ||al* — |b]?|

~ [la|” = [0]"],
and also
(la+th] >+ b+ th|"~?) Ha +h2—|b+ h|2{ ~ [la+h|" —|b+ h|7|.

That is, we have established (@) for any v > 2.

. Case v € (0,2): We apply (@) toA=A", B=DB", andp = % > 1 to obtain

|A* — B?| & |AY — BY| (A*7 4+ B*7)

for all A, B > 0, that is,

|A* — B

Y _ RBY| ~
A =B~ e

(4.5)

for all A, B > 0. Now we argue as in the case v > 2 to obtain the claim,
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namely by (13,

l|la + th|” — |b+ th|"|
< 1
~ |a+th|*>=7 + [b+ th|>—

~ max{l|a|” — [b]"], [[a + h[" — [b+ A|"[}.

max{||al® — [b*|, |[|la + h[* = |b+ h[?|}

The last line follows from (J1.) with |a + th| ~ |a + k| ~ |a| and |b + th| ~
b+ h| ~ b,

Hence, the estimate (@) holds for every v € R. O

In spirit of Lemma @, the next lemma is obtained by the mean value theorem

along with a few more technical arguments.

Lemma 4.3. For any s,«,0 € [0,1], there exists a constant C' > 0 such that the
following holds. Let a,b,h € R"\{0} such that a + h,b+ h # 0.

(1) If || < s min{|a|, |b|} or |h| < 2 min{|a + h|, |b+ A}, then

L e (T ]
< C‘h‘a (Ha + h‘sfafn - ‘b L h|sfafn| i “a/|sfafn . |b’sfa,n‘)

+ C|h|0¢ min{|a|5—o¢—a—n’ ’b|S—Ol—O'—TL} |a _ b|0’

(2) If |h| > : min{|a|, |b|} and |h| > $ min{|a + hl,|b+ h|}, then

||a+h|s—n o |b—|— h|s—n| + “a|s—n o |b|s—n‘

< C|h|a H(l + h|3—a_n _ |b+ hls—a—”‘ + O|h|a “a|s—a_n o |b|s_a_n‘ '

Proof. (1) We assume that |h| < 1 min{|al,[b]} or |h| < min{|a + hl,|b+ h|}.

Without loss of generality we may assume |h| < 3 min{|al, [b|} since in this case
la| = |a+h| and |b] ~ |b+A| for any |h| < |h|. Thus, the latter case follows exactly

the same way.
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Let f:R"\{0} — R be defined by

f(h) = la+h]""" = |b+ A"

Then, by the mean value theorem, we have that for some A € (0,1), h := Ah,

|f(h) — f(0)] S |A|[Df(R)| < |B||Df(R)].

A calculation gives

P - a+h . b+h
Df(h)=(s—n)|la+h|* " —— — (s —n)|b+ A5 1" f
(B) = (s = mlla+ Ao = (o = o+ B
7 > + h
=(s—n a_i_hsflﬁn_b_i_hs,lfn a &
(s = n) (Ja+] bR
- h  b+h
F(s—mp A (AL 0T )
la+h| |b+ h

To estimate the second term, we observe that for any ¢,d € R™\{0},

c d 1
° & A N
" w‘ww‘ |
1
<L (e diid/+ ] |1d] ~ |e])
elE
2
<—le—d.

¢]
Since we can interchange the role of ¢ and d,

c d
— — — | Smin{|¢[}, [d] "' He —d|.
| |d|

It follows that for any o € [0, 1],

o 1—0o

c d B
el |d|

c d
| |d]

c d

o S 277 min{le[ 77 d] " e — d]”.
e[ |d]

Y
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Hence,

AIIDS ()] S (A {la+ AP~ = b+ AP 4 [R]D*77" o — b

Since |h| < |b] by assumption, the following estimate holds for any « € [0, 1]

[Bl[Df ()| S |1 ‘Ia S VR e I L R

We then interchange the role of |a| and [b] to get

[BIDS(R)] S 1A [lat B = fo o+ Aj="

+ 2" min{|a[*=77, BT } o — 0]

It remains to estimate the first term. For this, we define ¢ : (0, 00) — R by

Since a € [0, 1], we notice that %i:‘; > 1. Let t1,t5 € (0,00). By mean value

theorem, there exists ¢ € (t1,ty) such that

l9(t1) — 9(t2)] < g'()ltr — ta

n+l—s n+l—s

< max{(ty) e (L) e Tt — to.

S—N—Q ~u s—n—a
=~

We then apply the above inequality with ¢, = |a + Al |al and ty =

b+ h|*~"~ ~ [b]*""=*. Thus, we obtain that

)]a + AP — b+ B

o (10 H) = g (1 )

< max {\a|<3*n*a>(;‘ii:i*1), |b|(3*”*a)(ﬁiii§*1)}

|CL + ﬁ’s—a—n _ |b+ B|s—a—n

~ max {|a[*~, [p]*~*} ’|a+ﬁ|5_°‘_" b+ AP,
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Since a < 1, max{|a|*,[0|*"'} = min{]al, |b|}*"! and so we get

|h| |a + }NL|5—1—n . |b + ]fbls—l—n

< [hfmin{lal, [} [Ja + Al = [b -+ Bjo

g e ey

S ’h’a ‘a_|_iL’s—oz—n_ ’b_‘_ﬁls—a—n )

The second line above follows from the assumption that |h| < 2 min{|a|, |b}. Re-
call that i = Ah for some A € (0,1). Hence, the claim follows from Lemma @
(2) Assume that |h| > $ min{|al, [b|} and |k| > § min{|a + A|,|b + hl[}.

We only show the estimate of ||a + h|*™" — |b + h|*7"|, the estimate for ||a|*™™ — |b]*~"|
is almost verbatim. There are two cases.

Case 1: min{|a + h|, [b+ h|} < 5 max{|a + h|, |b+ hl}.

For any 6 < n, with a constant only depending on # — n, we observe that
lla+ h*™ = b4 h|’™"| ~ min{|a + hl, [b+ [}
Thus,

Ha +h)" = b+ h|s_"‘ ~ min{|a+ h|, |0+ A}
= min{|a + h|, |0+ h|}* "
< JR|® min{|a + A|, |b+ A}

~ |h|* |la+ h[*=*7" — b+ A"

Case 2: min{|a + hl,|b+ h|} ~ max{|a + hl,|b+ h|}.
We define g : [0,00) — [0, 00) by

s—n

g(t) = t.sfnfoz

for any o € [0,1]. Then, for any t;,t, € (0,00), by mean value theorem, there
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exists d € (t1,t2) such that

lg(t1) — g(t2)| < ¢'(d) |t — ta].

Thus,

-1 s=n g
9(t1) — g(t2)| < max{t;™"™* &5 }|t1 —to.

Taking ¢, = |a + h|* """ and ty = |b+ h|* "%, we then find

lla + R[>~ — |b+ h|*™"]

=l (la-+ A=) =g o+ h)]

< max{ja + AC Y, b4 b6 EEE D] (o + AP — b+ b
~ max{|a +h|%, [b+h|*} [la+ BT — b+ AT

~min{la + h|* [b+ h|} |la + AT = b+ AT

SJ ‘h|a “a+ h’sfafn o ’b—|— h’sfafn‘ '

This concludes the proof of the second claim. O

4.2 Standard kernel

The main result of this section is proving that Ag , s, is a standard kernel which
will be proved at the end of this section. For this purpose we use Lemma @ to
reduce the formula of Ak, 5, to a new kernel which will be given below. After
having the estimate for the new kernel (Proposition Q below), the main result
will follows directly from Lemma @ and Proposition @

Now we set | = 1,2, a,0 € [0,1], s, 51,52 € (0,1) with s; + s = 25 and

Mla’a(zhzz) 32/ K(x,y) /fla’a(ifyy, 21,22)dm dy
n RTL
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where

s1—a—n S2—n 32—n’

—ly == e = 22T~y — 2

|z — gyl

r—Zz
H?’O—(I7y7 21722) = || 1’

and

oo mm{]z _ Zl’sl_a_(f—n, ’y _ Zl‘sl—a—o—n} Hx _ 22|82—n _ ’y _ 22‘82—n|

Ko (T, Y, 21, 22) 1= |z — y|rt2s—e

Proposition 4.4. Let 6 € (0, %) be such that 100 < s, s1,80 < 1 —100. Then, for

any a € [0, 1—109), o € (s1+0,2s) and for any | = 1,2, we have
||K||Loo(RnXRn)
}Zl - 22’a+n

| M (21, 22)] < C(0)

for all zy # 2.

Proof. Fix z1,29 € R™ such that z; # z5 and let § := |27 — 23] > 0. We split

R™ x R"™ into different cases

3 3 3
R xR* = JA = B =|JT, (4.6)
i=1 =l =1

where
A = Ai(z1) ={(z,y) e R" x R": |[x —y| < 10min{|x — 21|, |y — 21|} },
Ay = Ay(z1) = {(z,y) e R" xR : | — 2| < 10min{|y — 2|, |z — y|}},
Az = As(z1) = {(z,y) e R" x R" : |y — 21| < 10min{|x — 2|, |z — y|}},

and B; are the analogous cases involving 25, namely

B = Bi(z) = {(z,y) e R" xR" : |z — y| < 10min{|x — 2|, |y — 22|} },

82 = BQ(ZQ)

{(z,y) € R* X R : [ — 25 < 10min{[y — 2, |z — y[}},

Bs = B3(z2) = {(z,y) € R" x R" : |y — 25| < 10min{|z — 25|, |z — y|}},
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and lastly Z;,

1

Ty =Ti(z1,20) = {(z,y) e R" xR : y € R, |z — 21| < 106 and |x — 25| > Eé},
1

T =Ty 20) = {(0.) €R' x Bty € R [z — 2| < 105 and [ — 2] > ).

Ig = 1—3(21, 22)

1 1
= {(m,y) eR"xR":yeR" m!x—zg\ < |z — 2| <100|z — 25| and |z — 2| > 100(5}

We note that there is no need for the sets to be disjoint. Hence,

Mza70(21,22) S // K(z,y) “z (I Y, 21, 22) dx dy
i,5,k=1 ZﬂB NZy
3

a 0'l
Z i,k (21, 22)-
5. k=1
Our strategy is now considering all combination of the cases above seperately.
That is, we will prove that

JOZ

7, kl(zh 22) Seomasl

forall 7,7,k =1,2,3 and for all [ =1, 2.

Before we begin the lengthy proof of this proposition, let us warn the reader
about an abuse of notation that we are going to use throughout the proof. While
A;, B;, Z; are sets in R” x R", we will sometimes identify them with subsets of

{z} x R" or R™ x {y}. It means that we will use the following convention

[ gwe= [ = [ s

n

and

F (e, y)dy = / (@) f @, y)dy.

n

flay = [
Ai Ain({z}xR™)
Another observation which we always use is that if |x — y| < min{|z — z|, |y — 2|}

for any z,y, 2z € R", then |z — z| and |y — z| are comparable, i.e. |z — z| = |y — z|.
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. . «,o,l a,0,l a,o,l,
Estimating J;77, J112 and Jy73:

In this case we can use Lemma @ to obtain the following estimates
s1—a—n s1—a—n s1—a—n—1
||z — 21 — |y — x| | S e — 2] |z =yl

and
|2 — 27" = |y — 227" S |v — 27" e — .

It follows that

’SL’ \d Zl\sl—a—n—l ‘I _ Z2|32—n—1
‘.’I} > y‘n+2372

K’?’U (Ia Y, 21, ZQ) 5

We observe that (x,y) € Ay N By implies that |z — y| < min{|x — 21|, |z — 22|}

Thus, since s < 1, we integrate x7"” w.r.t. y and get

1 . -
/A 5 Wfly5mm{lﬂﬁ—21|7|~”L’—Z2‘}2 .
yeA1N5;

Thus, we have

Jf{’].ail(zly 22) S / |SL’ = Zl‘sliainil |,T e 22|S2*n71 |$ _ 21’2728 d:C
o AiNBINT,

= /A A5 s 2l 518 Y5 2z da.
1NB1NZy

To use Holder’s inequality, we let p > 1 be so small so that (1 —a—sy —n)p > —n

and (sg —1 —n)p’ < —n. Then

1 1
P »
10,1 —a—s2— —1-n)p’
(]51‘71 (21722) 5 (/ |ZE _ 21|(1 a—s2—n)p dCL’) (/ |JZ _ Z2|(52 n)p dl‘) )
lx—21]<0 lz—22|20

Since (1 —a— s —n)p > —n and (s, — 1 — n)p’ < —n, we compute
1 1 ,
Jﬁfl (Zla 2'2) < (5(170‘7527”)1’*")1] (5(82*1*71)10 +n> I

which settles this case.
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We omit the proof of J;' ’f’;(zl, 25) since it is similar to the above case essentially
only interchanging the role of z; and z5.
The proof of J;' ’fél(zl, 2y) is also similar to the above case but a bit simpler

than that since |x — 21| & |z — 25| when (z,y) € Z3. Hence, we arrive at

Jlojfél(zh 22) S / |I _ Zl|1—cx—82—n |J] . Zl|32_n_1 do
A1NB1NZ3

lz—21|20

~ 5-0[-71'
Next, we will estimate J7%. Notice that for any (z,y) € Aj, we have |z — 2|
and |y — 21| are comparable. Thus,

|z = 2" 7770T" || = 207" — |y — 27"
‘iL‘ WA y‘n+2570' :

"{370(‘%7 Y, 21, ZQ) ~~

Then applying Lemma @ to the zo-term leads to

’Q; T lesl—a—a—n ‘iIZ' _ 22|52—n—1

’.17 gy y’n+2370'71

K'g’a ('Ia Y, 2, Z?) ,S

Again, |z — y| < min{|x — 21|, |z — 22|} and, by assumption, we have o + 1 > 2s.

Thus, we can integrate w.r.t. y to get
Ja,a,Z < S1—o—a—n so—n—1 —2s+0+1 d
1,1,1 (21,22) S |z — 2] [z — 2 |z — 21 Z
A1NB1NZy

= /A - |z — 21| 7527 g — |2 da
1NB1NZy

We observe that —so —a+1 >0 and s, — 1 < 0. Let p > 1 be so small such that

(—=ss —a+1—n)p>—nand (ss — 1 —n)p’ < —n. Then, by Holder’s inequality,
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we have

S

1
P I~
2 - - - 1 /
Jivi (21, 22) S (/ | — z|(T2at n)pdx) (/ | — 2|2 1mp dx)
|z—21]<0 |x—22|26

1
7

(6(7827a+17n)p+n) % <5(52*17n)p’+n) P

AN

— 5—&—”,
Similarly, for Jﬁf’;(zh 29), after integrating w.r.t. y (since o + 1 > 2s) we get

e P S e e
A1NB1NZs

= / lo = 2 [P 77 g = 2| T d2.
A1NB1NZy

By assumption, s; — 0 — a < 0 and —s; + ¢ > 0. Then, using Holder’s inequality,
we let p > 1 be so small such that (s;—c—a—n)p < —n and (—s;+o—n)p’ > —n.

Then,

1

1
P P’
«,0,2 s1—o—a—n —s1+0—n)p’
Jiis (z1,22) S (/ | — 2| e d»’l?) (/ | — zp|Tor¥eTR dfb‘)
lx—21|20 |x—22|<6

S (5(51_0_(1_”)10""")% (5(—51+U—n)p/+n) P

s

=5,

As before we argue the same argument to estimate J;'73 (21, 22). Since |z—21| ~

|z — 2|, we arrive at

Jla,lg;f(’zl’ Z2> ,S / |.Z‘ _ Z1’732*a+17n |l’ i Z2|52,n,1 da
v A1NB1NZ3

= / |z — 2|7 " dx
|lx—21]|20

~ 5—0&—7’1,'
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. . «,o,l a,0,l a,o,l,
Estimating Ji57, Ji55 and Jy53:

Using Lemma @, we obtain

si—a—mn s1—a—y—n

|z — 2 —ly =2 S e =yl — 2

for any v € [0,1]. We then consider

So—mn Sa—n

||z — 2] — |y — 2" S |r — 2]

Thus, for any (z,y) € A; N By and for any v € [0, 1], we have

|$ . Zl‘a—a—'y—n ‘ZII _ 22‘82—7’1
|ZIZ’ — y|n+257'y

17 (2 2) S

Moreover, since |z —y| < |z — 2z for any (z,y) € A;, we also get the same estimate

for the second type kernel

|JI A Zl|51—a—’y—n 'I _ Z2|32—n

RS{’U(ZIJ ZQ) fS |LE W y|n+25_,y

for any v € [0,0). Taking v < 2s, we integrate w.r.t. y variable, observing that
(z,y) € A; N By implies that |2 — y| = |x — 23] and thus

/ |l’ . y\—n—Zs-l-’Y dy 5 |[E - 221—23—&—7'
yEA1NBy
Thus, for any 7 € [0, ) N [0, 1], we have
Jf:;;j(zlg Z2> < |I - Zl|81—a—7—n |ZE o z2|82—n |CL’ o Z2|7_28 dl’

~Y
Tk

= |x — 21|27 T o — 27T T d.
Tk

Here, with a slight abuse of notation we identify Z; with the set of x € R™ such
that {z} x R" C Z.
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To calculate when k£ = 1, we take v = 0 and thus

Jf[’QU’ll(Zly 22) 5 / |[L’ _ 21|51—a—n |IL‘ . ZQ|_51_77‘ d
B jo—21[ 8, =225

g 63111/ ’.CL’ . Zl‘slfozfn dr
lz—21]<0

~ 670{77L
In the case k = 3, we again use v = 0 to obtain

Jlaégél(zla 22) 5 / II 7 Zl|sl_a_” |IE _ Z2|—sl—n dx
h |z —21|~|z—22|20

5 531;an/ ’x — 22|~517n dr
|z—22|26

~ 57&4’”.

For the remaining case k = 2, we choose v > s; (which is possible with the

restraints on 7 above), and then get

Jla,Zo'él(Zh ZQ) 5 / |LE N Zl|51_a_“/—n |I‘ . Z2|«/_sl_n de
B =226, o258

< (581‘0“7‘"/ |z — 2|77 " da
|z—22|<6

~ 67&77’1.

. . a,0,l a,0,l a,o,l |
Estimating Jy 37, Ji35 and Jy33 ¢

Let (z,y) € A; N Bs. By Lemma @ and |z —y| < |x — 2|, it follows that

|ZL‘ _ Zl|317a717n |y _ Z2|527n

|l’ _ y|n+2s—1

K17 (21, 22) S

and we have a similar estimate for the second kernel.

|l’ _ Z1|slfa7crflfn |y _ Z2|327n < |[L’ _ Z1|517a717n |y _ 22|327n

K/g’g(zl722) § |m_y|n+25_a_1 ~

|$ _ y|n+25—1

We can treat these two kernels now almost verbatim. Since |z — y| < |z — 21| and
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|z — 25| = |z — y| for (z,y) € Ay N Bs, we have

so—n

=27 |y — 2
Joz,a,l(zl 22) < // ’ dr dy
bt 7 ~ .A1ﬁB3ﬂIl |1L‘ - y|n+2s

// ’x_zl‘sl—a—n‘y_zzym—nd d
.A1ﬁBgﬂIl |:L' - 22|n+25

Since |y — 29| < |2 — 22| and sy — n > —n, we obtain

[ el Sl
AmBgﬁL

and so

|z — 21|27 |2 — 2o
|$ N Zz|n+2s

dx

Jegi(z1, ) S /

A1NBsNZy
~ / |z — 217 77" o — 2o T d.
A1NBsNZy

Let p > 1 so small such that (s; —a—n)p > —n and (—s; —n)p’ < —n. Then, by

Holder’s inequality,

it
p /
Jﬁgﬁl(?«’la 22) 5 (/ |:L‘ = Zl|(s1—a—n)p de‘) (/ |$ _ 22|(—s1—n)p de‘)
A1NBsNZ, A1NBsNZy

1
T

< (5(51—a—n>p+n)% <5<—51—n>p’+n> :

~Y

3 e

~ 5—0(—71‘

. l .
In proving Ji'33 (21, 22), we consider

s1—a—1—n |y _ ZQ‘ngn

T — 2]
Ja,o',l<zl 22) < // | dr dy
1,3:2 ’ ~ AlﬁBgﬂIQ |l' - y|n+28_1

// |x_zl|sl—a—1—n ’y_22‘52—nd d
=~ X .
A1NBsNZs ’.T - ’ZQ‘”+2571 y

Since |y — 23] < |x — 22| and s —n > —n, we obtain

/ ly — 20| " dy < | — 29|
A1NBsNZs
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and so

’1’ _ Zl'sl—a—l—n ‘ZL‘ _ Z2|32

|I _ Z2|n+2s—l

dx

Ty (21, 22) S /

A1NB3sNZy

~ / |z — 2 [P g — T d,
A1NB3sNZy

Let p > 1 so small such that (s; —a—1—n)p < —n and (—s; +1 —n)p’ > —n.

Holder’s inequality gives that

1
—a—1— P _ )
Jﬁgél<zla22) 5 (/ |£L‘ _ Zl|(s1 a—1-n)p d:E) (/ |l‘ _ 22|( s1+1—n)p dI)
A1NBsNZs A1NBsNZy

< (5(81_0‘_1_”)1’4'")% (5(—81+1—n)p'+n> P

~Y

Y e

=

~ 5—0(—71‘

In the case k = 3, we have |z — 21| & | — 25|. Thus, we easily verifies that

TP (21, 22) S / |z =2 o — T T e S 6T
o x—21 |~|z—22|20

. . O[,O’,l Oé,UJ a7aﬂl.
Estimating J;,77, Jp12 and Jy73:

For (x,y) € By, we use Lemma EI to estimate that

L e e e S e e

for any v € [0,1]. Thus, for (x,y) € Ay N By, the first type kernel is estimated by

o0 |2 = 20|77 | — 2T
K1 (217 Z2) ~ |x — quﬁ,gsf,y .

Since in this case |y — 21| = |z — y|, we also have

|Z’ _ z1|51—a—n|x _ Z2|82—n—'y

[z — 21 [Py — 2| T = Y
’iC _ y’nJrst'y

Hg’a(zla 22) ~ |£IZ' _ y‘n+237077
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Since |z — z1| < |x — y|, we can further obtain

_ s1—a—t—n _ S2—n—7y
R7,0(21’22) 5 ‘ZII Z1| ’17 22|

|l’ _ y|n+25—'y—t

for any ¢ > 0 and for any v € [0,1]. To obtain the estimate when (z,y) €
As N By NIy, we let t := s; — 50 and choose v = 1. Then 2s — 1 —t < 0 and so we

can integrate w.r.t. y to get

si—a—t—n |(L’ . 22|52—n—1

J&,O’,l < // |‘/L‘ - le dx d
2,1,1 (21,22) S PR |z — y[rt2s—1-t ray
<

< / |ZZ' . 21}81*04*15*” ‘I - 22|527n71 |£C o Z2yl+t725 dr
AsnNB1NZy

S / |ZL' o zl\slfaftfn ‘LE’ — 22|fs1+tfn dz
AaNB1NZy

<o

where we used Holder’s inequality in the last estimate together with s; —a—¢ > 0
and t — 51 < 0.

For any (z,y) € Ao N B NIy, we choose t = 0 and vy < sy. Integrating in y, we
obtain that

T — Zl|slfa7n |l’ JiE 22|827n7'y
Ja’o’l(zl 29) < // | dzx dy
2,1,2 ’ ~ WA |l’ 14 y|n+2$—'y
<

< / |z — 2|7 o — 2|27V |2 — z1|7_25 dx
AoNB1NZs

~ /,4 . | — 217727 o — 2|2V dr
2NB1MNZa

< 6—0!—77/

Again, the last line is a consequence of Hoélder’s inequality with v — s, — a0 < 0
and sy — 7y > 0.

For any (x,y) € As N By N Z;3, the proof follows in the same way as above but
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with the condition |z — 21| & | — 23| and |z — 21| 2 §. Hence,

J;fél(zl, z2) 5/ |z — 2 [P o — T
AsNBiNZs

z/ e
lz—21|20

~ 5—0[—7’[;'

. . a0l o0l a,o,l,
Estimating J;57, Jy55 and Jyy3:

Let (z,y) € Ay N B,. Then we obtain

|LE‘ P Zl|81—oz—n |II? o~ 22’52—71
|z =yl

17 (2 2) S

and, since in this case |y — z1| & |z — y|, we also get the same estimate

|.T _ Z1|31—a—n‘y /. Zl|—a |.T _A 22|52_n S\ ’.CL’ _ lesl—a—n|x _ z2|52—n
‘ZL’ / y‘n+2s—a ~ |£L’ _ y|n+2s

Ko7 (21,22)
Since |z — 29| < |x — y|, by integrating w.r.t. y leads to

o5 (o1, 20) S / T = o e o[ [z — 2] da
AsNBaNZy

S / |z — 21|"17%" | — 2o " d.
AsNBaNZy

Let p > 1 be small enough so that (s; —a —n)p > —n and (—s; —n)p’ < —n.

Then, by Holder’s inequality, it follows that

1 1
D s
Jood < (si—a=n)p 4 : (=s1=n)p’ g !
221 (71,22) S |z — 2| x |z — 2| x
|z —z1|<0 le—z2| 28

S (é(slfafn)p+n)% (5(7517n)p/+n>

’ﬁ\‘ﬁ

~ 6—&—7’74'

a,0,l

The same argument is also true for Jy3,5 so we omit the proof.
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For (z,y) € Ay N By NZ;, we follow by the same argument as before and after

integrating w.r.t. y we have

J;ﬁ(zl,@) < / |z — 2|72 de < 07O
|lx—21]|26

. . a,0o,l a,o,l a,o,l .
Estimating J;37, Jp35 and Jy33:

Let (z,y) € Ay N Bs. Then

[z — 2|7 |y — 2o
|z —y|" 2

R (215 22) S

and, since |y — 21| = |z — y],

T2y Ay — T e — s [T y — 2T
‘I & y’n+2s—a 2 |SL’ _ y|n+25

Ry (21,22) S

Recall that |xr — y| &~ |x — 25| in our setting. Hence,

‘]2055’:7{ (Zl ) ZQ)

S / |Z’ o Zl‘sl—a—n (/ |y — Z2‘82—n ’.CC o y’—2s—n dy) dx
AsNBsNZy AsNBsNZy

~ / |z — 2z |"* e — 22|_25_”/ ly — 2o " dy dx
AaNB3NTy ly—22|<|z—22|

< / |x — 21|77 o — 2| T d.
A2ﬂ83ﬂ11

By Holder’s inequality, let p > 1 be small enough so that (s; —a —n)p > —n and
(—s1 —n)p’ < —n and then,
L{

1
J067U7l < (sl—a—n)pd P (=s1—n)p’ d P
2,31 (21,22) S |z — 2] T |z — 29| x
|lz—21|<6 |z—22|26

5 (5(51—a—n)p+n)% (5(—51—n)p’+n> P

=

~ 5—0&—71.

We now focus on the case k = 2. Let p > 1 be such that (s —n)p > —n and
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(—2s —n)p’ < —n. Then Holder’s inequality gives that

a,0,l
J2,3,2 (21, 22

)
Sff lartuoar,,
~ AsNBsNZs |,',U - y|n+28

< / o — [T (/ |y — zof** 7" & — g7 dy> dzx
AoNBsNZy AsNBsNZy

p
S[oeabe (e altra)
AsNBsNZy AsNBsNZy

1
X </ |z — y| (2 dy) " dw
AsNBsNZy
1

S / |z — 27" (Jz Z2|(82‘n)p+n)% <|m — 21!(*287")7”") " dx
AanNBsNZy

~ / |$‘ i Z1|—52—a—2n+ﬁ |l‘ i z2|52—n+% .
AsnNBsNZy

Again, by Holder’s inequality, let ¢ > 1 be small enough so that (—ss — a — 2n +

z%)q < -nand (sy —n+ %)q’ > —n and then,

L

1
q !
0l —sp—a—2n+" a _ ny s q
Jous (21, 22) S (/ |z — z1|( DAL da’;) (/ |ZE—Z2|(S2 n+2)g dx)
=2l 2158

1
< <(')‘(—52—01—271—&-5)q+n)a (5(82—n+%)q’+n)q O

=

For (z,y) € Ay N Bs NIz, we do the same way with the case Ay N Bs N Z;.

However, it is easier than that because the set Z3 gives us |z — z1| & |x — 2|.

J;éa,él (217 ZQ)

S / |z — 2?7 (/ ly — 2" o —y[ " dy) dx
AaNBsNZs AaNB3sNZs

~ / |v — 2|77 e — z2|_25_”/ ly — 2] " dy dx
A2NB3zNZs ly—22|<S|z—22]

< / |x — 2|77 o — 2|7 T d
AaNBsNZs

~ / |z — 21|72 de S0
lz—21|20
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Estimating J;f,f, for  =1,2,3 and k = 1,2, 3: The proof of all these cases is the

. ) . .
same as in the cases J; ’J-U,; for every j = 1,2,3 and k = 1,2, 3, since we observe

that for (z,y) € As,

s1—a—o—n ’ s1—a—o—n
) 1Y

min{|z — z| siramoTny —

— 2 |z — 2
and |z — 2| = |z —y].
It therefore remains to verify for the first type kernel (I = 1).

. . «a,o,1 a,o0,1 a,o,1
Estimating J371’1 , J3,1’2 and J3,1,3 :

Let (z,y) € A3 N By. As before the following estimate follows from Lemma @

So—mn

|z — 2|7 =y — 27" S o — 2"z —y.

Since (z,y) € Az, we have |x — y| &~ | — 21| and, thus,

|y - 21‘81—04—71 |m 7 22|82—1—n \ |y \ Zl|51—a—n |I . Z2|82_1_n
’ZC - y’n+2s—1 \ ‘x — Zl|n+2s—1

R (21, 22) S

We now consider

e s1—a—n _ so—1—n
J?soffil(ZbZz) S // ly= 2] [z = 2| dx dy
AsNB1NZy

|.T p—— y|n+23—1

T —z sag—1—n
~ / (/ |y T 21|81_a_n dy> | 2|n+23—1 dx
AgﬂBlﬂIl A3ﬂ81ﬂ11 |‘T - le

< / ’x_21’51—a ’x_22|82—1—nd
~ _ n+2s—1 X
AsnNB1NZ; ‘.’17 Zl’

< / |z — 21| 75270 g — |2 da
AsNB1NZy

Let p > 1 be small enough so that (—ss—a+1—n)p > —nand (so—1—n)p’ < —n.
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By Holder’s inequality, we obtain

L

1
P p’
a,0,1 —sg—a+1-n sg—1—n)p’
J3iq (21,22) S (/ | — 2|72 » dl’) </ | — 2o (o271 dI)
le—21|<6 |x—22|20

1
7

< (5(—52—a+1—n)p+n)% <(5(52—1—n)p’+n) P

~

~ 67&7’”.

Next, we consider Jgf’;. Let (z,y) € A3 N By NZ,. Then

|y _ leslfozfn |£U _ Z2|327n - |y _ leslfafn |£U _ Zz|szfn

k17 (21, 22) S
Observe that |y — 21| < | — 21|. This implies that
[ Akt Sie - al
yGAgﬁBl
Hence,

|z — 21|57 |x — 25|27

dx

Iy (21, 22) S /

AgﬂBlﬂIQ Ix — Zl|n+25
< / |z — 21| 752797 |x — 2| " dx.
AsNB1NZs

By Holder’s inequality, let p > 1 be small enough so that (—sy —a —n)p < —n
and (so — n)p’ > —n. We obtain

;’(7’21(2’17 22)

L

1
P , /
( / |7 — z|(-2memp dx) ( / |7 — zp|(2mP dx) g
|lx—21]|20 |x—22| S0

5 (5(—82—a—n)p+n)% (5(52—n)p’+n> P

AN

=

~ 670&771,'

For (z,y) € A3 N By NZs, after integrating w.r.t. y in case of A3 N By NZ; we
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arrive at

Jgffél(zla 2) S / |z — zl|_52_o‘+1—n|x _ Z2|52—1—n do
AsNB1NZ3

~ / lz — 2|7 " dx
|lx—21]|26

< §an

. . «a,o,1 a,o0,1 a,o,1
Estimating J357, J355 and 3oy

For (z,y) € A3 N By, we have |y — z1| S | — 21| and | — 25| < |y — 2o, It
follows that
_ Zl|slfafn |$ _ 22|827n

, ly
Ii‘f‘”(zl,ZQ) SJ |I’—y|n+2s

That is, we now have

7 Zl\slfozfn |1, hAN Z2|52~n
JETN (2, 29) < / / y dz dy
32 ’ ~ AsNBaNZy “/I" A y|n+28

<[ eeapr ([ sl gy de
AsNBaNZy AsNBaNZ;

Let p > 1 be so small such that (s; —a—n)p > —n and (—2s —n)p’ < —n. Then,

by Holder’s inequality,

J:?,’z‘?il(zl, )

1
S Lo fop 21 )
~
AsNBaNZy AsNBaNZy

1
7

X (/ |z — y| (2P dy) " dw
AsNBaNZy
1

§ / |37 - Z2|52—n (\SU - 21|(Srain)p+n)% <’36 — Zz|(7287n)p/+" > " odx
A3m82011

%/ |.T _ Z2|—81—2n+ﬁ|x i z1|s1—a—n+% dz.
A3m82011

Again, by Holder’s inequality, let ¢ > 1 be small so that (s; — a —n + %)q > —n
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and (—s1 —2n + 7)¢’ < —n. Hence,

J5yit (21, 20)

1
Ca—n™ a 51 —2n+ g a
</ A ”H)qu) (/ | — 2| dx)
|lz—21|<6 |z—22|26

1

5 (5(51—a—n+%)q+n> q <6(75172n+§)q’+n> q

=

AN

=

~ 5—&—71.

The proof of Jy ’207’21 is similar to the above case. We will also use Holder’s
inequality twice. Let p > 1 be such that (s; —a—n)p > —n and (—=2s—n)p’ < —n.

Then Hoélder’s inequality gives that

So2—n

e )
JouU,l(Zl 22) < // | dr dy
522 ’ ~ AgﬂBQﬂIQ |.7/‘ - y|n+28
S / |ZL‘ N z2|32—n (/ |y - Zl|51—oc—n |Q§' o y|—n—25 dy) d{lj’
AsNBaNZs AsNBaNZs

1
< So—n (Sl_a_”)p v
S |z — 29| ly — 21| dy
AzNB2NIz ly=z1|S|z—21]

L

X (/ |z — y| 2 dy) " dw
|z—y|Zlz—21]

3 I e e e
AsNBaNZs
1

X (’:c — zlj(—2s—n)p’+n) " dr

< / |x — 20|27 |x — 2| 727" d.
AsNBaNZa

Again, by Holder’s inequality, let ¢ > 1 be small enough so that (—ss—a—n)q < —n

and (s; —n)¢’ > —n we obtain

1

1
q 7
Jegl < (=s2—a—n)q 4 ! (s2—m)d" g !
3,2,2 (Zla 22) ~ |$ - 21! X ]x — 22| T
|z—21|20 |x—22|<6

< (5(—82—a—n)q+n)% (5(52—n)ql+n> q

[

~

~ 5—0(—?1'
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The case (z,y) € A3NByNZ; is easier since |x — 21| and |z — 25| are comparable.
We employ Holder’s inequality once as in the case Az N By N Zy by choosing the
same p and p’. It follows that

J55y (21, 22) S / |z — 2| " |z — 2| g da
AsNBaNZs

~ / |z — 2|7 " dx
o228

< 570{771

. . a,o,1 a,0,1 @,0,1,
Estimating J373,1 ) Jg,g,z and J3,3,3 :

There are several observations. First, we let (x,y) € A3 N Bs. Then |z —y| =

|x — 21| and |z — y| = |z — 23|, that is

[z =z =z —y| = |z -zl

Moreover, if (z,y) € Z;, then |v — z;| < 0 and |x — 25| = 0. Thus, |z — 21| ~
|z — 25| &~ §. This implies that |y — 21| S|z — 21| = ¢ and |y — 23| < |z — 29| = 6.

Hence, we have for all (z,y) € A3 N B;s NZ; that

ly — 22|, |y — 21| S 0.

However, |21 — 25| = 0. Then either |y — z1| &= § or |y — 23| &= J. Indeed, otherwise
if |y — 21|, |y — 22| < § then § = |21 — 22| < |y — 21| + |y — 22| < 26, which is a

contradiction. Hence, for (z,y) € A3 N B3 NZ;, we have

I i e
/€f1%0<21; ZZ) S |x . y|n+28
< gsiman ‘y — Z2|82_n so—n ‘y — Zl|81_a_n
Y

|z —y|" 2 |z — y[t2
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so that

Jajo-’l(Z z ) < / / 551 a— n’y B 2‘82—TL df[‘ dy
1, ~2 T o190
P S ysaigs otz |z — zfrree

/ / 0%~ nly— ndmdy
ly—21156 J |o—2|26 |7 — zg|nt2s

< 5—TL—CY

The case that (x,y) € Z, can be proved by the same technique as as in the proof
of (z,y) € Z;. Thus, we omit the proof for that case.

The last estimate that we have to prove is J333 "(21,22). In order to do that,
we have to consider three more subcases accordmg to domain depending on y as

follows:

1
Jr=Ti(z1,29) = {(z,y) e R" xR" : 2 € R", |y — z1] < 100 and |y — 25| > E(S}
Jo = To(z1,20) = {(z,y) e R" xR" : 2 € R", |y — 20| <100 and |y — 2| > 10 o},

Tz = J3(21, 22)

1
= {(x,y) €R"xR":z € R", mly—@\ < lgo7m| < 100ly — 2| and [y — 1] 2 1005}'

Firstly, let (x,y) € AN BsNZ3 N Jy. Since |z — y| = |z — 22,

Sa—n sa—n

gl g 2l o
’QJ _ ’n+2s ~ ‘l’ _ Z2|n+2s

Ky (21, 22) S

Then, integrating w.r.t. x, we obtain

_ Z1|81 a—n |y _ 22’52 n
Jaal(zl 22) / / 1y dx dy
58,3 ’ ~ AsNBsNZ3NJ1 |$ Z2|>|y 22| |‘r - z2|n+2s
/ [y — 2|7 |y = 2T [y — 2T dy
AsNBsNZsNJ1

/ [y — 217" |y — 2T T dy.
AsNBsNZsNJ1

Let p > 1 be small enough so that (s; —a —n)p > —n and (—s; —n)p’ < —n.

N /\

Q
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Using Holder’s inequality, we have

1
a,o,1 < (s1—a—n)p d P —s1—n)p’ d
J333(ZI7Z2) ly — 21 Y |?J_Z2| Y
ly—21[<6 ly—22[26

S (5(317a7n)p+n)% (6(751 n)p /+n>

R
Y

==

~ 67&7’!’1.

Next, we let (z,y) € A3 N B3 NZ3N Jz. Then

So—n So—mn

[y — 21|77 |y — 2 =AY — 2
’x —_ yln+25 |:,U _ Zl|n+2s

K17 (21, 22) S

because | — y| &~ |x — z;|. Similarly as above case, we integrate w.r.t. x and use
Holder’s inequality for p > 1 such that % + z% =1, (—ss —a—n)p < —n and
(so —n)p’ > —n. It follows that

|y P 21’51—(1—77, ‘y _ 2|52—n

J& (21, 29) < / / dx dy
55,3 ’ A3NBsNZ3NTz J |x—2z1|2|y—=1] \x - Zl‘n+28

/ ly— 2"y — 2T |y — P dy
AsNBsNZsNJT2

/ ly — 21727 |y — 20|P" dy
AsNBsNZsNJ2

1
P
( Qe ””dy> (/ |y — 2|27 dy)
ly==1120 ly—=2l 0

((5( sp—a— np+n) (5(52 n)p +n>
0~

a—n

AN

Q

R
Y

AN

=

AN

Q

For (z,y) € A3 N B3 NIy N Js3, we have |y — 23] = |y — 21| 2 0 and so

So—n — 2z |25—oz—2n

y— ="y — Ty
|(L’ _ y|n+28 |ﬂ? _ Zl|n+25

K17 (21,22) S
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Thus,
|y _ Zl|23—a—2n
T s | / o dy
’7 AsNBsNZsNJ3 |a:7z1|2\y7z1| |Jf - Zl|n+2s
S weaPey -y
ly—=1|20
~ / ly — 2| dy
ly—z1]20
~ 67&771'
Finally, we have established all the cases. The proof is now complete. [

Having proved the above useful estimates, we are now ready to deduce from

them to prove Proposition @

Proof of Proposition . Let z; # 2z € R™. The first inequality (@) is true by
Proposition @ with oo = 0. Next, we observe that Ag s, s, may not be symmetric
in general (unless s; = sy = s). However, since for our setup the values of s
and s are interchangeable, () and () are equivalent. This means it suffices
to prove (@) To prove the inequality (@), we first use Lemma @ Then the

following estimate is valid for every «, o € [0, 1],

e — 21 = A" " = ly—z = A" = (o= 2" = ly— 2"
5 |h|a (“I — 2z - h|s—a—n i |y N EKE h|s—a—n‘ ir “I’ Al Zl|s—a—n o |y . Zl|s—a—n‘)

+ A" min{[z — 2" Jy — 2 T o — g

We choose o large enough and « small enough so that the assumptions of Propo-

sition @ are satisfied and then use Proposition @ to obtain

|AK751,82 (Zl + h, ZQ) - AK,S1,S2 (Zla Z2>|
rS |h‘a ‘Mla’g<zl + h7 22) + Mla’a(zl7 22) + M2017U(Zl7 22>|
ST |lz0+h = 2|77 4 221 — 2|77

S bz — 2o
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The last line follows from |z 4+ h — 25| & |21 — 25| because |h| < 3|21 — 20| by

assumption. This completes the proof. [



CHAPTER V
APPLICATION TO NONLOCAL PDES

Proving the application, Theorem @, is presented in this chapter. Before we start

proving this, we first consider the operator Tk s, s, when K = 1.
Lemma 5.1. If K =1, then the operator Tk, s, is an identity operator.

Proof. To achieve this assertion, it suffices to verify that

| @ @e) iz = [ el iz

for any f € S(R") and ¢ € C*(R"). Let ¢, g € S(R™). Then

/ / y)) (g(z) — g(y)) oty
" " |:E— |n+2s
/ / ¢z +h)(g(z) —glz + 1) , .0

n n ‘h‘n-i-Zs
:/ o(z) (g(z) — g(x + h)) dwdh_/ ¢z +h)(g(z) —glz+h) , .

n JRrn |h‘”+25 » JRn ‘h‘n+2s
- o(z) (g(z) — g(x + h)) Pz h) —g(z)) .
-LL B wan~ [ [ |h|n+2s e dh
:/ ¢x) (29(z) —glz+h) —gle—h)) , ..

n JRre | h|nt2s

where the first and the third lines follow from changing variable formula. Using
the integral representation of the fractional Laplacian operator (@), we obtain

that

n

(¢(z) — o(y)) (9(z) — g9(y)) B AV () d
// z — g[+2s dﬂ?dy—/ ¢(x)(—A)2 g(z) da.
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In view of Parseval’s identiy (recall that s; + sy = 2s) we have

@)= g(a)de = | FO)NOEPF()E) ds
IS F @) Flo)(©) dg

That is, we have shown that

[ =t =IO gy — [ ()% oa)-8)Fg(o)

n

Next, let ¢ € C°(R™). Then we use Fubini’s theorem and apply the above equation
with ¢ := I°*¢p and g := [*2 f to get the following expression

/(T15152f)() (=) dz
/ / (Irp(x) = IPp(y)) (172 f(x) — 12 f(y)) d dy

i

_ / A)? (I (@) (=A) % (12 f (x))
= | f@p@)da

This implies that T}, 4, is an identity operator by approximation in fy, ¢ €
FHCE(R™\{0})). O

We now prove the Theorem @ For the convenience we state the theorem
again.
Theorem @ For any s,s1,82 € (0,1) with sy + so = 28, 51 > s and any
p € [2,00), there exists € > 0 such that the following holds. For any measurable
kernel K : R™ x R™ — (0, 00) with 1 — 13;5; <e, ifu e W**(R") and f € L*(R")

satisfy
su=(—A)3f inR"
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then there exists C > 0 such that

§—89

2 fllo@ny-

1(=A)Z ul| oeny < C||(—A)

The small constant € > 0 is uniform in the following sense: if s,s1,52 € (0,1 —6)

and p € |2, %) for some 6 > 0, then € depends only on 6 and the dimension.

Proof. According to Chapter III, we have shown that the equation
Liu=g, (5.1)
for a given function g, is equivalent to
Trcsfd(=D) T u = I*2g

up to the multiplicative constant. Notice that the map K — Tk, 5, is linear and

K is positive. Thus, by dividing both side by sup K, we obtain

1

7 NSl 52
Tﬁvslﬁz( A) =i sup KI a
Furthermore, we can write - K e = (1 o K) and so
up sup
51 51 L,
T].,Sl,SQ(_A) 2U— Tl—ﬁ,ShSQ(_A) U= SupK[ g

Since the operator 17 4, s, is an identity map by Lemma @, the equation (@) can

be rewritten as

1

(I-Tg,,.,,) (=A)2u) = SupKI”g.

. r o K
by setting K =1 — SR

Now we show that I — Tz

s - LP(R™) — LP(R™) is an invertible operator
inf K

apr < € we yields

with continuous inverse. Indeed, under our assumption 1 —

that ||K||femn) < £. If we take & > 0 small enough, then we obtain by Theorem



54

@ that the operator Ty : LP(R™) — LP(R™) has the norm

51,82
1T% 51 5ol Lo @) o @e) < 1

which implies that the Neumann series of Tz is convergent in the space of

1,52

continuous linear maps from LP(R") to LP(R"). Hence, I — T , is invertible

and its inverse is as follows
o0

(I - Tf(,sl,sz)il = Z(Tf(,sl,@)k'

k=0

Assume that u € W*2?(R") and f € L*(R") solve

N|w

ou=(~A)Ef

Let fr € C°(R™) be an approximation of f such that

s—89

1fr = fllzz@n) + 1(=2) 2" (fk = Hllr@ry =0 as k — oo

For each k € N, we can solve the following equation

51 1 s—s9
— 21 —. — 3 -1 — 2
( A) uk (I TK,81782> Sup K( A) fk
and
s1 ]_ s—s89
— 217 = =, -1 — 2
( A) u (‘[ TK,sl 52) supK( A) f

Such a u; and @ is unique up to a constant and can be obtained from Fourier

analysis since by assumption (—A)™ 2" f, € LP(R"), and thus

LAy e Y.

I—-T: -1
( K,sl,SQ) SUpK
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We also obtain the estimate

s—s9
2

1(=A) % @ — (—A) 2@ oy S N(=A) 2 (fi = Nllw@n = 0 as k — oo,

Also, by construction, we have

N

Lty = (—A)2 fy.

Consequently,
L, —u) = (=A)2 (f — f).

Testing this equation with 4 — u (observe that inf K > 0 by assumption) we have

I(=A) 2, — (—A) ull 2@y Sk — fllz@n =0 ask — oo,

Since (—A) 2 @i, converges to (—A)2 @ in LP(R™) and (—A) 2y, converges to (—A)5u
in L2(R"), we find that (—A)Zu = (=A) 2@ € LP(R"), and we have

s—

51 o 52
I(=A)2 ullo@n) = [(=2) 2@l Lo@n) S [I(=2) 2" fllLe@n).- .
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