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INTRODUCTION 

This chapter begins with outlining the motivation of the present research and its 
significance. Then, results from an extensive literature survey are briefly presented 
not only to identify the existing gap of knowledge but also to support the novel 
aspect of the proposed work. A clear objective, scope of work, research procedure 
and essential methodology are, subsequently, summarized to demonstrate the solid 
framework of the present research. Finally, outcomes and contributions to related 
communities are addressed. 

1.1 MOTIVATION AND SIGNIFICANCE 

Sustainability and integrity of engineering structures are ones among various crucial 
issues that must be properly integrated in the design procedure and the subsequent 
maintenance stage. It has been known that the presence of cracks/flaws/damages is 
one of the major causes of subsequent failures of components, parts of or the entire 
structures leading finally to the loss of their functions. According to statistics, more 
than 50% of recorded fracture accidents can be attributed to the fatigue cracking 
(Sangid, 2013). In general, the cracking failure possesses some inherent characteristics 
such as complexity, suddenness, and repeatability (Zhu et al., 2016). In particular, 
existing cracks can advance dramatically on the surface of structural components 
under the influences of both applied loadings and undesirable environmental 
conditions, and this may lead to catastrophic failures (see Figure 1.1 and Figure 1.2 
for examples of cracks induced within structural components such as girders of steel 
bridges). For such reason, the repair of damaged/cracked structures at the earliest 
time as soon as they are detected during inspections is considered essential. 
Furthermore, the control of cracked structures after being repaired is also one of vital 
tasks to evaluate the selected repairing method so that those repaired structures can 
maintain their bearing capacity. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

 
 
Figure 1.1 Full girder depth fatigue crack of Lafayette Street Bridge in St. Paul, MN 
(Dexter and Ocel, 2013). 
 
 

 
 
Figure 1.2 Cracking in the web gap at a tie girder/floor beam connection on 
Birmingham Bridge in Pittsburgh, Pennsylvania (Dexter and Ocel, 2013). 
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Replacement of (repairable) cracked or damaged parts can be time-
consuming and expensive, and, in addition, require a high level of expertise. It is 
usually more cost effective to repair those damaged components by using patching 
techniques. One of those methods, with adhesively bonded repairs, has been widely 
employed in practices (see Figure 1.3 for the installation of patches for repairing a 
steel bridge). Many theoretical and empirical investigations have demonstrated the 
advantages of this particular method relative to other existing techniques for 
repairing cracked structures due mainly to its cost effectiveness (e.g., Arendt and Sun, 
1994; Baker, 1988; Jones, 1984; Ratwani, 1977a, 1977b, 1978, 1979; Rose, 1981; Sun et 
al., 1996; Young et al., 1992). In addition to their high stiffness and strength, the 
patches are structurally efficient and induce much less damages to the repaired 
structures.  

 

 
 

Figure 1.3 Repairing cracked steel structures with FRP patches - The Sauvie Island 
bridge, Portland, Oregon, USA; Mosallam et al. (2013) 
 

In the modeling point of view via a theory of linear elasticity and linear elastic 
fracture mechanics, the stress intensity factor along the crack front can be 
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significantly reduced after the cracked body is repaired by attaching a patch over the 
cracked region (e.g., Alaimo et al., 2009; Jiann-Quo and Kam-Lun, 1991; Liu et al., 
2009; Pisa and Aliabadi, 2015; Salgado and Aliabadi, 1996, 1998; Sekine et al., 2005; 
Useche et al., 2008; Wen et al., 2000, 2002, 2003; Widagdo and Aliabadi, 2001; Young 
et al., 1992; Yu et al., 2014). This is due to the fact that some of externally applied 
loads exerted to the cracked bodies are either shared by or transferred directly to 
the patch via the adhesive layer rendering the enhancement of stiffness near the 
patching region and the reduction of relative crack-face displacements. As a direct 
consequence, the growth of the cracks can be delayed or even ceased if the repair is 
properly designed. Evidences from past studies have indicated that various 
parameters including the dimensions and material properties of the repaired 
structure, the patch, and the adhesive layer significantly affects the efficiency and 
effectiveness of the repair (e.g., Alaimo et al., 2009; Jiann-Quo and Kam-Lun, 1991; 
Liu et al., 2009; Pisa and Aliabadi, 2015; Salgado and Aliabadi, 1996, 1998; Sekine et 
al., 2005; Useche et al., 2008; Wen et al., 2000, 2002, 2003; Widagdo and Aliabadi, 
2001; Young et al., 1992; Yu et al., 2014). The full investigation to understand the role 
of those parameters is considered essential and can assist designers/engineers in the 
optimization of their designs. While experimental studies offer an excellent means to 
establish a set of results reflecting real responses, the methods themselves consume 
a significant amount of resources and are quite limited to test settings. In particular, 
to assess efficiency and influence of the patches in the experiments, a large set of 
testing specimens including un-patched and patched cracked structures for various 
specimen configurations must be considered. An alternative approach is to adopt 
computer-based simulations, based upon a set of calibrated governing physics and 
solution procedures, to perform such a parametric study. It is remarked, however, 
that to accomplish such an important task within a broad and general framework 
(e.g., three-dimensional settings, large-scale and complex cases), powerful and 
computationally efficient tools are prerequisite. 
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1.2 BACKGROUND AND REVIEW 

This particular section primarily reports results from the review of literature relevant 
to the present study not only to display the historical development but also to 
identify the key gap of knowledge. 

Adhesive bonding has been widely used for repairing damaged structures in 
practices. In particular, the repair of cracked bodies by bonding patches is considered 
as a fundamental issue in assessing the efficiency and the feasibility of such the 
repair. Evaluation of the stress intensity factors at the crack front and the stress 
transferred by the adhesive layer is considered vital in identifying the critical 
parameters for the crack patching design. Jiann-Quo and Kam-Lun (1991) analyzed a 
two-dimensional problem for cracked plates with a bonded patch by using a 
coupling technique between the boundary integral equation method and a standard 
finite element technique. In their study, a shear spring model was adopted to 
represent the effect of the adhesive layer whereas the patch was treated by the 
finite element technique and the cracked plate was analyzed by the boundary 
integral equation method. Their results implied that the thickness of the patches has 
the significant influence on the stress intensity factors at the crack tips and also 
demonstrate the important role of the patch material. Later, Young et al. (1992) 
applied a similar approach together with the compatibility of the deformation to 
analyze the stress distribution in cracked finite sheets symmetrically reinforced by 
bonded patches and stiffeners. The influence of reinforcements was considered as a 
distribution of forces over the attachment regions. An adhesive layer was assumed to 
resist only the shear stresses where other stress components were ignored in the 
loading transfer. In addition, the geometry used in simulations was limited to cases 
where the crack is completely described by a single straight line. 

To solve the problem with any number of edged and embedded cracks in 
any given geometry, Salgado and Aliabadi (1996) proposed the dual boundary 
element method (DBEM) for modeling cracked stiffened panels. In the analysis, the 
displacement compatibility between the thin sheet and the stiffeners was enforced 
and the J-integral technique was applied to determine the stress intensity factors. 
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The DBEM was also extended to simulate multiple crack advances in stiffened panels 
by using Paris law. They also concluded that the implemented technique yields 
accurate results and have been successfully applied to model a wide range of 
problems. Later, Salgado and Aliabadi (1998) developed a formulation based on the 
DBEM and the dual reciprocity method (DRM) for the analysis of thin cracked metal 
sheets which were adhesively bonded by thin metal patches and stiffeners. The 
stiffened cracked sheet was modeled by the DBEM to overcome difficulties 
associated with the modeling of cracks. Any number of edged and embedded cracks 
and straight with and without kinks can be handled. Adhesive shear stresses were 
considered as the action-reaction body forces exchanged by the sheet and the 
patches. The DRM was adopted to avoid the discretization of the patch attachment 
domain into a collection of internal cells. The J-integral technique was employed to 
determine the stress intensity factors. Wen et al. (2000) later modeled a two-
dimensional, stiffened plate containing cracks and subjected to uniform distributed 
moment on the crack surface and uniform shear load on the plate using the coupling 
boundary element formulation of shear deformable plate and two dimensional 
plane stress elasticity. The interaction forces along the attachment (or the interface) 
between the stiffeners and the plate were treated as the line distributed body 
forces. The stress intensity factors for both the bending and in-plane loading cases 
were obtained from the crack opening displacement data.  

The application of two-dimensional boundary element method to the 
analysis of cracked panels repaired by mechanically fastened composite patches can 
be found in the work of Widagdo and Aliabadi (2001). Mechanically fastened 
composite patches were often used in special cases for the repair of thick panels 
and where the control for repairing the adhesive patch was unavailable. In their 
analysis, mechanical fasteners were modeled as linear springs whose forces were 
treated as concentrated forces. In addition, special crack-tip shape functions were 
employed to approximate the near-tip fields whereas the crack-opening 
displacement data were utilized in the post-process for the stress intensity factors. 
While the analysis procedure based upon the boundary element method such as 
those proposed by Young et al. (1992) and Salgado and Aliabadi (1998) have been 
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found versatile and yielding accurate results in the modeling of repaired panels, the 
developments were carried out within the context of two-dimensional setting and 
the bending effect caused by adhesive patches was not considered. 

The integration of the bending effect of patches via Mindlin plate theory was 
carried out later in the work of Wen et al. (2002). In their study, the flat cracked 
panels with adhesively bonded patches were analyzed with the interaction between 
attachment regions being handled as a distribution of in-plane, out-of-plane and two-
moment body forces. The boundary integral equations were formulated for the shear 
deformable plate whereas the governing equations for the patches were obtained 
based on two-dimensional, plane-stress, linear elasticity. The coupling between the 
boundary integral equation method and the finite element approximations was 
adopted in the solution procedure. Their results demonstrated that when the 
bending effect is taken into account, the maximum stress intensity factor at a surface 
breaking point rose significantly about three times compared with that given by 
Young et al. (1992). Wen et al. (2003) further extended the work of Wen et al. (2002) 
to handle curved cracked panels with adhesively bonded patches. According to their 
result, the out of plane bending behavior and the panel curvature had the significant 
influence on the magnitude of the stress intensity factors at the crack tip. The 
normalized maximum stress intensity factor, attained at the surface breaking point on 
the patched panel, increases sharply with the increase of panel curvature. 

The application of BEM-FEM coupling to investigate the fatigue crack growth 
of cracked aluminum panels repaired with an adhesively bonded fiber-reinforced 
polymer (FRP) composite patch was carried out by Sekine et al. (2005). The cracked 
panel was treated by BEM whereas the FRP composite laminate was modeled by 
FEM. The adhesive layer was represented by linear springs to connect the panels and 
the patches. In the simulation of crack advance under the cyclic loading, both the 
boundary element and finite element meshes were re-constructed in each 
incremental loading step. The crack-front profiles during the propagation and the 
distribution of the stress intensity factors along crack fronts were obtained to assess 
the fatigue crack growth behavior. A series of experiments was also implemented and 
obtained results were then used to evaluate the validity of the proposed 
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mathematical model. Later, Useche et al. (2008) applied a similar technique as that 
used by Wen et al. (2002) to analyze cracked thick plates repaired with adhesively 
bonded composite patches. In their work, the shear deformable, isotropic cracked 
plate was modeled by Kirchhoff’s plate theory and then solved by the dual 
boundary integral equation method. The interaction forces and moments at the 
attachment regions were treated as a distributed body load. 

Due to the vast and recent growth of applications of smart materials in 
engineering applications, active piezoelectric patches were also used in the repair of 
cracked structures. Alaimo et al. (2009) developed a numerical procedure based 
mainly on the boundary integral equation method to investigate such situations. 
Mechanical responses of the repaired structures were examined for both perfect and 
imperfect interfaces between the patches and the host beams. In the case of an 
imperfect interface, a spring model was utilized to represent the contribution of the 
adhesive layer which involves both shear and peeling stiffness and through the 
assumption that the displacement jump at the interface is proportional to the 
traction. Based on the piezoelectric effect, the strain induced by an applied electric 
field across the piezoelectric patch can, in fact, help the structure to reduce the 
crack opening displacement. Their results also showed that as the adhesive influence 
became more significant, the applied voltage needed to close the crack mouths, and 
so to obtain the maximum reduction of the stress intensity factors, increases. In the 
same year, Liu et al. (2009) employed a numerical software package (i.e., BEASY) to 
compute the stress intensity factors (SIFs) and study the crack propagation and 
fatigue lives of the cracked steel plates repaired by carbon fiber reinforced polymer 
(CFRP). The composite patch and the cracked steel plate were simulated using the 
surface elements whereas the adhesive layer was treated by interface elements to 
connect both the patch and the steel plate. A set of experimental results was carried 
out and then used to validate their model. Results obtained from simulations 
indicated the significant influences of the bond length, the bond width, the patch 
configuration, the CFRP layer number, the modulus of the composite patch and the 
adhesive shear modulus on the stress intensity factors. In particular, as the bond 
length is less than the optimal value, the fatigue life increases monotonically with 
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respect to the increase in the bond length. In the contrary, when the bond length 
exceeded the optimal bond length, no obvious increase in the fatigue life was 
observed with the increase in the bond length. In the case of crack propagation, the 
used of wider composite was obviously more efficient in reducing the effective stress 
intensity factors. Also, increasing the number of CFRP layers was found to significantly 
reduce the effective stress intensity factors. Later, Yu et al. (2014) also adopted the 
software BEASY to investigate the effectiveness of CFRP when applied at different 
stages of crack propagation in steel elements. In their analysis, a numerical study on 
CFRP retrofitted steel plates with different degrees of damages was carried out by 
using the boundary element method. Obtained numerical results were found in good 
agreement with existing experimental data. They also pointed that the boundary 
element method was a reliable and robust numerical tool for crack propagation 
analysis of CFRP laminate retrofitted steel plate. In addition, a parametric study was 
carried out to investigate the influence of the bond length, the bond width, the CFRP 
stiffness and the adhesive shear modulus on the stress intensity factors and 
concluding results were consistent with those of Liu et al. (2009). Recently, Pisa and 
Aliabadi (2015) developed a technique based mainly on a boundary integral equation 
method to solve a problem associated with stiffened panels with repairing patches. 
In their study, the BEM formulation was enhanced to allow the treatment of 
complex structures including all the features of stiffeners and repairing patches. The 
stiffeners modeled either as intact or broken elements were formulated as an 
assembled structure using a multi-domain formulation. The repairing patches can be 
either riveted or adhesively bonded. The crack-opening displacement method and 
the J-integral-type formula were implemented to assess the required fracture 
parameters. The rivet load was considered to be uniformly distributed along a line 
segment, perpendicular to the force and centered at the application point. Their 
results indicated that solution for the adhesive case was close to the solid model; 
while the rivet model yields the highest deflection caused by higher loads in the 
patch and generates higher moments.  

It should be remarked that most of studies indicated above were established 
within the two-dimensional framework and quite specific to certain settings such as 
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the repair configurations and types of repaired structures. The extension of the 
existing modeling techniques to be capable of handling more complex and general 
scenarios such as fully three-dimensional and large scale problems is challenging and 
requires further extensive investigations. In particular, the enhancement of boundary 
integral equation methods, together with the finite element procedure, to have the 
capability to simulate repaired crack structures to the level of complexity involved 
should be of sufficient merits and offer useful computational tools for performing a 
comprehensive investigation of the repair performance.     

1.3 RESEARCH OBJECTIVE 

The proposed research aims to (1) develop a numerical procedure for the analysis of 
the fracture data along the crack-front of cracked bodies repaired by adhesive 
patched and (2) investigate the influence of the thickness and modulus of the 
patches and adhesive layers on the fracture response after the repair. 

1.4 SCOPE OF WORK 

The research has been carried out within the following framework: (i) a cracked body 
is finite, three-dimensional and free of body force, contains either embedded or 
surface breaking cracks, and made of a homogeneous, linear elastic material; (ii) 
repaired surfaces are flat; (iii) patches are relatively thin with negligible bending effect 
and made of homogeneous, linear elastic materials; (iv) an adhesive layer can be 
represented as a shear layer with an infinitesimal thickness; (v) damage and 
debonding failure of the interface are not included; and (vi) only the stress intensity 
factors are of interest.     

1.5 METHODOLOGY AND PROCEDURE 

Fundamental theories, basic assumptions, key methodology and essential research 
procedures for the current study are briefly summarized below. 
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1) A technique of domain decomposition is adopted to separate a cracked body 
repaired by adhesive patches into three parts including a cracked body, patches, 
and adhesive layers. 

2) Mechanical responses of cracked bodies are modeled by a classical theory of 
linear elasticity (e.g., Gurtin, 1973; Karasudhi, 2012; Timoshenko and Goodier, 
1970). A pair of weakly singular, weak-form boundary integral equations for the 
displacements and tractions proposed by Rungamornrat and Mear (2008) is used 
as the basis for the development of the key governing equations. In particular, 
the displacement boundary integral equation is adopted on a part of the 
ordinary boundary where the displacement is prescribed whereas the traction 
boundary integral equation is applied to all crack surfaces, a part of the ordinary 
boundary where the traction is prescribed, and the repaired surfaces. 

3) Mechanical responses of patches are modeled by a classical theory of two-
dimensional, plane-stress, linear elasticity (e.g., Gurtin, 1973; Karasudhi, 2012; 
Timoshenko and Goodier, 1970). A standard procedure based on either the 
principle of virtual work or the weighted residual technique (e.g., Bathe, 2006; 
Hughes, 2012; Zienkiewicz et al., 2000) is adopted to formulate the governing 
weak-form equation for each patch. 

4) Governing differential equations of each adhesive layer are established based on 
the assumption that the layer thickness is infinitesimal and only shear resistance 
is considered. A weighted residual technique is then applied to construct the 
alternative weak-form statement. 

5) The continuity of displacements and tractions along the interface between the 
patch and the adhesive layer and that between the cracked body and the 
adhesive layer is enforced to form a system of equations governing the whole 
repaired body.  

6) The weakly singular boundary integral equations for the cracked body are 
discretized using the concept of symmetric Galerkin boundary element method 
proposed by Rungamornrat and Mear (2008). A special near-front approximation 
of the relative crack-face displacement employed by Li et al. (1998) and 
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Rungamornrat and Mear (2008) are also adopted to enhance the accuracy and 
computational efficiency. 

7) Standard finite element procedure (e.g., Bathe, 2006; Hughes, 2012; Zienkiewicz 
et al., 2000) is adopted to discretize the weak-form equations for both patches 
and adhesive layers. 

8) A resulting system of linear algebraic equations involving unknown nodal data on 
the crack surfaces, the boundary of the cracked body, and on patches is solved 
using an efficient linear solver. 

9) The stress intensity factors are post-processed directly from the relative crack-
face displacements in the neighborhood of the crack front using the explicit 
formula proposed by Rungamornrat and Mear (2008). Such algorithm relies upon 
the use of special crack-tip elements along the crack front with their shape 
functions properly enriched to include the square-root behavior and the 
integration of extra degrees of freedom directly related to the stress intensity 
factors. 

10) All proposed numerical procedures are implemented in a form of an in-house 
computer code using standard FORTRAN language. 

11) An extensive numerical study is carried out to fully investigate the influence of 
various parameters such as the repair configurations and material properties of 
both patches and adhesive layers on the performance of the repair. 

1.6 OUTCOME AND CONTRIBUTION 

One obvious merit of the present study is the offer of a computationally efficient 
and robust numerical technique capable of performing the full stress analysis of 
cracked bodies after repaired by adhesive patches. The proposed technique is carried 
out in a quite common framework which allows to analyze various scenarios 
applicable to practical applications. The availability of such a high capability 
computational tool should assist engineers/designers to attain optimal solutions in 
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the design procedure and also ensure the performance and integrity of damaged 
components and structures after repaired. 
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PROBLEM FORMULATION 

In this chapter, a brief summary of the problem formulation is presented. The 
description of the research problem is outlined first and the boundary value problem 
is then formulated. The domain decomposition technique together with the 
boundary integral formulation and the weighted residual procedure is adopted to 
form the entire system of governing equations.  

2.1 PROBLEM DESCRIPTION 

 
 
Figure 2.1 Schematic of a cracked body reinforced by adhesively bonded patches. 
 
Consider a three-dimensional, finite body which contains embedded and surface-
breaking cracks and is reinforced by adhesively bonded patches as shown 
schematically in Figure 2.1. The cracked body is made of a homogeneous, generally 
anisotropic, linear elastic material. The ordinary boundary of the cracked body, 
denoted by 0S , consists of a surface uS  on which the displacement bu

u  is 
prescribed, a surface tS  on which the traction bt

t  is known, and a flat or planar 
surface aS  on which the patch is attached. The surface of cracks is represented by a 
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pair of geometrically identical surfaces, denoted by cS +  and cS − , and, in the present 
study, the attention is restricted only to the case that the crack surface is subjected 
to self-equilibrated tractions; i.e., the tractions ,b b+ −

t t  acting to the surfaces ,c cS S+ − , 
respectively, satisfy b b+ −+ =t t 0 . Each patch is of infinitesimal thickness, made of a 
homogeneous, linear elastic material and fully attached to the cracked body on the 
surface aS  by means of an adhesive bonding material. The prescribed traction 
exerted to the surface of the patch, opposite to the attached surface, is denoted by 

0p
t . In the present study, the thickness of each adhesive layer is assumed small and 
only the shear resistance is considered.      

2.2 DOMAIN DECOMPOSITION 

To establish a set of equations governing mechanical responses of the cracked body 
after repaired with adhesively bonded patches, the medium is first fictitiously 
separated into three portions: a cracked body  , patches 

p , and adhesive layers 

a  as illustrated in Figure 2.2. The shear and normal tractions exerted on the 
surface aS  of the cracked body by the adhesive layers are denoted by ba

s  and ba
q , 

respectively, whereas the shear and normal tractions exerted on the patches by the 
adhesive layers are denoted by pa

s  and pa
q , respectively. For the adhesive layers, 

the shear and normal tractions exerted by the cracked body and the patches are 
denoted by { , }ab ab

s q  and { , }ap ap
s q , respectively. From the assumption that the 

bending effect of the patches is negligible, the normal traction pa
q  is directly related 

to the prescribed traction 0p
t  on the patches by 

0( )pa p p p+  =q t n n 0    (2.1) 

where p
n  is a unit normal vector to the patches. Similarly, from the assumption that 

the adhesive layer can take only shear, the normal tractions ab
q  and ap

q  must be 
self-equilibrated, i.e.  

ab ap+ =q q 0    (2.2) 
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Figure 2.2 Schematic of a repaired cracked body separated into three parts: (a) 
patches, (b) adhesive layers, and (c) cracked body 
 

From the continuity of the displacements and tractions along the interface between 
the patches and the adhesive layers, it gives rise to 

p ap=u u    (2.3) 
pa ap+ =s s 0    (2.4) 
pa ap+ =q q 0    (2.5) 
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where p
u  and ap

u  present the displacement of the patches, and the adhesive 
layers along the interface, respectively. Similarly, the continuity of the displacements 
and tractions along the interface of the cracked body and the adhesive layers leads 
to the relations 

ba ab=u u    (2.6) 
ba ab+ =s s 0    (2.7) 
ba ab+ =q q 0    (2.8) 

where ba
u  and ab

u  denote the displacement of the cracked body and the adhesive 
layers at the interface, respectively. Combining equations (2.1), (2.2), (2.5) and (2.8) 
yields  

0( )ba ab ap pa p p p= − = = − = q q q q t n n    (2.9) 

The relation (2.9) illustrates that the normal component of the prescribed traction 
0p

t  transferred directly to the cracked body and the normal tractions transferred at 
the two interfaces are known a priori. The latter condition allows ones to drop the 
normal tractions pa

q  and ,ab ap
q q  in the formulation of governing equations of the 

patches and the adhesive layers without loss. 

2.3 GOVERNING EQUATIONS FOR PATCHES 

Consider a generic two-dimensional patch, denoted by 
p , under the action of the 

prescribed shear traction 0p
s  (i.e., a tangential component of the prescribed traction 

0p
t ) and the unknown shear traction pa

s  exerted by the adhesive layer as 
illustrated in Figure 2.3. Along the boundary of the patch p , the traction 
identically vanishes. For convenience in further analysis of the governing equations 
for the patch, a local Cartesian coordinate system 1 2 3{ ; , , }O x x x  is introduced such 
that the 3x  axis is normal to the plane of the patch and also directs outward to the 
cracked body (i.e., has the same direction as the outward unit normal vector to the 
surface pS  of the cracked body); in particular, the 1 2x x−  plane is coincident with 
the plane of the patch. 
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Figure 2.3 Schematic of (a) a generic patch in local coordinate system, (b) patch 
under the action in 1x  direction, and (c) patch under the action in 2x  direction. 

Since the thickness of the patch is assumed infinitesimal and the bending 
effect is negligible, its responses can be properly modeled by a two-dimensional, 
plane-stress, linear elasticity. The in-plane displacement *

1 2{ }p p p Tu u=u , the in-
plane stress *

11 22 12{ }p p p p T  =  and the in-plane strain *

11 22 12{ 2 }p p p p T  =  
within the patch are related by following field equations 

* * * 0T p pa p

ph + + = 0L s s    (2.10) 
* * *p p p= C     (2.11) 
* *p p= Lu    (2.12) 

where the superscript “T ” denote the matrix transpose; ph  is the thickness of the 
patch; *

1 2{ }pa pa pas s=s  contains local components of pa
s , * 0 0 0

1 2{ }p p ps s=s  

 

 
 

 

 

 

 

 

   
 
 (a) 

 

 
 

 

 

(b) (c) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 25 

contains local components of 0p
s ;  * p

C  is the elastic in-plane modulus matrix for 
the plane-stress case; and L  is the differential operator defined by 

1

2

2 1

0

0

x

x

x x

 
 
 
 

=  
 

  
 
  

L    (2.13) 

Combing (2.10) - (2.12) leads to a system of linear, second-order partial differential 
equations in terms of the in-plane displacement * p

u : 

* * * * 0T p p pa p

ph + + = 0L C Lu s s    (2.14) 

The weak-form statement of (2.14) can be constructed readily using a standard 
procedure. In particular, by utilizing the weighted residual technique to (2.14) and 
then employing the traction-free condition along the boundary of the patch and the 
integration by parts via Gauss-divergence theorem, it gives rise to 

* * * * 0( ) ( ) ( )

p p p

p T p p p T pa p T p

ph dA dA dA
  

− =  Lw C Lu w s w s    (2.15) 

where p
w  denotes any sufficiently smooth test function. The weak-form statement 

(2.15) form the governing equation for each patch and it contains two unknown 
functions including the unknown in-plane displacement of each patch * p

u  and the 
unknown shear traction pa

s  applied to the patch by the adhesive layer.  

2.4 GOVERNING EQUATIONS FOR ADHESIVES  

Now, consider a generic adhesive layer, denoted by a , which is subjected to the 
unknown shear traction ap

s  exerted by the patch and the unknown shear traction 
ab

s  exerted by the cracked body as demonstrated in Figure 2.4. The thickness of the 
adhesive layer is denoted by ah  and the same local coordinate system 1 2 3{ ; , , }O x x x  
as that introduced for the patch is also applied here. 
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From the assumption that the adhesive layer can transfer only shear across 
its thickness, the state of strain can be completely described by the out-of-plane 
shear strain components *

31 32{ }a a a T = . Since the thickness of the adhesive layer 
is infinitesimal in comparison with its planar dimensions, it is legitimate to assume 
that the out-of-plane shear strain components are independent of 3x  or, 
equivalently, the in-plane displacements *

1 2{ }a a a Tu u=u  vary linearly across the 
thickness. As the direct consequence, the strain-displacement relationship for this 
particular case reduces to 

* * *1
( )a ap ab

ah
= −u u    (2.16) 

 

 

 

 
 
 

 

 

 

 

 

 

 
Figure 2.4 Schematic of (a) a generic adhesive layer in local coordinate system, (b) 
adhesive layer under the action in 1x  direction, and (c) adhesive layer under the 
action in 2x  direction. 
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where *ap
u  and *ab

u  are values of *a
u  at the interface connecting to the patch and 

the cracked body, respectively. The out-of-plane shear stress *

31 32{ }a a a T =  
induced within the layer can be readily obtained from the constitutive relation 

* *a a aG=     (2.17) 

where aG  denotes the elastic shear modulus of the adhesive material. To ensure 
the equilibrium of the adhesive layer, the unknown shear tractions ap

s  and ab
s  

must satisfy the relation 

* * *ap ab a= − =s s     (2.18) 

where *

1 2{ }ap ap aps s=s  and *

1 2{ }ab ab abs s=s  contain local components of ap
s  and 

ab
s , respectively. Combining (2.16) and (2.17) yields 

* * *( )
a

a ap ab

a

G

h
= −u u    (2.19) 

The alternative weak-statement of (2.19) can be established using the weighted 
residual technique to obtain 

* * *( ) ( ) ( )

a a a

a
a T a a T ap a T ab

a

h
dA dA dA

G
  

= −  w w u w u    (2.20) 

where a
w  is any sufficiently smooth test function. The weak-form equation (2.20) 

and the equilibrium conditions (2.18) form the governing equations for each adhesive 
layer. 

2.5 GOVERNING EQUATIONS FOR CRACKED BODY 

The response of the cracked body resulting from the domain decomposition, as 
illustrated in Figure 2.2(c), is modeled by a classical theory of three-dimensional 
linear elasticity. The key governing equations can be readily established based on the 
boundary integral formulation following the development of Rungamornrat and Mear 
(2008). 
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A pair of boundary integral equations for the displacement and the traction 
for a body containing cracks as shown in Figure 2.2(c) is given by 

0 0 0

0

0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                 ( ) ( ) ( ) ( ) ( )

                                 ( ) ( ) ( ) ( ) (

b p b
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p b
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G D v dS dS

n H v dS
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

= −
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 

 
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k l lk
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D u G t dS dS
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+ −

  

 

 

y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y y ξ y ( ) ( ) ( )b

jt dS dSξ ξ y

   (2.22) 

where 0 cS S S +   denotes the whole boundary of the damaged domain; p  is any 
sufficiently smooth test function defined on the ordinary boundary 0S ; ku  is any 
sufficiently smooth test function defined on the total boundary S ; b

pu  and b

jt  are 
components of the displacement and traction on the ordinary boundary 0S  of the 
cracked body; in  are components of the outward unit normal vector to the total 
boundary S ; /m i ism sD n =    or /m i ism sD n y=    denotes the surface differential 
operator; p

jU , tk

mjC , p

mjG , and p

ijH  are known fundamental solutions; and b

jv  and b

k  
are data defined by  

0( ),       
( )

( ),     

b

jb

j b

j c

u S
v

u S +

 
= 

 

ξ ξ
ξ

ξ ξ
   (2.23) 

0( ),       
( )

( ),     

b

kb

k b

k c

t S

t S


+

 
= 

 

ξ ξ
ξ

ξ ξ
   (2.24) 

In which ( )b

j j ju u u+ − = −ξ  denotes the relative crack-face displacement and 
0 0( )b

k k kt t t+ − = −ξ  denotes the jump in the crack-face traction. In particular, for the 
self-equilibrated crack-face traction, it yields 0( ) 2b

k kt t + =ξ . For general anisotropy, all 
involved fundamental solutions p

jU , tk

mjC , p

mjG , and p

ijH  were obtained explicitly by 
Rungamornrat and Mear (2008) as  
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1

2

0

1
( ) ( , ) ( )

8

p

j jpU ds
r

−

 =

− = 
z r

ξ y z z z    (2.25) 

1

2

0

1
( ) ( , ) ( )

8

p

mj abm ajdc b c dpG E z z ds
r




−

 =

− = 
z r

ξ y z z z    (2.26) 

1

2

0

1 1
( ) ( ) ( , ) ( )

3 8

tk

mj pam pbt bknd ajeo ajkb dneo o d enC E E E E z z ds
r

 


−

 =

− = − 
z r

ξ y z z z    (2.27) 

3

1
( ) ( )

4

p

ij i i jpH y
r

 


− = − −ξ y    (2.28) 

where = −r ξ y , | |r = r , z  is a unit vector on the plane normal to r , mjpnE  
denotes the elastic moduli of the material constituting the cracked body, 
( , ) jp m mjpn nz E z=z z , 1( , )−z z  is the inverse of the matrix ( , )z z , and ,ij ijk   are 
standard Kronecker and alternating symbols, respectively. It is worth noting that 
besides its vast capability to treat cracked bodies of general configurations, material 
anisotropy, and general loading conditions, the pair of boundary integral equations 
(2.21) and (2.22) are constructed in a weak-form well-suited for use as the basis of 
finite element and boundary element coupling procedure. In addition, all involved 
integrals contain only weakly singular kernels allowing the interpretation of singular 
integrals in the sense of Riemann sum and rendering the use of continuous 
interpolation functions in the approximation of unknown data.  

To establish a set of integral equations governing the cracked body shown in 
Figure 2.2(c), the pair of weak-form integral equations is applied properly to each 
portion of the ordinary boundary and the crack surface as follows. On the surface uS  
on which the displacement is fully known, the displacement integral equation (2.21) 
is employed by restricting the choice of test functions p  such that they vanish on 
the surface t a

S S  whereas on the surface tS  and the crack surface cS +  on which 
the tractions are prescribed, the traction integral equation (2.22) is utilized by 
choosing the test functions ku  such that they vanish identically on the surface 

u a c
S S S +   and the surface 0

S , respectively. On the surface a
S  connecting to the 

adhesive layer, both the shear tractions and the displacements are unknown a priori 
and the traction integral equation (2.22) is applied with the test functions satisfying 
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the condition 0ku =  on u t c
S S S +  . Following such the procedure, there results in 

a system of four weak-form boundary integral equations: 

( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba ba

uu ut uc ua ua u+ +  + + =t u u u s     A B B B A R    (2.29) 

( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba ba

ut tt tc ta at t+ +  + + =t u u u u u u u s u uB C C C B R    (2.30) 

( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba ba

uc ct cc ca ac c+ +  + + =t u u u u u u u s u uB C C C B R    (2.31) 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba ba ba

ua at ac aa aa a a+ +  + + + =t u u u u u u u s u u s uB C C C B D R    (2.32) 

where the linear integral operators , , ,PQ PQ PQ PA B C D  with , { , , , }P Q u t c a  are 
defined by 

( , ) ( ) ( ) ( ) ( ) ( )

P Q

p

PQ p j j

S S

X U Y dS dS= − X Y y ξ y ξ ξ yA    (2.33) 

( , ) ( ) ( ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( ) ( ) ( )

P Q

P Q

p

PQ p mj m j

S S

p

p i ij j

S S

X G D Y dS dS

X n H Y dS dS

= −

− −

 

 

X Y y ξ y ξ ξ y

y ξ ξ y ξ ξ y

B

   (2.34) 

( , ) ( ) ( ) ( ) ( ) ( )

P Q

tk

PQ t k mj m j

S S

D X C D Y dS dS= − X Y y ξ y ξ ξ yC    (2.35) 

1
( , ) ( ) ( ) ( )

2
P

P i i

S

X Y dS= X Y y y yD    (2.36) 

in which ,X Y  are vector value functions. The linear integral operators uR , tR , cR  
and aR  on the right hand side of (2.29) - (2.32) involve prescribed data defined by 

( ) ( , ) ( , ) ( , ) ( , )bu ba bt bu

u u ua ut uu= − − −u q t u    R D A A B    (2.37) 
( ) ( , ) ( , ) ( , ) ( , )bt bt ba bu

t t tt at tu= − − − −u u t t u q u u uR D B B C    (2.38) 
( ) ( , ) ( , ) ( , ) ( , )b bt ba bu

c c tc ac cu= −  − − −u u t t u q u u uR D B B C    (2.39) 
( ) ( , ) ( , ) ( , ) ( , )ba bt ba bu

a a ta aa au= − − − −u u q t u q u u uR D B B C    (2.40) 

It is remarked that the system of integral equations (2.29) - (2.32) contains five 
unknown functions including the unknown traction bu

t  on the surface uS , the 
unknown displacement bt

u  on the surface tS , the unknown relative crack-face 
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displacement bu , and the unknown displacement ba
u  and the unknown shear 

traction ba
s  on the surface aS .   

2.6 GOVERNING EQUATIONS FOR ENTIRE SYSTEM 

The continuity conditions of the total displacements at the interface (2.3) and (2.6) 
also imply the continuity of the in-plane displacements, i.e.,  

* *p ap=u u    (2.41) 
* *ba ab=u u    (2.42) 

where *ba
u  is a vector containing only local in-plane components of the global total 

displacement ba
u  on the surface aS  of the cracked body. From the law of 

coordinate transformation, *ba
u  can be related to ba

u  by 

*ba ba=u aTu    (2.43) 

where T  is a standard transformation matrix relating the bases of the global and 
local coordinate systems and a  is the selection matrix defined by 

1 0 0

0 1 0

 
=  
 

a    (2.44) 

Similarly, the global continuity conditions (2.4) and (2.7) of the shear tractions on the 
two interfaces also imply 

* *pa ap+ =s s 0    (2.45) 
* *ba ab+ =s s 0    (2.46) 

where *ba
s  is a vector containing only local components of the global shear traction 

ba
s  exerted to the surface aS  by the adhesive layer. Similarly, ba

s  can be related to 
*ba

s  by  

*ba T T ba=s T a s    (2.47) 

Combining (2.45) - (2.47) and the relation (2.18) leads to  
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* *pa a= −s     (2.48) 
*ba T T a=s T a     (2.49) 

The governing equations for the repaired cracked body shown in Figure 2.1 can now 
be obtained by combining that for the patch (2.15), that for the adhesive layer (2.20) 
and those for the cracked body (2.29)-(2.32) together with the conditions (2.41)-(2.43), 
(2.48)-(2.49) and the fact that the surface aS  and the two-dimensional domains 

p  
and a  are identical. The final system can be rewritten as 

* * * * 0( ) ( ) ( )

a a a

p T p p p T a p T p

p

S S S

h dA dA dA+ =  Lw C Lu w w s    (2.50) 

* *( ) ( ) ( )

a a a

a
a T a a T p a T ba

a

S S S

h
dA dA dA

G
= −  w w u w aTu    (2.51) 

*( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba T T a

uu ut uc ua ua u+ +  + + =t u u u T a      A B B B A R    (2.52) 

*( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba T T a

ut tt tc ta at t+ +  + + =t u u u u u u u T a u uB C C C B R    (2.53) 

*( , ) ( , ) ( , ) ( , ) ( , ) ( )bu bt b ba T T a

uc ct cc ca ac c+ +  + + =t u u u u u u u T a u uB C C C B R    (2.54) 

*

*

( , ) ( , ) ( , ) ( , ) ( , )

                                                                           ( , ) ( )

bu bt b ba T T a

ua at ac aa aa

T T a

a a

+ +  + +

+ =

t u u u u u u u T a u

u T a u





B C C C B

D R
   (2.55) 

It is seen that the system of equations (2.50)-(2.55) forms a sufficient set of 
conditions for determining the six unknown functions bu

t , bt
u , bu , ba

u , *a , and 
* p

u . 
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SOLUTION PROCEDURE 

This chapter summarizes the computational procedure for determining numerical 
solutions of a system of governing equations (2.50)-(2.55). A finite element technique 
is adopted to handle the weak-form equations governing the patches and the 
adhesive layers whereas the weakly singular boundary integral equation method is 
applied to discretize the governing integral equations for the cracked body. A post-
process routine for calculating the stress intensity factors along the crack front is also 
outlined at the end of this chapter.   

3.1 SOLUTION DISCRETIZATION 

To discretize the governing equations for the patches and the adhesive layers (2.50) 
and (2.51), a conventional finite element procedure for two-dimensional problems 
(e.g., Bathe, 2006; Hughes, 2012; Zienkiewicz et al., 2000) is adopted. The unknown 
shear stress within the adhesive layer *a , the unknown displacement of the patch 

* p
u , the unknown displacement ba

u  on the repaired surface aS  of the cracked body 
and all involved test functions (i.e., p

w  and a
w ) are approximated by standard basis 

functions constructed locally on a finite element mesh consisting of standard, two-
dimensional, isoparametric, 0C -elements. The approximations are given explicitly by 

*

( ) ( )

1

pN

p p p p p

i i

i=

=  =u U Φ U    (3.1) 

*

( ) ( )

1

aN
a a a a a

i i

i=

=  = Σ Φ Σ    (3.2) 

( ) ( )

1

baN
ba ba ba ba ba

i i

i=

=  =u U Φ U    (3.3) 

( ) ( )

1

pN

p p p p p

i i

i=

=  =w W Φ W    (3.4) 

( ) ( )

1

aN
a a a a a

i i

i=

=  =w W Φ W    (3.5) 
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where 
p

N , a
N  and ba

N  denote the number of nodes in the finite element mesh 
of the patch, adhesive layer, and the surface aS , respectively; 

( )

p

i , 
( )

a

i  and 
( )

ba

i  
are  nodal basic functions associated with the ith node of the patch, the adhesive 

layer, and the surface aS , respectively; ( )

p

iU , ( )

a

iΣ  and ( )

ba

iU  are the displacement of 
the patch, the shear stress within the adhesive layer, and the displacement of the 

surface aS  at the ith node, respectively; ( )

p

iW  and ( )

a

iW  are the arbitrary vectors at the 
ith node of the patch and the adhesive layer, respectively; p

U , a
Σ  and ba

U  are 

vectors containing all the nodal displacements ( )

p

iU , the nodal shear stress ( )

a

iΣ  and 

the nodal displacements ( )

ba

iU , respectively; p
W  and a

W  are vectors containing all 

the arbitrary vectors ( )

p

iW  and ( )

a

iW , respectively; and p
Φ , a

Φ  and ba
Φ   are the 

corresponding matrix storing the nodal basis functions 
( )

p

i , 
( )

a

i  and 
( )

ba

i , 
respectively. In the present study, finite element meshes used for constructing the 
basis functions 

( )

p

i  for the patch, 
( )

a

i  for the adhesive layer and 
( )

ba

i  for the 
surface aS  are taken to be conforming. This implies that the continuity of the 
displacements and traction along the interface can be enforced in a strong sense. 
Note in addition that nodes located along the surface breaking line on the surface aS  
(a line where the surface breaking crack intersects the surface aS ) excluding the 
vertices (points where the crack front intersects the surface aS ) must be treated as 
the double nodes; i.e., they contain twice the number of degree of freedom of that 
of the regular nodes. Similarly, nodes along the surface breaking line of the adhesive 
layer must be also treated as the double nodes; i.e., each of those nodes contains 4 
shear-stress degrees of freedom instead of 2 degrees of freedom as for the regular 
nodes.  

To discretize the weak-form boundary integral equations governing the 
cracked body (2.52)-(2.55), Galerkin-based procedure the same as that utilized by 
Rungamornrat and Mear (2008) is adopted. Due to the weakly singular nature of all 
involved integrals, all unknown functions and test functions can be discretized using 
continuous basis functions constructed locally on a finite element mesh over 
portions of the ordinary boundary 0S  and the crack surface cS + . Specifically, the 
unknown traction bu

t  and the test function   on the surfaces u
S , the unknown 

displacement bt
u  and the test function u  on the surface t

S , and the unknown 
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relative crack-face displacement bu  and the test function u  on the crack surface 

cS +  are approximated by 

( ) ( ) ( ) ( )

1 1

;  
bu buN N

bu bu bu bu bu bu bu bu bu

i i i i

i i= =

=  = =  = t T T T TΦ Φ    (3.6) 

( ) ( ) ( ) ( )

1 1

;  
bt btN N

bt bt bt bt bt bt bt bt bt

i i i i

i i= =

=  = =  = u uU Φ U U Φ U    (3.7) 

( ) ( ) ( ) ( )

1 1

;  
bc bcN N

b bc bc bc bc bc bc bc bc

i i i i

i i= =

 =   =  =  = u uU Φ U U Φ U    (3.8) 

where bu
N , bt

N  and bc
N  are the number of nodes used in the discretization of 

quantities on the surfaces u
S , t

S  and cS + , respectively; { , , }bu bu bu

i i i
 T T

( ) ( ) ( ) , 
{ , , }bt bt bt

i i i
 U U

( ) ( ) ( )  and { , , }bc bc bc

i i i
 U U

( ) ( ) ( )  are the nodal basic functions, the nodal 
unknowns and the nodal arbitrary vectors associated with the ith node on the surface 

u
S , t

S  and cS + , respectively; { , }bu bu
T T , { , }bt bt

U U  and { , }bc bc
U U  are vectors 

containing all the nodal unknowns and nodal arbitrary vectors on the surface u
S , t

S  
and cS + , respectively; and bu

Φ , bt
Φ  and bc

Φ   are the corresponding matrix storing 
the nodal basis functions 

( )

bu

i , 
( )

bt

i  and 
( )

bc

i , respectively. On the repaired surface 

a
S , the unknown displacement ba

u  is approximated by (3.3) whereas the 
approximation of the unknown shear traction ba

s  is achieved by (3.2) and the 
relationship (2.49). It is also important to remark that due to the regularity of 
solutions on the ordinary boundary, standard, two-dimensional, isoparametric, 0C -
elements are employed in the discretization. On the crack surface, it is known that 
the relative crack-face displacement possess an unbounded gradient at the crack 
front and this must be properly treated in the approximation. In the present study, 
special crack-tip elements proposed by Rungamornrat and Mear (2008) are employed 
to enhance the near-front approximation. With the use of these special elements, it 
has been found that relatively coarse meshes can be employed to accurately 
capture the crack-face data. 
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3.2 DISCRETIZED FORM OF GOVERNING EQUATIONS 

By substituting the approximations (3.1), (3.2) and (3.4) into the weak-form equation 
(2.50) for the patches together with using the arbitrariness of p

W , it gives rise to  

1 2 1

a p+ =C CΣ U R    (3.9) 

where the coefficient matrices 1C  and 2C  and the load vector 1R  are defined by 

1 ( )

a

p T a

S

dA=  Φ ΦC    (3.10) 

*

2 ( )

a

p T p p

p

S

h dA= C L C LΦ Φ    (3.11) 

* 0

1 ( )

a

p T p

S

dA= R sΦ    (3.12) 

The coefficient matrices 1C  and 2C  and the load vector 1R  can be readily 
constructed using a standard assembly procedure together with Gaussian quadrature 
to evaluate all regular integrals over elements resulting from the discretization.  

Similarly, by applying the approximations (3.1)-(3.3) and (3.5) to the weak-form 
equation (2.51) for the adhesive layers, it leads to a system of linear algebraic 
equations: 

3 4 5 2

ba a p+ + =C C CU Σ U R    (3.13) 

where the coefficient matrices 3C , 4C  and 5C  and the load vector 2R  are given by 

3 ( )

a

a T ba

S

dA= C aTΦ Φ    (3.14) 

4 ( )

a

a
a T a

a

S

h
dA

G
= C Φ Φ    (3.15) 

5 ( )

a

a T p

S

dA= −C Φ Φ    (3.16) 

2 =R 0    (3.17) 

Again, the standard assembly procedure is adopted, together with the numerical 
integration by Gaussian quadrature, to construct the three coefficient matrices 3C , 

4C  and 5C . 
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 Finally, a set of governing boundary integral equations (2.52)-(2.55) for the 
cracked body can be discretized, with the use of (3.2)-(3.3) and (3.6)-(3.8), into a 
system of linear algebraic equations 

3

4

5

6

bu

uu ut uc ua ua bt

T T
tt tc taut at bc

T T T
cc cauc tc ac ba

T T T T
aaua ta ca aa a a

 
    
         =   
 

   
 

   +    
  

A B B B A R

C C C RB B

C C RB C B

C RB C C B D

T

U

U

U

Σ

   (3.18) 

where entries of coefficient matrices PQA , PQB , PQC  for , { , , , }P Q u t a c  and aD   
are defined explicitly by 

3( 1) ,3( 1) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )

P Q

bP k bQ

PQ i k j l i l j

S S

U dS dS− + − + =  −  A y ξ y ξ ξ y    (3.19) 

3( 1) ,3( 1) ( ) ( )

( ) ( )

[ ] ( ) ( ) ( ) ( ) ( )

                            ( ) ( ) ( ) ( ) ( ) ( )

P Q

P Q

bP k bQ

PQ i k j l i ml m j

S S

bP k bQ

i r rl j

S S

G D dS dS

n H dS dS

− + − + =  − 

−  − 

 

 

B y ξ y ξ ξ y

y ξ ξ y ξ ξ y
   (3.20) 

3( 1) ,3( 1) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )

P Q

bP tk bQ

PQ i k j l t i ml m j

S S

D C D dS dS− + − + =  −  C y ξ y ξ ξ y    (3.21) 

3( 1) ,3( 1) ( ) ( )

1
[ ] ( ) ( ) ( )

2
a

ba ba

a i k j l kl i j

S

dS− + − + =  D y y y    (3.22) 

and the load vectors 3R , 4R , 5R  and 6R  are obtained directly from the 
discretization of the linear integral operators uR , tR , cR  and aR  defined by (2.37)-
(2.40). To construct all involved coefficient matrices, special quadrature rules 
proposed by Li et al. (1998) are adopted to evaluate both weakly singular and nearly 
singular integrals and an efficient interpolation-based algorithm similar to that 
proposed by Rungamornrat and Mear (2008) is implemented to calculate all involved 
fundamental solutions for generally anisotropic materials. 

The final system of linear algebraic equations resulting from the discretization 
of the governing equations (2.50)-(2.55) takes the following form 
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1 2 1

3 4 5 2

3

4

5

6

bu

bt

bc
uu ut uc ua ua

T T ba
ut tt tc ta at

T T T a
uc tc cc ca ac

T T T T p
ua ta ca aa aa a

    
    
    
       

=     
     
     
     

+        

C C R

C C C R

A B B B A R

B C C C B R

B C C C B R

B C C C B D R

0 0 0 0 T

0 0 0 U

0 U

0 U

0 Σ

0 U

   (3.23) 

The numerical solution of the linear system (3.23) can be obtained from various 
types of linear solvers such as Gaussian elimination and LU-decomposition methods, 
the bi-conjugate gradient stabilized method (e.g., Gutknecht, 1993; Y. Saad, 2003; Van 
der Vorst, 1992) and generalized minimal residual method (e.g., Saad and Schultz, 
1986). 

3.3 POST-PROCESS FOR STRESS INTENSITY FACTORS 

The SIFs along the crack front are to be extracted directly from the solved relative 
crack-face displacement. Due to the use of special crack-tip elements in the 
approximation of bu  in the neighborhood of the crack front, it allows ones to 
adopt the explicit formula proposed by Rungamornrat and Mear (2008) to obtain the 
SIFs. In such calculations, it is only required, in addition to the solved data bu , the 
geometry of the crack and properties of materials constituting the cracked body.  
 The explicit expression for the stress intensity factors in terms of the solved 
nodal data along the crack front is given by 

0π
( ) ( ) ( )

2
i c il c l ck B


 =  x u x e x    (3.24) 

where 2 1 3{ , , }k k k  denote mode-I, mode-II, and mode-III stress intensity factors, 
respectively; cx  denotes a point along the crack front; 1 2 3{ , , }e e e  denote 
orthonormal base vectors forming the local Cartesian coordinate system 1 2 3{ , , }x x x  
with the origin at cx  as shown in Figure 3.1; and   

2
1

0

1
[( ) ( ) ( ) ( ) ]

2
il il im mn nlB d






−= − a a a b b b b a, , , ,    (3.25) 
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1 ( , 1)c
cξ




= −  −



r
e    (3.26) 
9

( ) ( )

1

( , )i i

c c

i

  
=

= −r x x    (3.27) 

0 ( )

( )( ) ( , 1)bc i

c i c =  −u x U    (3.28) 

in which a  and b  are orthonormal vectors shown in Figure 3.1, ( )i
x  are nodal points 

of 9-node special crack-tip elements adopted along the crack front, ( )i  are 
standard shape functions of 9-node elements, ( , ) [ 1,1] [ 1,1]   −  −  are master 
coordinates used to define the element shape functions with 1 = −  indicating the 
crack front and ( , 1)c −  denoting the master coordinates of the point cx , and the 
summation appearing in (3.28) is taken over nodes of the element located along the 
crack front.    

 

 

  

 

 

 

 

 

 

 

Figure 3.1. Local Cartesian coordinate system and parameters essential for 
determining stress intensity factors along crack front.  
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NUMERICAL RESULTS AND DISCUSSIONS 

This chapter consists of two main parts. The first part devotes directly to the 
verification of the proposed technique and the convergence of numerical solutions 
whereas the second part involves the application of the verified technique to study 
the influence of certain parameters on the stress intensity factors along the crack 
front of cracked bodies after repaired.   

4.1 VERIFICATIONS 

In this section, results from the analysis of several representative problems by the 
proposed technique are reported. Both embedded and surface breaking cracks are 
considered. In the analysis, 6-node triangular elements and 8-node quadrilateral 
elements are employed to discretize the patch, the adhesive layer, the boundary of 
the cracked body, and the majority of the crack surface. The remaining portion of the 
crack surface adjacent to the crack front is discretized by 9-node special crack-tip 
elements. To investigate the convergence of numerical solutions, three meshes 
representing coarse, intermediate, and fine discretizations are adopted in the analysis 
of each problem and obtained results are then compared. To confirm the 
correctness of the implemented technique, generated numerical solutions are also 
compared with reliable benchmark solutions. In addition, some of the representative 
problems are chosen to be relatively complex to further demonstrate the capability 
and computational robustness of the proposed technique.  

4.1.1 Strengthening of cube containing near surface crack 

Consider a cube of an isotropic linearly elastic material that occupies the region 
[ , ] [ , ] [ , ]w w w w w w−  −  −  in space and contains a penny-shaped crack of radius a  
as shown schematically in Figure 4.1. The crack surface lies on a plane 3 0x =  with its 
center located at a point (0.4 ,0,0)w . The crack front can be parametrized in terms 
of the angular position [0,2 ]   by 
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1 2 30.4 cos ,    sin ,    0x w a x a x= − = =     (4.1) 

The cube is loaded by a uniform normal traction 3 0t =  on the face 3x w=  and the 
uniform normal traction 3 0t = −  on the face 3x w= − . To strengthen the cracked 
body, a patch of uniform thickness ph  is bonded to its entire face 1x w=  by the 
adhesive layer of uniform thickness ah . In the numerical study, the aspect ratio 

/ 0.5a w=  and Young’s modulus and Poisson’s ratio given in Table 4.1 are 
considered and three meshes shown in Figure 4.2 are adopted. 

 

 

          

                                      

                                                                                                 

                                                                   

 

 

 

 
 
Figure 4.1. A cube containing near-surface penny-shaped crack strengthened by 
adhesively bonded patch. 

 

Table 4.1. Material properties for cracked body, patch, and adhesive layer 

Materials 
Young’s modulus 

( 610 psi) 
Poisson’s ratio 

Cracked body 

Patch 

Adhesive layer 

2.0 

17.4 

0.1 

0.25 

0.25 

0.33 

0

2w

3x

1x
2x

0

a
2w2x

1x0.6w

1.4w

w w

a
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adhesive layer

crack
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Figure 4.2. Three meshes used in numerical simulations (only mesh of each face of 
cube is shown and it is identical to those for patch and adhesive layer). 

Since the analytical solution for this particular problem is not available in the 
literature, the reference solution constructed from the standard finite element 
technique is employed in the verification process. To ensure that the finite element 
solution is of good quality, a series of three different meshes adopted as shown in 
Figure 4.3 is utilized in the analysis and results for the stress intensity factors along 
the crack front of a cracked body with and without the strengthening are reported in 
Figure 4.4. It is obviously seen that a significant amount of degrees of freedom is 
required, for the finite element method, to arrive at the converged solution. As 
become evident later that the proposed technique is more computationally efficient 
in the sense that relatively few degrees of freedom are needed to generate 
numerical solutions of the comparable quality. The solution obtained from the finest 
mesh is then used as the benchmark solution. Finally, it is remarked that the same 
procedure described here is also employed throughout to construct the benchmark 
solution for all problems investigated. 
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Mesh-1   

  
Mesh-2      Mesh-3 

Figure 4.3. Three meshes adopted to investigate convergence of finite element 
solutions: Mesh-1 containing 6,930 elements, Mesh-2 containing 13,982 elements, 
and Mesh-3 containing 43,400-elements. 
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Figure 4.4. Normalized mode-I stress intensity factor of a near-surface penny-shaped 
crack embedded in a cube which is subjected to normal traction 0 . Results are 
generated by a reliable finite element program and those associated with the case of 
strengthening are reported for 0 0/ . 01ah w =  and 0 1/ .0ph w = . 

Due to the symmetry and loading conditions considered, only the mode-I 
stress intensity factor ( IK ) is non-zero. The normalized IK  obtained from the three 
meshes are reported in Figure 4.5 together with those generated by a reliable finite 
element program for the cases with and without the strengthening. As can be seen 
from this set of results, numerical solutions converge as the mesh is refined and the 
excellent agreement between the converged and reference solutions (with the 
difference within a fraction of 1%) is clearly observed. Note in particular that the 
relatively coarse meshes such as the Mesh-1 (containing only 12 elements on the 
crack surface) and Mesh-2 (containing only 30 elements on the crack surface) can 
also yield quite accurate results; this is due mainly to the use of 9-node special 
crack-tip elements in the enhancement of the approximation of the near-front 
relative crack-face displacement. After the cracked body is strengthened by the 
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adhesively bonded patch (with 0 0/ . 01ah w =  and 0 1/ .0ph w = ), the stress intensity 
factor is significantly reduced especially in the region near the bonded patch where 
the reduction from the unrepaired case is up to 20%. 

 



0 30 60 90 120 150 180

0.60

0.65

0.70

0.75

0.80

0.85

Mesh-1

Mesh-2

Mesh-3

Reference Solutions

 
Figure 4.5. Normalized mode-I stress intensity factor of a near-surface penny-shaped 
crack embedded in a cube which is subjected to normal traction 0 . Results for the 
case of strengthening are reported for 0 0/ . 01ah w =  and 0 1/ .0ph w = . 

4.1.2 Plate containing centered through crack 

Next, consider a rectangular plate of thickness t  and containing a centered through 
crack of length 2c  as illustrated in Figure 4.6. The crack is contained in a plane 

3 0x =  and the plate is loaded by a uniformly distributed normal traction 0  at its 
top and bottom surfaces. The cracked plate is repaired by a pair of patches with a 
uniform thickness ph  and dimensions 2 2d e . The patches are installed to cover the 
surface-breaking lines (located on the surfaces 1 0.5x t=  and 1 0.5x t= −  of the plate) 
by the adhesive material of uniform thickness ah  as indicated in Figure 4.6. In the 
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analysis, the following parameters and aspect ratios 0 0/ . 01ah t = , 0 1/ .0ph t = ,
/ 0.75d c = , / 1.47e c = , / 1c t = , / 2b c = , and / 2h b =  are considered; three 

meshes shown in Figure 4.7 are adopted; and the material properties given in Table 
4.1 are employed.  

 

 

 

 

 

 

 

  

 

 

 

 
 

Figure 4.6. Schematic of rectangular plate containing centered through crack and 
repaired by a pair of adhesively bonded patches.  
 

The converged finite element solution can be also constructed by following 
the same procedure as that employed in the previous problem and the final finite 
element mesh is also demonstrated in Figure 4.8. 
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           Mesh-1   Mesh-2    Mesh-3 

Figure 4.7. Three meshes adopted in analysis. Meshes of crack are shown below 
those of boundary. 
 

 

Figure 4.8. A final mesh (containing 51,450 elements) used to generate converged 
finite element solution. Mesh is shown only for a quarter of the whole cracked body. 
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Computed mode-I stress intensity factors from the three meshes are 
normalized and reported in Figure 4.9 as a function of the arc length s  measured 
from the center of the crack front for the cases with and without the repair. It is seen 
that upon the mesh refinement, the numerical solutions exhibit an excellent 
convergence behavior and only slight dependence on the level of discretization is 
observed. In particular, the coarsest mesh with the relatively low number of degrees 
of freedom especially for a region close to the crack can still yield stress intensity 
factors comparable to the converged solution. It is also found by comparing the 
converged results with the reference solutions generated from a finite element 
technique that the two solutions are almost indistinguishable for both repaired and 
unrepaired cases. After the cracked plate is repaired, the stress intensity factor drops 
significantly especially in the regions near the bonded patches. For this particular 
repair configuration (of both patches and adhesive layers), the reduction of the stress 
intensity factor is not less than 40% for the entire crack front. 
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Figure 4.9. Normalized mode-I stress intensity factor for a rectangular plate containing 
centered through crack under normal traction 0  with and without repair. 
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4.1.3 Plate containing surface-breaking semi-elliptical crack 

Consider, next, a rectangular plate of dimensions 2 2h b t   and containing a 
surface-breaking semi-elliptical crack as depicted in Figure 4.10. The crack is 
contained in the plane 3 0x =  with the crack front being parametrized by 

1 2 3/ 2 sin ,    cos ,    0x t a x c x = − = =    (4.2) 

 

 

 

 

 

 

 

  

 

 

 

 
 
Figure 4.10. Schematic of rectangular plate containing surface-breaking, semi-elliptical 
crack and repaired by adhesively bonded patch.  
 
where a  and c  denote the minor and major semi-axes, respectively, and [0, ]   
denotes the angular position along the crack front. The plate is subjected to a 
uniformly distributed normal traction 0  on its upper and lower faces. To repair the 
cracked body, a patch of uniform thickness ph  and dimensions 2 2d e  is bonded to 
the face 1 0.5x t=  of the plate to cover the entire surface breaking line by means of 
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the adhesive layer of uniform thickness ah . Dimensions of the plate, crack, patch, 
and adhesive layer are taken such that 0 0/ . 02ah t = , 0 2/ .0ph t = , / 0.5d c = , 

/ 1.25e c = , / 0.4a t = , / 5c a = , / 5b c =  and / 1h b = , and Young’s modulus and 
Poisson’s ratio for each material are given in Table 4.1. Three meshes shown in 
Figure 4.11 are employed in the simulations. It is worth noting that this 
representative problem for the unrepaired case and the three meshes adopted are 
identical to those reported in the work of Rungamornrat and Mear (2008). 
 

                                          front face              back face                          

                                              

                                     
                                                       Mesh-1  

        front face              back face                      front face              back face 

         

            
                          Mesh-2           Mesh-3 
 
Figure 4.11. Three meshes adopted in the analysis of a rectangular plate containing 
surface-breaking, semi-elliptical crack. The entire crack mesh and only one quarter of 
the outer boundary mesh are shown. 
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Figure 4.12. A final mesh (containing 62,510 elements) used to generate converged 
finite element solution. Mesh is shown only for a quarter of the whole cracked body. 

Due to the symmetry of the plate, crack, repair configurations, and loading 
conditions with respect to the plane of the crack, only mode-I stress intensity factor 
does not vanish along the crack front. The normalized mode-I stress intensity factors 
generated by the three meshes, for both repaired and unpaired cases, are shown in 
Figure 4.13 together with results generated by a finite element program with the 
mesh shown in Figure 4.12. Again, it is observed that the convergence of the 
numerical solutions is achieved as the mesh is refined. In particular, results from the 
Mesh-2 and Mesh-3 are only slightly different whereas that from the Mesh-1 is quite 
different from the converged solution since the mesh is too coarse to accurately 
capture the relatively complex response. The validity of the implemented technique 
is also confirmed by the good agreement between the converged and reference 
solutions indicated in Figure 4.13. It can be also remarked that after the cracked 
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plate is repaired by the adhesively bonded patch with the specified repair 
configuration and properties, the stress intensity factor can be reduced at least by 
half for the entire crack front.  
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Figure 4.13. Normalized mode-I stress intensity factors for rectangular plate 
containing surface-breaking, semi-elliptical crack under normal traction 0 . 

4.1.4 Edge cracked bar 

As a final example, consider a rectangular bar containing a through-the-thickness, 
surface-breaking crack as shown schematically in Figure 4.14. This cracked body is 
subjected to a uniformly distributed normal traction 0  on the upper and lower 
surfaces of the bar. To repair this cracked bar, three patches of the uniform thickness 

ph  are attached to the bar, by the adhesive layer of uniform thickness ah , to fully 
cover the surface breaking line as clearly illustrated in the figure. In the simulations, 
the geometry of the bar, crack, patch, and adhesive layer is taken such that 

45 10/ah t −= , 35/ 10ph t −=  , / 0.75w t = , / 0.875h t = , / 0.5a t = , / 0.2d t = , 
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/ 0.675e t = , and three meshes shown in Figure 4.15 and material properties given in 
Table 4.1 are employed.  

 

 

 

 

          

                                      

                                                                                                 

                                                                   

 

 

 

 
 

Figure 4.14. Schematic of a rectangular bar containing a through-the-thickness, 
surface-breaking crack under uniformly distributed normal traction and repaired by 
adhesively bonded patches. 
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        Mesh-1                                 Mesh-2                               Mesh-3 

Figure 4.15. Three meshes for rectangular bar containing a through-the-thickness, 
surface-breaking crack. Mesh for the crack mesh is shown below that of the 
boundary.  
 

 

Figure 4.16. A final mesh (containing 48,840 elements) used to generate converged 
finite element solution. Mesh is shown only for a quarter of the whole cracked body.  

The loading condition and the configurations of the cracked body and the 
repair gives rise to pure mode-I stress intensity factor along the crack front. Numerical 
results for this essential fracture data are reported in Figure 4.17 as a function of the 
arc length s  measured from the center of the crack front for the three meshes and 
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both repaired and unrepaired cases. It is seen from this set of results that the stress 
intensity factors generated from the intermediate and fine meshes (i.e., Mesh-2 and 
Mesh-3, respectively) are nearly identical except in a region very near the vertices 
(i.e., points where the crack front intersects the boundary) where the solution tends 
to drop rapidly to zero. Even the coarsest mesh (i.e., Mesh-1), which utilizes only 
three special crack-tip elements along the crack front, can still capture the 
distribution of the stress intensity factor quite accurately. This, as a result, confirms 
the convergence of the numerical results and the slight dependence of the solution 
on the level of discretization. Furthermore, the implemented technique is 
additionally verified by comparing the converged results with the reference solution 
generated by a finite element program with the mesh shown in Figure 4.16 and the 
good agreement of the two solutions is concluded. As can be seen from Figure 4.17, 
the patching repair can significantly reduce the stress intensity factor for the whole 
crack front. For a particular repair configuration considered here, the reduction of the 
stress intensity factor along the crack front is at least 65%. 
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Figure 4.17. Normalized mode-I stress intensity factor for rectangular bar containing  
through-the-thickness, surface-breaking crack under uniformly distributed normal 
traction 0 . 
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4.2 PARAMETRIC STUDY 

In this section, a fully tested numerical technique is utilized as an analysis tool to 
study the influence of the stiffness of the patch (defined by p

pE h  where pE  and 

ph  are Young’s modulus and thickness of the patch) and the shear stiffness of the 
adhesive layer (defined by /a aG h  where aG  and ah  are the shear modulus and 
the thickness of the adhesive layer) on the reduction of the stress intensity factors 
along the crack front. This piece of information can be potentially useful in the 
selection of both patches and adhesive layers not only to confine the stress intensity 
factors below the specified tolerance in order to prevent the subsequent crack 
growth but also to attain optimal repair design. Three cracked bodies shown in 
Sections 4.1.2-4.1.4 including the plate containing a centered through crack, the plate 
containing surface-breaking semi-elliptical crack, and the edge cracked bar are chosen 
as the representative cases in the parametric study. To ensure the accuracy of 
computed solutions, the finest mesh for each case is employed in the simulations. 

4.2.1 Plate containing centered through crack 

Consider the cracked plate shown in Figure 4.6. In the numerical study, dimensions 
of the plate, the crack, and the size of the patch are maintained such that 

/ 0.75d c = , / 1.47e c = , / 1c t = , / 2b c = , and / 2h b =  and the load level 
remains unchanged. Properties of the material constituting the cracked plate are 
taken from Table 4.1. 
 First, consider the cracked plate repaired by following four different types of 
patches including Aluminum, S45C, Si3N4 and Laminate 460/1500. The material 
properties of those patches are given in Table 4.2. In the simulations, the thickness of 
the patch and the adhesive layer is taken as / 0.01ph t =  and / 0.001ah t =  and the 
material properties for the adhesive layer are taken from Table 4.1. The normalized 
stress intensity factors along the crack front, after the repair, are reported in Figure 
4.18 together with the unrepaired case. As expected, the reduction of the stress 
intensity factors from the unrepaired case decreases as Young’s modulus of the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

material constituting the patch increases. The increase in Young’s modulus obviously 
enhances the stiffness p

pE h  of the patch. 

Table 4.2. Material properties for different types of patches (e.g., Liu and Xu, 2000; 
Jiann-Quo and Kam-Lun, 1991; Yu et al., 2014) 

Materials Young’s modulus (GPa) Poisson’s ratio 

Aluminum 
S45C 
Si3N4  
Laminate 460/1500 

71.02 
206 
304 
477 

0.32 
0.3 
0.27 
0.25 
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Figure 4.18. Normalized mode-I stress intensity factors along the crack front for plate 
containing centered through crack after repaired by four different types of patches.  

 To clearly understand the influence of the stiffness of the patch on the 
reduction of the stress intensity factor (SIF) along the crack front, simulations are 
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carried out for various values of the patch stiffness p

pE h  while maintaining all other 
parameters of the cracked body and the adhesive layers. The percent of reduction of 
the SIF from the unrepaired case at four different points along the crack front (i.e., 

/ {0,0.3,0.6,0.9}s t ) are reported versus the normalized patch stiffness /p b

pE h E t  
where bE  denotes Young’s modulus of the material constituting the cracked plate in 
Figure 4.19. Results at values of /p b

pE h E t  coincident with the four different types 
of patch shown in Table 4.2 are also marked in this plot. It is seen from this set of 
results that as the stiffness of the patch increases, the percent reduction of the SIF at 
four selected points along the crack front from the unrepaired case increases 
monotonically and finally converges to a certain limit when the stiffness of the patch 
becomes infinite (i.e., the patch becomes rigid). The latter observation simply implies 
that no further reduction of the stress intensity factors from such the limit can be 
achieved. Clearly, the SIF along the entire crack front can be reduced, after the 
repair, as much as 70% relative to the unrepaired case (controlled by the point 

/ 0s t =  where the stress intensity factor attains the maximum values). It is worth 
noting that the rate of reduction of the SIF decreases quite rapidly to zero as the 
normalized stiffness of the patch /p b

pE h E t  increases. Therefore, increasing 
/p b

pE h E t  beyond a certain range (e.g., 1.0-1.5 for this particular case) does not 
result in any further significant reduction of the SIF and may render the repair cost 
ineffective. Results as reported in Figure 4.19 can also be used in the selection of the 
stiffness of the patch in the repair design to confine the range of the stress intensity 
factors below the required tolerance.  
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Figure 4.19. Percent reduction of mode-I stress intensity factor relative to unrepaired 
case at four selected points with / {0,0.3,0.6,0.9}s t  versus normalized stiffness of 
the patch.  

Finally, the influence of the stiffness of the adhesive layer /a aG h  on the SIF 
along the crack front is examined. In the simulations, the material properties of the 
cracked body and the patches are taken from Table 4.1 and the thickness of the 
patch ph  is held constant at / 0.01ph t = . The percent reduction of the SIF from the 
unrepaired case at four different points along the crack front (i.e., points associated 
with / {0,0.3,0.6,0.9}s t ) versus the normalized stiffness of the adhesive layer 

/a b aG t E h  are reported in Figure 4.20. In this plot, results at values of /a b aG t E h  
associated with four different types of adhesive materials with their properties 
(Young’s modulus, shear modulus and Poisson’s ratio) given in Table 4.3 are also 
marked. It is remarked that as the normalized stiffness of the adhesive layer 

/a b aG t E h  approaches zero, the unrepaired case is recovered whereas as /a b aG t E h  
approaches infinity, obtained results are identical to the case that the patch is 
perfectly and directly bonded to the cracked body. It is apparent from Figure 4.20 
that the reduction of the mode-I stress intensity factor for the entire range of 
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/a b aG t E h  (i.e., / [0, )a b aG t E h   ) has the same trend as that observed in Figure 
4.19. In particular, the rate of percent reduction is quite rapid for / 1a b aG t E h   and 
quickly decays as the normalized stiffness /a b aG t E h  increases. It can be 
recommended from this observation that if the stiffness of the adhesive layer is 
chosen to be sufficiently large (larger than 1 for this particular case), it is not 
necessary to take the adhesive layer into account in the modeling. On the contrary, if 

/a b aG t E h  is relatively small, modeling of the cracked body under the patching 
repair without integrating the adhesive layer can lead to inaccurate results.  

Table 4.3. Material properties for different types of adhesive layers (e.g., Ricci et al., 
2011; Rodríguez-Tembleque and Aliabadi, 2016) 

Materials Young’s modulus (GPa) Shear modulus (GPa) Poisson’s ratio 

AF163-2K  

Cytec FM73  

Loctite Hysol EA95   

Epoxy 

1.10 

1.43 

2.48 

4.08 

0.44 

0.53 

0.905 

1.478 

0.34 

0.35 

0.37 

0.38 
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Figure 4.20. Percent reduction of mode-I stress intensity factor relative to unrepaired 
case at four selected points with / {0,0.3,0.6,0.9}s t  versus normalized stiffness of 
the adhesive layer.  

4.2.2 Plate containing surface-breaking semi-elliptical crack 

Next, consider the plate containing the surface-breaking semi-elliptical crack shown in 
Figure 4.10. In the simulations, geometry of the plate, the crack, and the size of the 
patch are maintained such that / 0.5d c = , / 1.25e c = , / 0.4a t = , / 5c a = , 

/ 5b c =  and / 1h b = ; the loading condition is fixed; and properties of the material 
constituting the cracked plate are taken from Table 4.1. 
 The normalized node-I stress intensity factors along the crack front of the 
cracked plate repaired by four different types of patches given in Table 4.2 are 
shown in Figure 4.21. Results are generated for / 0.02ph t =  and / 0.002ah t =  with 
the material properties of the adhesive layer taken from Table 4.1. By following the 
same procedure as that employed in the previous case, the percent reduction of the 
stress intensity factor from the unrepaired case at four different points along the 
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crack front (i.e., points associated with {6.5,45,70,90}  ) can be obtained as a 
function of the normalized stiffness of the patch /p b

pE h E t  and the normalized 
stiffness of the adhesive layer /a b aG t E h  as reported in Figures 4.22 and 4.23, 
respectively. As can be seen from Figure 4.21, as the modulus of a material 
constituting the patch increases, the patch stiffness increases and this enhances the 
reduction of the stress intensity factor from the unrepaired case. Results from Figure 
4.22 also suggest the suitable range of the patch stiffness for the effective repair and 
to meet the required tolerance to prevent the subsequent crack advances. In 
addition, as supported by results in Figure 4.23, the stiffness of the adhesive layer 
(linearly and inversely proportional to the shear modulus and the layer thickness, 
respectively) also significantly influences the repair performance. As the stiffness of 
the layer increases, the effectiveness of the patch as the load sharing element is 
more apparent.  
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Figure 4.21. Normalized mode-I stress intensity factors along the crack front for plate 
containing surface-breaking semi-elliptical crack after repaired by four different types 
of patches.  
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Figure 4.22. Percent reduction of mode-I SIF relative to unrepaired case at four 
selected points with {6.5,45,70,90}   versus normalized stiffness of the patch.  
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Figure 4.23. Percent reduction of mode-I SIF relative to unrepaired case at four 
selected points with {6.5,45,70,90}   versus normalized stiffness of adhesive 
layer.  
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4.2.3 Edge cracked bar 

To additionally confirm the finding as pointed out in the previous two cases, 
consider, as a final example, the rectangular bar containing a through-the-thickness, 
surface-breaking crack as illustrated in Figure 4.14. The geometry of the cracked bar 
and the patch are taken as / 0.75w t = , / 0.875h t = , / 0.5a t = , / 0.2d t =  and 

/ 0.675e t = ; the applied load is fixed; and properties of the material constituting 
the cracked bar are taken from Table 4.1. 
 The normalized node-I stress intensity factors along the crack front of the 
cracked bar repaired by four different types of patches with properties shown in 
Table 4.2 are shown in Figure 4.24. The percent reduction of the mode-I stress 
intensity factor from the unrepaired case at four different points along the crack front 
(i.e., points associated with / {0,0.25,0.6,0.967}s t ) are reported as a function of 
the normalized stiffness of the patch /p b

pE h E t  and the normalized stiffness of the 
adhesive layer /a b aG t E h  in Figures 4.25 and 4.26, respectively. As can be seen from 
this set of results, the same conclusion about the influence of the stiffness of the 
patch and the adhesive layer can be drawn. This piece of information can be 
potentially useful as the guideline in the selection of the patch and adhesive layer in 
the repair design. 
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Figure 4.24. Normalized mode-I SIF along the crack front for edge cracked bar after 
repaired by four different types of patches.  
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Figure 4.25. Percent reduction of mode-I SIF from unrepaired case at four selected 
points with / {0,0.25,0.6,0.967}s t  versus normalized stiffness of the patch.  
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Figure 4.26. Percent reduction of mode-I SIF from unrepaired case at four selected 
points with / {0,0.25,0.6,0.967}s t  versus normalized stiffness of adhesive layer.  
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CONCLUSIONS AND REMARKS 

The efficient and accurate BIE-FE coupling technique has been successfully 
implemented for the stress analysis of three-dimensional cracked bodies repaired by 
adhesively bonded patches. The boundary integral equation technique has been 
adopted to efficiently treat the cracked body whereas the standard finite element 
method has been utilized to tackle both the adhesive layers and the patches.  

Results from a numerical study have indicated that numerical solutions 
accomplished from the proposed approach possess the good convergence behavior 
and are of excellent agreement with reliable benchmark solutions. The near-front 
approximation of the relative crack-face displacement has been enhanced by means 
of using special crack-tip elements and this allows relatively coarse meshes to be 
adopted in the discretization whereas still yielding sufficiently accurate fracture data 
along the crack front. Furthermore, the capability, versatility, and robustness of the 
current technique have been proved through the analysis of various problems 
including complex domains with multiple surface-breaking sides.  

Results from the parametric study have indicated that as the Young’s 
modulus of the patch (depending primarily on the types of the patches) increases, 
the stress intensity factors are reduced for the entire crack front for all cases 
investigated. In addition, the relative stiffness of both patches and adhesive layers 
has been found to play an important role on the reduction of the stress intensity 
factors along the crack front compared with those of the unrepaired case. Mainly, 
enhancing the stiffness of the patches and the adhesive layers gives rise to the 
increase in the percent reduction of the stress intensity factor from the unrepaired 
case. However, the enhancement of the patch stiffness to reduce the stress intensity 
factor is only effective for a certain limit. More specifically, increasing the patch 
stiffness beyond certain values or ranges may result in an insignificant change of the 
reduction of the stress intensity factor in the patching repair.  
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Results gained from the present study also provide the information essential 
as the guideline for the selection of both patches and adhesive layers not only to 
confine the stress intensity factors below the specified tolerance in order to prevent 
the subsequent crack growth but also to attain optimal repair design. In addition, as 
also pointed out in the previous chapter, the necessity of integrating the adhesive 
layer into the modeling depends mainly on the relative stiffness of the adhesive 
layer itself. For relatively high relative stiffness, ignorance of the adhesive layer in the 
mathematical model is recommended to save the computational cost. On the 
contrary, the integration of the adhesive layer in the modeling is obligatory and has 
the significant influence on the predicted stress intensity factor if its relative stiffness 
is relatively low. 

The present work can be potentially and directly extended to incorporate 
both the bending and three-dimensional effects of the patches on the performance 
of the repair. In addition, integration of the material anisotropy of the patches, the 
nonlinear behavior of the adhesive material, and the non-planar repair surfaces are 
also of interest and requires nontrivial treatment. 
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