CHAPTER 2

LITERATURE SURVEY

2.1 Basic Theory of Neural Network

Neural network is an information-processing system that has certain
performance characteristic in common with biological network [t]. It is the high
interconnected neural computing elements that have the ability to respond to input and
to learn to adapt to the environment. Neural network simulates the working of human
brain.. The basic computing elements in biological network are neuron. A neuron is a
small cell that receives electrobhcmical stimuli (input) from many sources and
responds by generating electrochemical impulse and transmits to other cells on action

of human.

Neural networks have been shown the effectiveness as a
computational processor for various tasks such as pattern recognition (speech and
visual image recognition), ciassification, data compression, modeling, forecasting,
adaptive control. They have a number of desirable properties which are not found in
conventional computation system including the dealing with noisy or incomplete input

patterns, high paralle] computation rates and adaptive Jeamning,

2.1.1 Structure of Neural Network
Neural network consists of many processing units, called neuron or
node. Each neuron is arranged in layer. Input layer is the layer that neurons receive

inputs from external and does not recompute their outputs. It is just only passing the
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input data to the next layer. Output layer is the layer that presents the output of whole
network by computing their output from input data. The layer between input layer and
output layer is called hidden layer, It is called hidden layer because the neurons in this
layer receive only internal inputs (inputs from other processing units) and compute
internal outputs (outputs to other processing units). This layer is hidden from outside
of network. This layer is necessary for a network to compute difficult, complex, non-
linear function. Each node in each layer is connected together by weight. The number
of neuron in input layer is equal to the input parameter of problem and the number of
neuron in output layer is equal to the output parameters. But for hidden layer, the
number of neuron is dependent on characteristic or complex of problem on hand. The
arrangement of neurons into layers and connection pattern between layers is called the

architecture of network.

2.1.2 Basic Concept of Neural Network Computing

In Figure 2.1, a single neuron network is illustrated with three inputs
and one output. Each input neuron i (i=1, 2, 3,...,i) has an external input X; and weight
Wi;j which is part of connection of neuron to neuron.

The neuron has a function for transferring or producing an output

y=AD
I=x;w; + XaW; + X3w3 = Zxjw
Y =f{(Zxwy)
where I is cumulative input to the neuron.

J() is an activation function which computes the output




Figure 2.2 Schematic Diagram of a Single Neuron

2.2 Basic Concept of Multilayer Perceptron Network with

Backpropagation

The first neural network was designed by Warren McCulloch and Walter Pitts
in 1943 [2]. Many neural networks had been designed to solve different complex
problems such as Kohonen network, Recurrent network, Adaline network, and
Hopfield network. One of the most important neural networks is the multilayer

perceptron network with backpropagation. It is a highly flexible modeling tool.




A general multilayer perceptron network is presented in Figure 2.3. It is a
feedforward and fully connected network. It consists of an input layer, one or more
hidden layer and an output layer. The iteration of network is started with presenting of
real value of input x; to input layer and passed to the first hidden layer units through
weights wji. Unit j in hidden layer computes its output by using x; and wi;i and passes
output to the units in the next layer, In the next layer, it is like in the previous layer it
recetves input from previous layer and compute the output then pass to the next layer,
This process is repeated until the output units. Multilayer perceptron with
backpropagation training algorithm has gained popularity because it can perform
arbitrary mapping. Arbitrary mappings are possible if a sufficient number of hidden
units are provided and if the network can be trained and the weights that perform the
desired mapping can bé found. The problem is how to find the set of this weights. The
backpropagation learming method specify how to adjust the weights in each layer. It is
an optimization procedure base on gradient descent that adjusts weights to reduce the
error of system. During the leaming of network, each training data set is propagated
forward layer by layer until an output of network is obtained. The output of network is
then compared to a target output and an error is determined. This error is used as input
to feedback connection which adjustments of weight are made layer by layer in a
backward direction. The name backpropagation come from this backward direction.
When the new weight is obtained after adjustment, they are used for next iteration.
And the backward direction is used for adjustment. The process is continued in the
training phase until the system error convergence to a minimum or until some limit is

reached.




To make understanding of calculation of multilayer perceptron network, we
determine the following notation for the network parameters. From Figure 2.3, weight
connection between input layer unit i and hidden layer unit j are denoted by vjii=
1,2,....1  j=1.2,..j and weight connections between hidden layer unit j and output
unit k are determined as wyj , k = 1, 2, ....k. The input is denoted as x; and output of

hidden units j is y; while output of unit k in output layer is z , target output is t,.

We define the following terms
Hj = Zv; xi
I = Zwy ¥
y;j=AH)
2= fll)
H; = the net input to hidden layer unit j
I = the net input to unit k of output layer
¥j» Zk is output computed by unit j of the hidden ayer and unit k of output layer
respectively

) = activation function which is as bounded, differentiable function

Thus ze = f () = f (Ewyyi) = AZwig AH))
= fAZwi AZvii x; )
After we get output, we need the algorithm that reduce the error
system through an adjustment of weights. We define the mean system error E; as the

average of the output errors over all training set error E, , p = number of training set

data,




Ec= Up*ZE,

E, = 112 Z(tez)

The system error will be reduced if the error of each training set, Ep,
is reduced. The parameter that can be adjusted in network is only the weights in the
network, Thus a weight correction procedure must be the procedure that adjusts the
weights in proportion to a reduction in the error relative to changes in the weights. We
will change the weights on each successive set presentation such that the set errors are
iteratively reduce from previous values. Thus at step s+1 of the training process, the
weight adjustment should be préportional to the derivation of the error of E, on
iteration s

Aw(st+1) = -mOEy/ow(s)
Wig(s+1) = wig(s) + (-n0OEy/wy(s))

1 = a constant learning coefficient (learning rate)

E=1220zny  zm=fL), k=Zwgy 2.1)
From chain rule E__E dk =5E(§Zijki)
av]g. a, a'wb. d, a‘w,g.
Ly ki .
av,g J
E _Ex

We use chain rule again =———"t
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From equation (2.1 oE
. @1 > = =)
k
a,
o= L)
We define d, =(tfft-zk)}'flk)
Thus, for output layer Awkj = _ﬂaéf_ =7d, Y,
K
| vy ey ® L,
For hidden layer # >, H, &,
oH,
a}ﬂ - Z a’ﬂ (vﬂx.l) Ny xf
E  E Y E
- =—=f'(H,)
H, H,H, g,
E 1 XS Ewy )
¥, 2 ¥,

==Xt -2 U,)w,

We can represent as

v, =n6x =m0 f(H;)2Low,

Thus for weight adjustment in output and hidden layer we use equation (2.2) and (2.3)

Wy =W + AWy, = wyt+my, (4 ~z) (1) Equation (2.2)

new

Vi = vjfd +Ay, = v;:d + r]x‘f'(H,)ch,,Wy Equation (2.3)

The backpropagation training process requires the activation
function that is bounded, differentiable functions and its differentiate.function can be

written in form of its function, One of the most commonly used function is sigmoid

function or logistic function.
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fx)=1/(1+e™)
S () =fAx)(1-Ax))
Another commonly used function is the hyperbolic tangent function. This

function has a shape similar to the sigmoid function, It can be written as

SO =(e"-e") (e +e™)
S= (1))
For improving the rate of convergence, adding some momentum to the weight
adjustment expression is done. This is done by adding a fraction of the previous
weight change to the current weight change. This can prevent extremely change in

some adjustments. We can represent the new adjustment equation as:

Aw (t+1)= —ry%(r) +oAw (¢)
J

where o is the momentum coefficient. The value of c should be positive and less than

1. Typical value is in the range (0.1-0,9]. But some problem momentum = 0 can learn

better.
2.3 Multilayer Perceptron Network with Backpropagation Algorithm

1. Initialize all weights W to small random values within the range [-A, A]. Normally

all weights in range [-0.1, 0.1] are effective values.
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2, Randomly select a pair of training set {x, t} and compute in a feedforward
direction the output values for each unit j of each layer, thus
0; = AZO0w;)
3. Use the values O; computed by the final layer units and the corresponding target
values t; to compute the delta quantities
8= (tx-Ow) " (Ii)
4. Compute the deltas for each unit in preceding layers by using

&; =1 (H))Z Scwy

5. Update all weights w;; using
Wi = wold + AW

6. Return to step 2 and repeat for each set until the acceptable error is reached.

Figure 2.3 A general Multilayer Neural Network
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2.4 Application of Neural Network in the Iron and Steel making

process control

2.4.1 Blast Furnace Analysis with Neural Networks

In the op.eration of blast furnace the radial temperature profile in the upper
part of furnace is an important factor which controls the quality of process. This value
is the important parameter to describe the condition of furnace. The optimization of
this temperature profile may lead to saving of the production cost. To achieve this
optimization, quantitative relations between furmace parameter are needed but those
relationships are unknown. A process model can be provided by using neural network
[3]. To build the model the data for modeling the blast furnace consist of the charging
program, the distribution of the grain size of coke and sinter, several parameter of the
material strength, material transportation time. These data were used as the input of
neural networks. The outputs of the network are the value of modeling temperature at
8 positions of the measuring system. Several network configurations have been trained
and tested. The best configuration (the minimum error) was chosen as the model for
this process. The neural network is able to approximate the temperature profile with
good precision. By using this model the optimization of the blast furnace process can

be largely improved. The results of this control system are shown in Figure 2.4,
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Figure 2.4 The result of temperature profile with neural network control

2.4.2 Neural Model of Blast Furnace Burden Distribution

The burden distribution of blast furnace is a factor for achieving a gas

distribution in the way that it ensures the efficiency and a smooth operation of the blast

furnace. The burden distribution cannot be measured. However temperature

measurements cap be used to estimate the burden distribution [4]. The local layer

thickness of the charged burden causes the changing of temperature. The neural

network is presented for modeling the blast furnace burden distribution by using the

data of temperature measurement. The data for modeling the burden distribution

consists of the index which are derived from temperature measurement (equation 2.4),

the time elapsed between dumping materials, binary variables indicating the material

(1 for ore and 0 for coke), particle size (1 for fine and 0 for coarse) and temperature.
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Tg.‘(rd}_:rgf(rd +2)
Tgi(fd}_i:-

Bi = i= 1? 2? 3: L K (Eq. 2'4)

where T; is charged burden, T, is temperature, t4 is the time of the dump, and K is the

position of measuring temperature.

Several feedforward networks have been trained and tested. The best feed forward
network with seven input, one output and five hidden nodes was found as the model of

burden distribution accurately and is shown in Table 2.1.

Network N:':m'he l ght | trai ’%‘rﬁqg-. ‘£|t'f?ﬁt-ermr
1) T 7 | 00763 | 0.0767
T2.0) 19 T 00659 | 0.0703
(7,3,1) 28 | OaiR’ 0.0714
74D 37 | 00564 | 00714
(7,5,1) 7 0038—1==0:0676
(7,6,1) 55 0.0513 0.0706
7.0 64 0.0501 0.0601
7.8.1) 73 1= 70,0481 | -|- 0.0653
o) |- 8 | uudsT | 00688

Table 2.1 The training and testing error for different architecture of 7 inputs network

The predicted value of B is compared with the true value in the Figure 2.5.
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Figure 2.5 The true values of § and predicted values by the [7,5,1] network

2.4.3 Optimization of a BOF's Lining Resistance by Application

of Artificial Neural Network (ANN)

This work had been done at a Chinese steel plant, The furnace life of
the basic oxygen furnace in this steel plant is about 1000 heats of steel and the
production rate of 30 heats/day [5]. Consequently the furnace must be stopped for
changing of the lining material every month. The cost for lining is very expensive. In
order to improve the refractory of furnace, the relationships which affect the furnace
life should be known. These relationships are complex therefore neural network was
used té model the furnace life. A data set of this work contains 18 variables. These
variables are:

1. X : supplementary filling amount (kg/t steel)

2. X, : percentage of first hit (%)
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3. X;:blowing time

4. X, : waiting time

5. Xs:melting time

6. X Sicontent in molten iron

7. X7 : Mn content in molten iron

8. X3 : P content in molten iron

9. Xs : S content in molten iron

10. Xjo : temperature of molten iron
11. X1 : temperature of final point
12, X2 : CaO amount (kg/t steel)

13. X3 : dolomite amount (kg/t steel)
14, Xj4: moiten iron ratio (%)

15 X5 : total iron content in the residue
16. X6 : MgO content in the residue
17. X7 : alkaline degree (Ca0/8i0,)
18. Xis : production rate (%)

First the DDL (Distance Discriminate Line) method is adopted to analysis 18
variables. It was found that X, X3, Xs and X3 were major factors that determine the
furnace life.

The data set were divided into 2 classes

Class 1. Good samples: the furnace life is longer than 1000 heats

Class 2. Bad samples: the furnace life is shorter than 1000 heats

The total amounts of data sets were 33 sets. 16 data sets were classified into Class 1

and 17 data sets were classified into Class 2. Four variables (X;, X3, X;s and X13) were
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taken as the input, the expected output of these two classes were defined as 0.1 (class

1) and 0.9 (class 2). The hidden layer contains 8 neurons. 25 data sets were used for

learning and the other 8 data sets for testing. The results of testing are shown in Table

2.2,

X X3 Xs Xis | Predicted result by ANN | Predicted class | Actual class
0.1840 16.2 358 448 0.011819 1 1
0.2486 17.7 372 379 0.108319 1 1
0.1679 171 346 373 0.003558 1 1
0.2222 8.4 37.0 42.9 . 0.086422 1 1
0.2445 18.2 86.6 379 0.005274 i i
0.0816 20.9 41.2 52.6 0.904718 2 2
0.1465 191 38.6 28.1 0.875118 2 2
0.1008 18.2 37.0 339 0.992812 2 2

Table 2.2 The predicted results by ANN

From the result of testing, it can be seen that the prediction was correct according to

the actual class. This result can be applied to adjust the main factors which effect the

wear of the lining of BOF (X, X3, X5, X1g).

2.4.4 Adaptive Neural Net (ANN) Models for Desulphurization of

Hot Metal and Steel

In steelmaking process desulphurization is a step in secondary

metaliurgy which should be achieved because sulfur can form inclusions with other

elements which may affect the mechanical properties of steel negatively.
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Desulphurization can be done in several parts in iron and steel making such as in
converter, in torpedo car or in vacuum degassing unit. There are many factors that
affect desulphurization. In this work neural network was adapted to predict the sulfur
content of hot metal at the end of calcium carbide powder injection into a 400 t
torpedo ladle. Furthermore the sulfur content of steel at the end of blowing in a 300 t
converter was predicted [6]. The prediction of the sulfur content of hot metal used hot
metal weight,. treatment time, initial sulfur content, and gas flow rate and powder
injection rate as the input and the final suifur content as fhe output of neural network.
The results of prediction are shown in Table 2.3. For the prediction of sulfur content in

oxygen steelmaking, eight variables were used:

1. metal weight 2. total amount of oxygen blown
3. amount of iron ore added 4. temperature

5. contents of carbon 6. content of manganese

7. content of phosphorus 8. content of sulfur

These variables were used as inputs of neural network for predicting the sulfur content
of steel whereas the sulfur content of liquid steel at the tapping was an output variable.
The neural networks were trained with 50 data sets and tested with 50 data sets. The
result of testing is shown in Figure 2.6. From these two results it is obvious that neural

network can be applied to model the desulphurization of hot metal and steel.
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No | Time | Weight | Initial S [ Gas flow | Powder Final S content in %
(s) (ton) |Content| rate | flow rate | Actual Predicted
% | m’/min. | Kg/min. a6 [ @ [ oy
[5,8,1° | [5,8,11" | [5,9,1]
I | 1404 | 280 0.026 0.6 67.0 0.003 | 0.1436 | 0.0059 | 0.0030
2 | 1421 | 309 0.024 0.6 70.0 0.003 | 0.0150 | 0.0031 | 0.0030
31473 303 0.016 0.6 62.0 0.005 | 0.0074 | 0.0033 | 0.0084
4 [ 1161 [ 362 0.030 0.6 73.0 0.005 | 0.0157 | 0.0030 | 0.0030
511085 | 336 0.028 0.6 63.0 0.008 { 0.0143 | 0.0090 | 0.0050
6 | 559 308 0.021 0.6 63.0 0.009 { 0.0090 | 0.0036 | 0,0149
7 | 483 304 0.018 0.6 58.0 0.011 | 0.0087 | 0.0043 | 0.0030
8 | 501 317 0.020 0.6 63.0 0.011 | 0.0091 | 0.0038 { 0.0096
91 779 295 0.030 0.6 68.0 0.012 | 0.0159 | 0.0161 | 0.0163
10 [ 796 344 0.033 0.6 60.0 0.015 | 0.0160 | 0.0161 | 0.0163
11| 455 27 0.022 0.6 68.0 0.017 | 0.0151 [ 0,0042 | 0.0166
Table 2.3 The results of predicted final sulfur in torpedo ladle with different

architecture network

* number of training patterns # architecture of neural network [5,8,1] =3 input neurons, 8 hidden neurons, 1 output neurons
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Figure 2.6 The result of prediction of final sulfur content in blowing converter *

2.4.5 Modeling of Metal-slag Equilibrium in Ironmaking Process

. Using Neural Network

The existing fundamental models for the describing metal-slag
equilibrium, for example, Temkin’s rulé, Schuhmann’s approach, Masson’s polymer
theory, the model of Flood and Grjotheim, use the complicated mathematical
equations. They are not easy to be used in practice. This example will show the new
alternative for ﬁnodeling metal-slag equilibrium by using neural network [7]. This
example illustrates the application of neural network modeling for ironmaking process.
Two equilibrium were considered. The first is manganese distribﬁtion between pig
iron and slag. This investigation used the data from an aﬁicle of Oelsen and Schubert.
Two input variables were used, %Ca0/%S$i0; and[Si]. The output was {%Mn}/(%Mn)

ratio. The system also used eight hidden nodes. The neural network was trained with
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48 data sets and tested with 7 data sets. The error after convergence of testing is 4%.
Figure 2.7 plots the predicted [%Mn]/(%Mn) ratio over the experimental [%eMn}/
(%Mn) ratio. This figure shows that the neural net“'.'rork can predict [%Mn)/ (%Mn)

ratio correctly.

i I%Mnl/(%Mn) - NN

0.2‘ A A L y ¥imal A A L 'l
0.28 26

{%Mnl/(%Mn) - experimental

"= Training data set =2 Test data st
Figure 2.7 The predicted [%Mn}/(%Mn) by neural network and by experiment

The second application was the prediction of the sulfur distribution between pig iron
“and slag. Taylor and Stobo investigated the sulfur distribution between slag and pig
iron at 1500°C in an aluminium crucible. The data from this investigation have been
used in this work. The neural network included four input nodes, five hidden nodes
and one output node. The input data were (%Ca0)/(%Si05), %Al,03, %FeO and %S.
The output is (S)/[a,]. The error testing data is 6.6%. This shows that neufal network

can predict proper the distribution of S between pig iron and slag. The results of neural

network are shown in Figure 2.8.
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Figure 2.8 A comparison between NN-predicted (S)/[a,] and experimental (S)/[ac]

2.4.6 Neural Network System for Breakout Prediction in

Continuous Casting Process

In this example the neural network is used for the prediction of
breakout in continuous caster mold [8]. In the continuous casting -prbcess the breakout
of caster mold is the gravest factor that obstructs the process because it may cause the
long shutdown of continuous caster. The breakout is a phenomenon where the
solidifying shell of molten steel in contact with the mold wall ruptures and causes the
molten steel spill out when the rupture reaches the bottom of the mold with the
progress of the casting operation. If this shell rupture can be verified by some means,
reducing the casting speed can prevent the breakout. The occurring of breakout can be

verified by measuring temperature at mold wall because the molten steel directly
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contacts the mold wall where the shell rupture is Iocated. Therefore the measured
| temperature at the mold wall is the input of the neural network and the output is a
breakout alarm when the output value exceeds a predetermined threshold value. The
result of this neural network is shown in Figure 2.9. The conventional method had 0
miss item and 23 overdetection items, whereas the neural network system had a 0 miss
item and 0 overdetection item. This network brought an accuracy of almost 100% and

proved the system capability of predicting breakout is better than the conventional

method.
0 5 10 15 20 25(item)
The System with Neursl
Network

Figure 2.9 Result of simulation test

2.4.7 Use of Artificial Neural Networks on Optimization of

Mechanical Properties of Batch Annealed Thin Steel Strip

The optimization process can be constructed by an accurate model
with the absolute understanding of the process. Some of the mechanical properties of
the strip are mainly adjusted with the batch anneal process. During the simulation of
the process the development of a multilayer perceptron model for the optimization of

mechanical properties of batch annealed thin steel strips was developed [9). This work



25

got ﬂ:lﬂ data from the process of Rautaruukki’s Haemeenlinna and Raahe works, which
were collected continuously for a period of approximately 6 months. The input‘data
were uniaxial tension test and the concentration of most important alloying elements
(C, Si, Mn, P, Nb, and Ti). The output of the model was yield strength. The multilayer
perceptron used back propagation rule to find an optimum mapping between input and
output. This multilayer perceptron contained only one hidden layer, which is sufficient
to represent a mapping between input and output. The optimization algorithms
consisted of two multilayer perceptrons (MLP). One for calculating the yield strength
of the end product (prediction MLP) and the other for giving an estimation for the
credibility of the prediction yicld strength (evaluation MLP). The interaction of
alloying elements is non-linear. The behavior of the two MLPs were tested with data
where four of the ailo‘ying elements were at the average values of a certain steel grade
and two of them (niobium and titanium) were changed between their minimum and

maximum. The results of this test are shown in Figures 2.10 and 2.11,

Figure 2.10 shows that the predicted yield strength increases with the
addition of Nb and Ti. The magnitude of the increase is in agreement with
experimental knowledge. Thus it seems that the prediction MLP has also
approximated the effect of niobium and titanium correctly in the other regions.

Figure 2.11 shows the credibility estimate predicted yield strength by
evaluation MLP. Typically the contents of niobium and titanium of this investigated
steel grade are at the top left comer of Figure 2.11 which shows poor credibility.
Because this two MLPs were tested with a constant value of the other four alloying

elements which should affect the yield strength of steel.



W 490-540
m 440-490
= 390-440
= 340-390
260-340
240-290
190-240

Titanium content [%]

Niobium content [3%]

Figure 2.10 The predicted yield strength with addition of Nb and Ti
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Figure 2.11 The credibility estimate predicted yield strength by evaluation MLP
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2.4.8 Improvement of Cold Mill Precalculation Accuracy Using a

Corrective Neural Network

In the cold rolling process the stands of rolls are used to flatten a steel strip to

~a desired thickness. The steel strip is pressed while passing the stands of rolls. One of
the most important variables, which affect on the flattening of a steel strip are roll gap
and rolling force. At Pohang Iron and Steel Company (POSCO) in Pohang/Korea these
variables were determined by precalculation phase of cold mill process control. Before
using the neural network POSCO used mathematical models to determine rolling force
and rolling gap in precalculation phase. The exact values of some parameters such as,
friction coefficients, deformation resistance of coil, to calculate rolling force and
rolling gap was not known, Because these parameters could not be measured duﬁng
processing of coil. Another problem in mathematical model is that it did not use some
important parameters which influence the rolling force, e.g. the coiling temperature
behind the last stand of the hot mill, the chemical composition of the coil, the
aggregated amount of processed strip at each stand and the roll type. Therefore
POSCO developed the precalculation phase by using corrective neural network [10].
This control system combined the mathematical model and neural network as shown

in Figure 2,12,

The output of the corrective neural network is the corrective coefficient Z,, the ratio of
the actual measured roiling force (Pa) to the predicted rolling force (P.y) by
mathematics model. This corrective coefficient is multiplied to the rolling force

calculated by mathematical model to result in the combined roiling force (Peomn). A
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corrective neural network is built for each of the five milling stands, The result of this
development is shown in Table 2.4, The error (E) is defined as the difference of rolling

forces.
Ena = ] Pact = Pl |

.Eeombz IPact“Pcomb ,

From the result in Table 2.4 the applied neural network to precalculation phase of

POSCO can reduce the error 55.4% on average and up to 72% on stand No 2.

P ®2,*P,

Mathematical Neural
Modal Natwork

f(Hh,D,,....)

X X0, Q. 8

Figure 2.12 Combined model of mathematical and neural network

X = {roll diameter (D)), forward tension (T}, backward tension (Ts), initial thickness (H), target thickness(h), coil width(W) }
. Xo = { aggegrated amount of coil processed, roll type }
Q = { chemical composition (C, Mn, Si) }

5 = ( average coiling temperature at hot rolling mill }
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Stand

Epmar(ton) Ecomp(ton) average error

Number avg. sdv max avg. sdv max | reduction (%)
1 118.82 87.55 297.00 [ 41.48 4227 | 213.83 65.1
2 98.09 43.22 295.00 | 27.17 22.09 164.00 72.3
3 116.83 71.81 | 290.00 | 36.85 34.66 169.71 68.5
4 35.46 29.33 137.00 [ 3037 | 28..76 | 137.02 14.8
5 41.08 29.34 163.00 17.97 19.15 142.00 562
Average | 82,09 52.25 236.40 30.77 29.38 165.31 554

Table 2.4 Comparison of the rolling force prediction error both the mathematics and

combined model

2.4.9 Prediction of martensite start temperature using artificial

neural network

This investigation uses the artificial neural network to predict the martensite

start temperature [11]. Martensite is one important microstructure that affects the

hardness of steel. Martensite is a desired microstructure in some heat treatment

processes. Martensite start temperature (M), i.e. the highest temperature where the

martensite phase occurs. It can be predicted from the chemical composition of steel

because the austenite-martensite transformation is a non-diffusional transformation

therefore the characteristic transformation temperature does not depend on the prior

thermal history during cooling or on the austenite grain size. The new modeling

technique, which is presented to predict martensite start temperature, was Neural
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Network. Neural network is very stable and capable of handling linear and non-linear
dependencies as well as higher order parameter interactions [12). The chemical
composition of steel was the input of neural network and the output was the martensite
start temperature, This work useld 164 vanadium steel grades and the measured M,
from the atlas of continuous cooling traﬁsfonnation diagrams for vanadium steel.
From these 164 steel grades, 144 steel grades were used for training and the other 20
steel grades for testing. The 12 elements which have significant effect on M; were
used as in put: C, Si, Mn, P, 8, Cr, Mo, Ni, Al, Cu, N and V. The neural networks were
trained with many architectures. The best results were received by the architecture 6
-nodes of hidden layer. The results of this architecture are shown in Figure 2.13. A
good correlation was obtained in a range of 180-480°C, Figure 2.14 show the results of
predicted M; by linear Andrews model. lWhen comparison the results between the
predicted M, by neural network and by linear Andrews model, the results from neural
network is better than form linear Andrews model. Therefore Neural Network can be
applied to predict the martensite start temperature correctly, Moreover neural network
is capable of | handling different dependencies in different areas of the total
composition [11]. Four base alloys have been selected which cover the domain of
- input ahd output for looking at the effects of the alloying elements on M;. The results
of the effect of alloying elements on M; is illustrated in Figure 2.15. In the Figure 2.15
it is found that M, is a function of overall composition. The nickel and manganese
dependencies are linear whereas the carbon and molybdenum dependencies are non-

linear. The chromium and vanadium concentration does not affect the M,
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