CHAPTER 4

EXPERIMENTAL RESULT and DISCUSION

4.1 Performance of Neural network

Results of testing model are shown in Table 4.1. The model number 2,
architecture [11.4.1] (these digits in brackets correspond to the neurons in input,
hidden and output layer) gives minimum mean absolute error of 7.46°C. The model
for predicting the temperature change in converter process during tapping and adding
addition has one hidden layer, four neurons in hidden layer. This architecture will be
used for studying the effect of leamning rate and momentum on learning behavior of the
network. The predicted temperature change of the best network is shown in Figure 4.1.
Figure 4.2 shows the distribution of error from this model. It illustrates the relation
between the actual temperature change and the predicted temperature change. Good
correlation between actual and predicted temperature change is obtained in the range
between 40°C to 100°C. Slope of trend line between actual and predicted temperature
change is 0.9904, The standard deviation and variance of error from [11.4.1]
architecture is only 6.32 and 40.05 respectively. It should be’ noted that this error is
made up of four other errors are: |

1) error in process measurement

2) error from reading valuc.ss from the equipment

3) error from the accuracy of measuring equipment

4) error from neural network
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Figure 4.1 Predicted and actual temperature change from the best model

Table 4.1 Error of the different network

MSL
103.745
91.577 G.878 13.280
98.872 9.943 13.409
105.373 10.235 14.421
129.065 11.361 13.135
103.989 10.198 12.357
99.239 9.962 13.197
132.640 11.517 15.619
98.321 9916 13.001
111.634 10.566 12.85
149.212 12.215 14.172
97.433 9.871 12.947
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Figure 4.2 The histogram of error
4.2 Parameter in Network

4.2,1 Effects of number of hidden neurons
Figure 4.3 shows error of model with the number of epochs for three
layers network with different number of hidden neurons. Network with fewer hidden
neurons gives a higher error. The network with more hidden neurons also gives higher
error and shows perturbation in learning curve.
Searching of best architecture of network can be done only by trial and
error. In this investigation, many trials and errors had been performed until the best

architecture [11,4,1], with error of 7.46°C was received. It was found that network has
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too few hidden units can not learn the training set well. On other hand, networks with
too many hidden units tend to memorize the training set but cannot perform well.

This work also makes trial and error with two hidden layers. Even
though the two hidden layers can give error of the same magnitude [11,4,1] but it was
not chosen as the model to predict the temperature change. Because increasing the
hidden layer will increase the complexity and need more time for convergence of the
network. Most applications of neural network with backpropagation use only one
hidden layer to solve problem, The major reason for this is that intermediate unit not
directly connected to output cells will have very small weight changes and will learn

very slowly.
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Figure 4,3 Effects of hidden neurons in the learning curve
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4.2.2 Effect of learning rate

After getting the network architecture, the suitable leaming should be
. chosen. The effect of learning rate on the learning behavior of network is shown in
Figure 4.4. It can be seen that the high leaming rate will affect the convergence of the
network, The high learning rate leads to fluctuation of the learning curve while the use
of a lower leanﬁng rate leads to a faster convergence of the curve.

The learning rate coefficient determines the size of the weight
adjustment at each iteration and influences the rate of convergence. The different
values of learning rates result in different rates of convergence. A large value of
learning rate gives bigger step sizes and faster convergence, but only at a point. When
- learning rate is chosen too large, the error may become unstable, overshooting and fail
to converge at all. On the other hand, if leaming rate is chosen too small, the
convergence will progress in very small step and significantly increase the total time to
convergence. The learning rate is probably best to keep it no larger than 0.1 [13] but

the appropriate choice of learning rate is problem specific.

4.2.3 Effects of momentum
Figure 4.5 shows Ieffects of changing the momentum on the learning
curve. It shows that the best momentum for the prediction temperature change is 0.5.
Even though three values show the same convergence error but the network with
momentum 0.5 converged more rapidly.
Adding a momentum term is another possible way to improve the rate

of convergence. This can be accomplished by adding a fraction of the previous weight
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changen to the current weight change. The addition of momentum term can help smooth
out the descent path by preventing extreme changes. The momentum term will filter
out higher-frequency oscillations in the weights change.

The value of momentum should be positive and less than 1. Typical
value is in the range [0.5-0.9], but for some problems a value of momentum 0 was

shown to be the best [14].
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Figure 4.4 Effects of learning rate on learning behavior of the network
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4.3 Testing of input-output dependence

There were seven variables which had been tested for its effect on temperature
change. These seven variables were variables that have strong relative relevance after

pruning the network in training phase.

4.5.1 Effects of tapping time and steel weight

The tapping time and steel weights are variables which influence the
temperature drop of the liquid steel. Figures 4.6 and 4.7 show the effects of tapping
time and steel weight on the temperature drop respectively. It demonstrates fhat
increasing the tapping time and steel weight will increase the temperature drop. Figure
4.7 shows that the steel weight influences the temperature drop only slightly, The
result of temperature drop from steel weight bases on the temperature drop of 140 ton
steel weight. In practice, rhost of tapping time is appréximately 5-8 minutes which
gives temperature drop of 25°C. Predicted temperature drop from the neural network
in this range of tapping time is about 20°C-30°C which corresponds to values in
practice. From Figure 4.6, it can be seen that the tapping time is the largest effect on
the temperature change. During tapping, the liquid steel is poured from BOF to ladle.
The heat can easily transfer from liquid steel to environment due to the liquid steél is
flowed and contact with atmosphere and no cover to prevent the heat loss. The heat
energy can easily loss to environment by radiation.

Generally, the thermal energy in the liquid steel system should increase
as the steel weight is increased. So the temperature drop should be lower when the
steel weight is increased. But the network predicts the effect of steel weight contrary

that is the temperature drop is increased when the steel weight is increased. The main
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reason for this point is that in practice when steel weights increase, the tapping time
will be also increased and the effect of tapping time is more than the effect of steel

weight. However effects of steel weight on the predicted temperature drop is only

little.
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Figure 4.6 Effects of tapping time on temperature drop
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Figure 4.7 Effects of steel weight on temperature drop
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4.3.2 Effect of flux and additive

Additives and fluxes are added during the process of secondary
metallurgy to improve the quality and properties of steel. All of these additives and
fluxes affect temperature change of the liquid steel in the process. Different additives
affect on the temperature change of the liquid steel differently. Some additives affect
the temperature change in the same way. For example calcium oxide (CaO) absorbs
the heat from liquid stecl and lower the temperature of the liquid steel. However,
aluminium (Al) reacts with oxygen and gives heat to system results in increase of the
temperature of the liquid steel. Various effects of additives and flux can now be
illustrated in Figure 4.8-4.12,

The optimized neural network, architecture [11,4,1] is able to lea.m_ the
influence of flux and additive parameters on the temperature change of the liquid steel.
It can be seen that additions except aluminium will decrease the temperature of the
liquid steel. These result conform to data from thermodynamic calculation. Aluminium
react with oxygen (for deoxidation in liquid steel). This reaction is exothermic reaction
(2[Al] + 3Q = (2A1,03)) should increase temperature of the liquid steel,

Clearly, the neural network predicts a linear relationship between
temperature change and the amount of addition. The relationship from thermodynamic
is also linear. From equation 4.1 and 4.2, the temperature change varies linearly with
the amount of additiops. The difference between calculation line and network line of
Ca0 (in Figure 4.8) is in the boundary of average error (7.46°C). This relationship
shows that the network can predict the effects of CaO very well. Adding of other
materials occur only in some heats and to a much smallerextent. We can not consider

all range of addition in the prediction of other variables. We should consider on the
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range that takes in the network. Manganese should not be considered in range less than
300 kg and aluminium more than 500 kg. Because there is no data on such range.

One problem about data of this investigation is some variables are
discrete data. The network can learn only in range of existed data. The testing of input-
output dependence varies such data from minimum to maximum while some range of
data can not be found for training in network. For the better performance of network,
the real data from minimum to maximum are required. It is difficult to find such data
in practice because some additive is added follow the steel grade that can not vary

from minimum to maximum,.
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Figure 4.8 The effect of CaO on the temperature change of liquid steel
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Figure 4.9 The effect of FeCr on the temperature change of liquid steel
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Figure 4.10 The effect of Mn on the temperature change of liquid steel
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Figure 4.11 The effect of Carbon on the temperature change of liquid steel
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Figure 4.12 The effect of Al on the temperature change of liquid steel
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